

Edwin Ronald Valderrama Campos

Modelagem do Uso de Nanofluidos no Sistema de Arrefecimento de Motores a Combustão Interna

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

> Orientador: Prof. José Alberto dos Reis Parise Co-Orientador: Dr. Frank Chaviano Pruzaesky

Rio de Janeiro Outubro de 2009

Edwin Ronald Valderrama Campos

Modelagem do Uso de Nanofluidos no Sistema de Arrefecimento de Motores a Combustão Interna

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. José Alberto dos Reis Parise Orientador Departamento de Engenharia Mecânica - PUC-Rio

> > Prof. Frank Chaviano Pruzaesky Co-Orientador

Departamento de Engenharia Mecânica - PUC-Rio

Prof. Sergio Leal Braga Departamento de Engenharia Mecânica - PUC-Rio

Prof. Carlos Valois Maciel Braga Departamento de Engenharia Mecânica - PUC-Rio

> Prof. Carlos Eduardo Leme Nóbrega CEFET/RJ

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 30 de outubro de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Edwin Ronald Valderrama Campos

Graduou-se em Engenharia Mecânica no Dpto. De Engenharia Mecânica da UNT (Universidad Nacional de Trujillo, Trujillo – Perú) em 2006.

Ficha Catalográfica

Campos, Edwin Ronald Valderrama

Modelagem do uso de nanofluidos no sistema de arrefecimento de motores a combustão interna / Edwin Ronald Valderrama Campos; orientadores: José Alberto dos Reis Parise, Frank Chaviano Pruzaesky. – 2009.

97 f.: il. (color.) ; 30 cm

Dissertação (Mestrado em Engenharia Mecânica)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia.

1. Engenharia mecânica – Teses. 2. Nanofluidos. 3. Motor de combustão interna. 4. Fluido de arrefecimento. 5. Radiador automotivo. 6. Arrefecimento de motor. 7. Bomba de líquido. I. Parise, José Alberto dos Reis. II. Pruzaesky, Frank Chaviano. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título. PUC-Rio - Certificação Digital Nº 0721405/CA

Aos meus pais, e aos meus amigos Jose e Sara.

Agradecimentos

A Deus por cada novo dia.

Aos meus orientadores, Professor José Alberto dos Reis Parise, e Doutor Frank Chaviano Pruzaesky, por sua dedicação, confiança e amizade concedida ao longo do curso.

Ao Professor Sergio Libanio do CEFET-RJ pelo seu apoio durante a realização do presente trabalho.

Ao colega Juan Carlos Valdez Loaiza pela ajuda na elaboração do documento final.

Aos professores do Departamento de Engenharia Mecânica da PUC-Rio pelos ensinamentos que contribuíram à minha formação.

Aos colegas e funcionários pela hospitalidade e apoio.

A todos os amigos que, com seu apoio e amizade, contribuíram para que minha permanência no Brasil seja muito agradável.

Finalmente, minha gratidão ao CNPq e à PUC-Rio pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Campos, Edwin Ronald Valderrama; Parise, José Alberto dos Reis; Pruzaesky, Frank Chaviano. **Modelagem do Uso de Nanofluidos no Sistema de Arrefecimento de Motores a Combustão Interna.** Rio de Janeiro, 2009. 97p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Estudou-se a aplicação de nanofluidos no sistema de arrefecimento de motores a combustão interna. Nanofluidos são suspensões de partículas de diâmetro menor que 100 nm em fluidos convencionais de troca de calor, tais como água, óleo, etileno glicol, entre outros. Devido às suas características favoráveis de transferência de calor, em função da suspensão de partículas, metálicas ou não metálicas, com elevada condutividade térmica, nanofluidos têm sido considerados para atuar como fluidos térmicos em diferentes aplicações. Desenvolveram-se modelos matemáticos para operação em regime permanente, na avaliação do efeito das características térmicas e hidráulicas do escoamento do nanofluido nos componentes do sistema de arrefecimento; e em regime transiente, na avaliação do processo de aquecimento do motor. Fez-se uso do pacote EES para a simulação e consideraram-se os seguintes componentes do sistema de arrefecimento automotivo: radiador, camisas do bloco de cilindros, termostato e bomba do líquido de arrefecimento. Foram empregados o método dos parâmetros concentrados e o método E-NTU para a modelagem global do sistema Diferentes tipos de nanofluidos, com variações na concentração monofásico. volumétrica de nanopartículas, foram considerados na avaliação desta alternativa em fluidos térmicos visando aplicações automotivas.

Palavras-chave

Nanofluidos; Motor de Combustão Interna; Fluido de Arrefecimento; Radiador Automotivo; Arrefecimento do Motor; Bomba de Líquido.

Abstract

Campos, Edwin Ronald Valderrama; Parise, José Alberto dos Reis (Advisor); Pruzaesky, Frank Chaviano. **Modeling of the use of nanofluids in internal combustion engines cooling systems.** Rio de Janeiro, 2009. 97p. MSc Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The application of nanofluids in cooling systems of internal combustion engines was studied. Nanofluids consist of nanoparticles (with dimension below 100 μ m) suspended in traditional heat transfer fluids, such as water or ethylene glycol. Given their favourable heat transfer characteristics, because of the suspension of high thermal conductivity particles, metallic or non-metallic, nanofluids have been considered as potential substitutes for conventional heat transfer fluids. Mathematical models were developed for steady-state operation, for the evaluation of thermal and hydraulic behavior of the cooling system, and for transient regime, for the assessment of the engine start-up process. The EES software was employed for the simulation. The following components of the cooling system were considered: radiator, engine cooling jackets, thermostat and coolant pump. Lumped parameter analysis and the effectiveness-NTU method were used for the single-phase system simulation. Different types of nanofluids, with variation on the volume fraction, were considered in this study.

Keywords

Nanofluids; Internal Combustion Engine; Coolant; Automotive Radiator; Engine Cooling; Coolant Pump.

Sumário

Lista de Símbolos	15
1 Introdução	19
1.1. Objetivo	19
1.2. Justificativa	19
1.3. Contribuição do presente trabalho	21
1.4. Conteúdo do trabalho	21
2 Uma breve revisão sobre nanofluidos	22
2.1. Produção de nanopartículas e nanofluidos	23
2.2. Propriedades dos nanofluidos	27
2.2.1. Condutividade térmica efetiva	27
2.2.2. Viscosidade dinâmica	30
2.2.3. Densidade e calor específico	32
3 Estado da arte do sistema de arrefecimento automotivo	33
3.1. Componentes e funcionamento de um sistema de arrefecimento	
automotivo	34
3.2. O calor no sistema de arrefecimento automotivo	35
3.2.1. Balanço de energia	36
3.2.2. Mecanismos de transmissão de calor no motor a combustão	
interna	37
3.3. A camisa de água do motor	39
3.4. O radiador automotivo	41
3.5. A bomba do fluido de arrefecimento	42
3.6. O termostato	43
3.7. Fluidos de arrefecimento	45
3.8. Nanofluidos em sistemas de arrefecimento automotivos	46

4 Modelo matemático do sistema de arrefecimento de um motor a

combustão interna	49
4.1. Descrição do sistema proposto	49
4.2. Equações de conservação	50
4.2.1. Jaqueta do motor	51
4.2.2. Radiador	52
4.2.3. Bomba do fluido de arrefecimento	53
4.3. Modelo matemático das jaquetas do motor	53
4.4. Modelo matemático do radiador	54
4.4.1. Taxa de transferência de calor	55
4.4.2. Coeficiente convectivo de troca de calor do ar	57
4.4.3. Coeficiente convectivo de troca de calor do fluido de	
resfriamento	59
4.4.4. Queda de pressão no lado do ar	62
4.4.5. Queda de pressão no lado do fluido de resfriamento	62
4.4.6. Potência de bombeamento do fluido de resfriamento	63
5 Modelo do regime transiente durante o aquecimento de um motor	
a combustão interna	64
5.1. Descrição do sistema para o regime transiente	64
5.2. Desenvolvimento do modelo do regime transiente	66
5.2.1. Sistema: fluido de arrefecimento	66
5.2.2. Sistema: bloco do motor	67
6 Mátodos do solução	60
6 1. Modele para regime permanente	60
6.1.1. Dados do optrada	60
6.1.2. Dados de saída	71
6.1.2. Datos de salda	71 72
6.1.4. Deconvolvimento de código	72
6.1.4. Desenvolvimento do codigo	73
6.2. Solução numérico do modelo do regimo transiento	74
0.2. Solução numenca do modelo do regime transiente	75
7 Resultados do modelo do sistema de arrefecimento do motor de	

combustão interna

76

7.1. Propriedades termofísicas	79
7.1.1. Densidade efetiva	79
7.1.2. Calor específico efetivo	79
7.1.3. Viscosidade dinâmica	80
7.1.4. Condutividade térmica efetiva	82
7.2. Resultados para o radiador	82
7.2.1. Número de Nusselt do nanofluido	83
7.2.2. Coeficiente de troca de calor	83
7.2.3. Área requerida de transferência de calor	85
7.2.4. Altura do radiador	86
7.3. Bomba do fluido de arrefecimento	86
7.3.1. Queda de pressão	87
7.3.2. Potência de bombeamento	87
7.4. Resultados do modelo do regime transiente	89
8 Conclusões e recomendações	
Referências bibliográficas	93

Lista de figuras

Figura 1 – Condutividade térmica de algumas substâncias com	
respeito à condutividade térmica da água, baseado em Wang e	
Mujumdar (2008).	22
Figura 2 – Sistema de produção de nanopartículas pelo método de	
fase gasosa incrementado por plasma (Hosokawa et al., 2007).	24
Figura 3 – Nanopartículas de 79% Al ₂ O ₃ – 21% SiO ₂	
(Hosokawa et al., 2007).	25
Figura 4 - Esquema da produção de nanofluidos por evaporação –	
condensação de vapor metálico (Choi e Eastman, 2001).	26
Figura 5 – Esquema do homogenizador de alta pressão para a	
produção de nanofluidos em dois passos (Hwang et al., 2008).	26
Figura 6 – Vista secionada de um motor V-8, mostrando o sistema	
de arrefecimento. As setas brancas indicam o fluxo do FDA através	
da camisa do motor (Crouse e Anglin, 1977).	35
Figura 7 – Diagrama do fluxo de energia para um motor a	
combustão interna (Heywood, 1988).	36
Figura 8 – (a) Distribuição de temperaturas medidas (pontos) e	
calculadas no pino e no lado de carga do pistão e; (b) Porcentagem	
do fluxo de calor em diferentes zonas do pistão (Heywood, 1988).	38
Figura 9 – Vista secionada do bloco de cilindros de um motor V-6	
mostrando as camisas do motor (Crouse e Anglin, 1977).	39
Figura 10 – Fluxo de calor através das paredes da câmara de	
combustão (Heywood, 1988).	40
Figura 11 – Geometrias típicas de radiadores automotivos.	41
Figura 12 – Seção dos canais inclinados das aletas mostrando	
os dois tipos de fluxos do ar, através do duto e através dos canais	
inclinados (Cowell et al., 1995).	42
Figura 13 – Bomba do fluido de arrefecimento: (a) marca Daihatsu,	
2009 e; (b) vista em seção mostrando o eixo e o rolamento de	
esferas de fileiras duplas (Crouse e Anglin, 1977).	43

Figura 14 – Tipos de termostato.	44
Figura 15 – Estrutura do trocador de calor compacto estudado por	
Vasu et at. (2008).	47
Figura 16 – Esquema simplificado do sistema de arrefecimento do	
motor de combustão interna.	49
Figura 17 – Esquema do radiador e o sentido dos fluxos, cruzados	
e não misturados, envolvidos no processo de troca de calor.	55
Figura 18 – Esquema do circuito usado para o modelo do regime	
transiente, mostrando o sistema ativado durante o aquecimento do	
motor (linha cheia), e o circuito utilizado durante a operação normal	
do motor (linha tracejada).	65
Figura 19 – Interpretação gráfica do método de Newton – Raphson	
(Kelley, 2003).	74
Figura 20 – Esquema do processo de cálculo pelo método de Euler.	75
Figura 21 – Densidade efetiva dos nanofluidos para várias	
concentrações de nanopartículas com diâmetro d_{np} = 10 nm	
operando a 89 ℃.	80
Figura 22 – Calor específico efetivo dos nanofluidos para diferentes	
frações volumétricas de nanopartículas com diâmetro d_{np} = 10 nm	
e operando a 89 °C.	81
Figura 23 – Viscosidade dinâmica efetiva para várias concentrações	
de nanopartículas com um diâmetro $d_{np} = 10$ nm e operando a 89 °C.	81
Figura 24 – Condutividade térmica efetiva para diferentes frações	
volumétricas de nanopartículas, com um diâmetro d_{np} = 10 nm e	
operando a 89 ℃.	82
Figura 25 – Número de Nusselt do nanofluido escoando nos tubos	
de seção alongada em função da concentração volumétrica de	
nanopartículas com diâmetro d_{np} = 10 nm e operando a 89 °C.	83
Figura 26 – Coeficiente de troca de calor para diferentes	
concentrações de nanopartículas, a uma temperatura de operação	
de 89 °C, e um diâmetro de nanopartículas d_{np} = 10 nm.	84
Figura 27 – Área de transferência de calor no lado interno dos tubos	
de seção oval do radiador para diferentes concentrações, a uma	

temperatura de operação de 89 °C, e para um diâmetro de partículas	
$d_{np} = 10 \text{ nm.}$	85
Figura 28 – Altura do radiador para diferentes concentrações de	
nanopartículas, para uma temperatura de operação de 89 ${}^{\circ}\!{ m C}$ e um	
diâmetro de partículas $d_{np} = 10$ nm.	86
Figura 29 – Queda de pressão dos nanofluidos em função da	
concentração volumétrica das nanopartículas, a uma temperatura	
de operação de 89 °C e um diâmetro de partículas d_{np} = 10 nm.	87
Figura 30 – Potência de bombeamento do nanofluido a diferentes	
concentrações volumétricas, a uma temperatura de operação de	
89 °C, e um diâmetro de nanopartículas $d_{np} = 10$ nm.	88
Figura 31 – Efeito da concentração das nanopartículas sobre a	
potência de bombeamento para nanofluido de alumina	
(Ben Mansour et al., 2007).	89
Figura 32 – Aumento da temperatura do FDA durante o período de	
aquecimento do motor (termostato fechado) para o nanofluido	
H₂O – Cu e água.	90
Figura 33 – Aumento da temperatura do FDA durante o período de	
aquecimento do motor (termostato fechado) para o nanofluido	
$H_2O - Al_2O_3$ e água.	90

Lista de tabelas

Tabela 1 – Valor da constante <i>c</i> da eq. (2.7) para diferentes	
nanofluidos (Velagapudi, V. et al., 2008).	30
Tabela 2 – Propriedades termofísicas das nanopartículas,	
(Velagapudi, V. et al., 2008).	77

Lista de Símbolos

Símbolos gerais

A	Área, [m²]
Ac	Área de fluxo-livre mínima no lado do ar do radiador, [m²]
A _{fr}	Área frontal do radiador, [m²]
A _r	Razão de aspecto dos tubos de seção alongada $(A_r=T_w/T_d)$, [-]
A_{tb}	Área da seção transversal dos tubos de seção alongada, [m²]
A_w	Área média de troca de calor nos tubos de seção alongada, [m²]
b	Comprimento médio da distância entre aletas, [m]
С	Taxa de capacidade térmica ($m c_p$), [kW/K]
Cp	Calor específico a pressão constante, [kJ/kg·K]
Cr	Razão das taxas de capacidade térmicas ($C_r=C_{min}/C_{max}$), [-]
D _h	Diâmetro hidráulico, [m]
D _{pst}	Diâmetro do pistão, [m]
D _{rd}	Espessura do radiador, [m]
D_{tb}	Diâmetro das tubulações, [m]
f	Fator de atrito de Fanning, [-]
F	Razão de combustível – ar, [-]
F _d	Comprimento das aletas no sentido do fluxo do ar, [mm]
F _e	Eficiência de fluxo, [-]
F ₁	Comprimento das aletas, [mm]
F _p	Passo das aletas, [mm]
F _{th}	Espessura das aletas, [mm]
G	Velocidade mássica, [kg/m²-s]
H _{rd}	Altura do radiador, [m]
j	Fator de Colburn ($j=\alpha/Gc_p$), [-]
k	Condutividade térmica, [kW/m·K]
L _I	Comprimento dos louvers, [m]
Lp	Passo dos louvers, [m]

L _{rd}	Comprimento do radiador, [m]
L _{tb}	Comprimento das tubulações, [m]
т	Parâmetro da eficiência da aleta, [m ⁻¹]
'n	Vazão mássica, [kg/s]
N _{tb}	Número de tubos no radiador, [-]
NTU	Unidades de transferência de calor, [-]
Nu	Número de Nusselt, [-]
Ρ	Pressão, [kPa]
Pr	Número de Prandlt, [-]
Ż	Calor fornecido ao sistema de arrefecimento, [kW]
Re	Número de Reynolds baseado no diâmetro hidráulico, [-]
S _{pst}	Curso do pistão, [m]
S_1	Comprimento dos louver de entrada e saída, [m]
S_2	Comprimento do louver defletor, [m]
Т	Temperatura, [℃]
T _d	Comprimento dos tubos no sentido do fluxo do ar, [m]
T_f	Temperatura fria do fluido de arrefecimento, [°C]
T_g	Temperatura média efetiva do gás, [°C]
T _p	Passo dos tubos de seção alongada, [m]
T_q	Temperatura quente do fluido de arrefecimento, [$^{oldsymbol{\circ}}$]
T _{th}	Espessura da parede dos tubos de seção alongada, [m]
T_w	Comprimento dos tubos de seção alongada, [m]
U	Coeficiente geral de transferência de calor, [kW/m ² ·K]
Uc	Velocidade na área de fluxo-livre mínima, [m/s]
U _{fr}	Velocidade frontal do ar, [m/s]
Unf	Velocidade do nanofluido, [m/s]
Ŵ	Potência de bombeamento, [kW]

Símbolos gregos

α	Coeficiente de troca de calor, [kW/m ² ·K]
D	Razão entre a área total de troca de calor de um lado só e o
ρ	volume total do radiador, [m²/m³]

γ	Razão entre a área aletada de um lado só e a correspondente
	área total de troca de calor, [-]
Δ	Diferença
ε	Efetividade, [-]
η	Eficiência, [-]
μ	Viscosidade dinâmica, [Pa·s]
ρ	Densidade, [kg/m ³]
σ	Razão entre a área de fluxo-livre mínima e a área frontal do
	radiador ($\sigma = A_{\sigma} / A_{fr}$), [-]
υ	Viscosidade cinemática ($v = \mu/\rho$), [m ² /s]
ζ	Difusividade térmica ($\zeta = k/\rho c_p$), [m ² /s]

Símbolos subscritos

0	Geral
ar	Ar
bc	Bloco do motor
f	Aleta
fb	Fluido base
fd	Completamente desenvolvido
i	Ingresso
lam	Regime laminar
т	Média
max	Máxima
min	Mínima
nf	Fluido de arrefecimento (nanofluido)
0	Saída
rd	Radiador
turb	Regime turbulento
wall	Parede dos tubos de seção alongada no radiador

"Ciência é duvidar da autoridade dos especialistas"

Richard Feynman (Nobel de Física, 1965)