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Abstract— the objective of this work is threefold. We firstly 

present an optimization model for a price-taker hydrothermal 
generation company (Genco) to devise bidding strategies in 
multi-item dynamic auctions of long-term contracts. The bidding 
model calculates a willingness-to-supply curve (WSC), which 
takes into account the key issues on the auctioned contracts, such 
as its time horizon, the risk factors that affect the future contract 
outcomes, interdependence between auctioned products, and the 
agents’ risk profile. Then, the risk profile of the Gencos are 
represented as piecewise linear utility functions and a practical 
specification approach is proposed. Finally, we present a 
simulator of a dynamic multi-item contract auction, where the set 
of auction rules for multiple products is implemented. The 
auction convergence price can be estimated from the successive 
application of the bidding model to each individual player at each 
round in the auction simulator. A real multi-product descending 
clock auction is simulated for the Brazilian power system under 
the proposed bidding scheme.  
 

Index Terms -- Power system economics, forward contracts, 
contract auctions, portfolio optimization, utility function. 

I.  INTRODUCTION 
rocurement of energy has always been an important 
function for electric utilities and consumers in order to 

serve their electricity supply needs. Objectives in energy 
procurement span from very short-term needs (for example, 
procurement of energy for day-ahead, real-time delivery or 
reserves) to long-term needs (energy purchase for supply 
adequacy purposes).  In the case of emerging economies, the 
fast load growth makes the primary objective of energy 
procurement be the entrance of sufficient capacity in the most 
efficient way. Efficiency, in this case, basically means the 
lowest possible cost to the consumer.  

The need to procure sufficiency with efficiency for the 
electricity supply has motivated the introduction of auctions of 
energy contracts as mechanisms to complement trading at the 
spot market. Energy contract auctions can be carried out to 
procure energy from the existing generation – contracts serve 
as a hedging mechanism for buyers and sellers – and/or they 
can be organized to facilitate capacity expansion. In this case, 
the contracts can establish delivery in a few years, which is 
highly desirable for new entrants to compete with existing 

                                                           
L.A. Barroso, S. Granville and M.V. Pereira are with PSR, Rio de Janeiro, 

Brazil (e-mail: psr@psr-inc.com). 
Alexandre Street is with PUC-Rio, Dept of Electrical Engineering, Rio de 

Janeiro, Brazil (e-mail: street@ele.puc-rio.br). 
 

suppliers. In addition, a forward contract provides revenue 
stability to the new entrant, which facilitates generation 
financing.  

Energy contract auctions have been extensively used all 
around the world, such as in the US (New Jersey [1], Illinois 
[2] and New England [3]), Latin America (Brazil and Chile 
[4], Peru [5], and Colombia [6]) and in Europe (Spain [7]). 
They have been implemented as centralized or non-centralized 
processes with products ranging from forward contracts to call 
options. Reference [8] presents a good survey. The design of 
the auction mechanism has ranged from simple sealed-
envelope pay-as-bid auctions (Chilean and Peruvian 
approaches) to more sophisticated approaches, such as the 
dynamic descending price-clock auctions involving in some 
cases different products (adopted in US, Brazil, Colombia and 
Spain). Reference [9] provides a survey for South America. 

The existence of dynamic and iterative auctions creates 
relevant challenges under a bidder perspective and under a 
market designer standpoint. For each bidder, the question is 
how to develop bidding strategies that maximize revenue 
taking into account the long-term uncertainties, its risk profile 
and interdependence between auction products. Bidders are 
also interested in simulating the auction rules in order to 
estimate the auction convergence price and to test a bidding 
strategy. Conversely, regulators and market designers will be 
interested in analyzing and simulating bidding schemes in 
order to test a proposed auction mechanism. These tests aim to 
define the auction key parameters (duration and maximum 
number of rounds, price decrements, impact of reserve prices, 
etc) and to prevent abusive actions so that achieving efficiency 
in the contracting process.  

A.  Objective 
The objective of this work is threefold:  

• We firstly present an optimization model for a price-
taker hydro generation company (Genco) to devise 
bidding strategies in multi-item dynamic auctions of 
mid-term contracts. The model calculates a willingness-
to-supply curve (WSC) – introduced in [10] – which 
takes into account the key issues on the auctioned 
contracts, such as its time horizon; the risk factors that 
affect the future contract outcomes; interdependence 
between auctioned products and the agents’ risk-profile. 
The WSC is the generator’s best-response function 
during the auction. 

• The risk profile of the Genco is represented as a 
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piecewise linear utility function. A practical specification 
approach for the utility function is proposed. 

• Once a methodology of calculating the risk-averse WSC 
is presented and exemplified, we finally present a 
simulator of a dynamic multi-item auction. Then, the set 
of auction rules for many interdependent products is 
implemented and the auction final price can be estimated 
from the successive (iterative) application of the WSC 
model to each individual player at each round. The 
proposed methodology is tested by means of a case study 
with real data from the Brazilian power system, in which 
a multi-product descending clock auction is simulated 
under the proposed bidding scheme for Gencos.  

This work is based upon the energy auctions carried out in 
Brazil since 2004. Overall, amongst auctions for contract 
renewal and auctions for new capacity, the country has carried 
out 30 auctions, involving about 4,000 TWh in mid-long term 
energy contracts, settled for around 30 years, and whose 
transactions total about 500 billion USD. Each auction 
demand is based on the distribution company’s projection and 
the product auctioned is a standardized forward energy 
contract1. The auction mechanism follows a hybrid design, 
which mixes a descending price clock scheme with a final 
pay-as-bid round. This work studies the very first auction 
carried out in 2004, where three energy contracts for future 
delivery were simultaneously auctioned in a dynamic process. 
The organization and success of this auction was of great 
importance and required the development of a framework to 
simulate the proposed auction designs and model agent 
behavior. In other words, a simulation tool to investigate the 
robustness of the rules as a whole was needed by the 
organizing entities. The auction organization and design 
would become a benchmark for future auctions to be carried 
out. The models presented here are the result of active 
research carried out at the time of the auction, which produced 
decision support tools used by the bidders during the auction 
itself and by auction designers to test the auction rules. 

B.  Contributions and paper organization 
While strategic bidding for day-ahead spot markets has 

been extensively studied for the past 10 years, bidding 
simulation of dynamic energy contract auctions is a recent 
research area. In [11] a static competitive game model with 
risk-averse bidding is constructed to simulate the outcome of 
contract auctions in the Chilean market. Using portfolio 
concepts authors have observed the preferences of Gencos to 
sub-products offered in the Chilean auctions. In [12], the 
bidding strategy of a wind power producer in auctions for 3-6 
month energy contracts is presented. The auction follows a 
descending clock format and the bidding strategy is developed 
by maximizing a risk measure for each possible auction price. 
In [13] auctions mechanisms are studied through auction 
theory by using Bayesian equilibrium concepts. Two sealed 
(static) bid auction formats are reviewed: a single object first-
                                                           

1 Actually two types of financial agreements are negotiated: forward 
contracts (where one single price is traded) and options (where two payments 
are negotiated: strike and premium prices). 

price auction and single object second price auction. These 
formats are analyzed under a pseudo common value and 
symmetric equilibrium framework. The developed models are 
applied to assess diverse elements (reserve price, winners 
curse and bidding strategy) in the Chilean energy contract 
auctions. Bayesian equilibrium is also used in [14] to analyze 
bilateral contract auctions carried out in Brazil in 2003 where 
Nash equilibrium was found through the expected payoff 
matrix of each agent in a static game. 

With respect to the existing literature, the contributions of 
this work are the following: our bidding model represents fully 
each player’s characteristics and portfolio and all uncertainties 
are fully represented by means of scenarios in a dynamic way 
(thus overcoming the static representation of some previous 
references). In this sense, our model shares some similarities 
to the one presented in [12] for wind producers. We, however, 
aim at using an alternative risk measure (utility functions) and 
we discuss in details practical aspects that emerge when 
applying such measure to define a risk preference in the mid-
term2. We also combine our bidding model with the 
development of a dynamic auction simulation model, not 
presented in all the previous references. Such simulator 
enables auctioneers to assess the design of complex iterative 
descending price auctions and paves the way for a wide range 
market design analysis such as: testing of different auction 
mechanisms, rules, and parameters as well as their robustness 
to different risk-attitudes. The use of the simulator to test 
bidding strategies and assess the auction convergence price3 
will be of interest to Gencos. Our model is a practical one that 
has been applied by several Gencos to develop and assess their 
bidding strategies. We will then discuss some practical issues 
on the modeling of system components and risk profiles. 

The remainder of the paper is organized as follows. Section 
II provides an overview of the Brazilian physical and 
regulatory framework in order to contextualize the 
environment in which Gencos are embedded. Section III 
describes the modeling of the bidding process of Gencos in the 
energy auction. Section IV introduces a simulation framework 
used to model a dynamic auction process. Section V presents 
computational results and Section VI concludes. 

II.  AUCTIONS FOR COMPETITIVE ENERGY PROCUREMENT  

A.  Energy auctions in the Brazilian power sector 
The Brazilian power system is the largest in Latin America 

with 106,000 MW of installed capacity (2009) and a 
consumption of 400 TWh/year. Hydropower is the 
predominant resource in the country and accounts for 71% of 
the country’s installed capacity, but more than 90% in terms of 
energy production. As described in [15] the country relies 
upon energy contract auctions as the mechanism for energy 
procurement for regulated (or captive) users. Although 

                                                           
2 As will be discussed, the proposed bidding tool allows the use of any 

other risk measure such as VaR or CVaR. 
3 Observe that the simulator does not calculate an “equilibrium” price 

because the auction price will be the result of a convergence following a 
specific set of rules. 
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contracts are financial instruments, they should be “anchored” 
by a physical generation capacity. This is measured in terms of 
a firm energy certificate (FEC) [16], which measures the 
energy contribution of a project in a dry year. FEC’s are 
measured in MWh/year, or in average MW (avgMW), and are 
calculated and assigned by the Ministry of Energy to every 
project. These auctions are divided in specific auctions for 
new energy (carried out three and five years in advance of 
delivery; the contracts are driven for the construction of 
greenfield capacity only that will cover the forecasted load 
increase) and auctions for existing energy, which are intended 
to cover the existing load (contract renewal) and unexpected 
demand growth. Both auctions are centrally organized and 
carried out jointly for the set of Discos and follow a dynamic 
auction design (descending price clock auction). The 
contracting level in the system is close to 100%. 

While the system relies on competition for contracts to 
achieve the market efficiency, the system dispatch remains 
cost-based and carried out in a centralized way by an 
independent system operator (ISO). Hydro plants are 
dispatched based on their expected opportunity costs (“water 
values”), which are computed by a multi-stage stochastic 
optimization model that takes into account a detailed 
representation of hydro plant operation and inflow 
uncertainties (see [16]). The ISO dispatch model needs to 
simulate the future system behavior under many possible 
resource conditions (hydrological scenarios), in order to obtain 
today’s water value and optimal system schedule. A byproduct 
of such simulation is a set of simulated scenarios of the future 
generation of each generator in the system and the related 
optimal system water values, which in Brazil play the role of 
energy “spot” (short-term) prices. These spot prices are then 
used to settle energy imbalances (differences between 
produced and contracted volumes) and are very volatile, thus 
turning energy contracts essential mechanisms for the 
commercial feasibility of generators (see [15]). 

B.  The Auction Mechanism 
The first procurement auction carried out under the revised 

regulatory model in Brazil was done in 2004 and offered three 
types of long-term energy contracts, referred to as Product 1 to 
Product 3. Each product was an eight-year financial energy 
supply contract with start dates in 2005, 2006 and 2007, as 
shown in Fig. 1.  

 
Fig. 1 – Products offered in the 2004 energy auction 

  
Demand for the contracts came from Brazilian electricity 

distribution companies (with no government interference) and 
was over 17,000 average MW in total.  

The auction mechanism followed a multi-product dynamic 
descending clock auction similar in overall design to those 
described in the recent literature [18] and which have recently 
been used to auction ‘virtual’ electricity generation capacity in 
France and elsewhere [18]. In the descending auctions, the 
auctioneer starts at a very high price, which is successively 
lowered over a set of rounds (in a reverse auction) while the 
total supply remains greater than total demand. When the total 
offered (by Gencos) energy meets total demand, the remaining 
bidders win by selling their items at their final prices (uniform 
pricing). In a nutshell, the process works as follows: each 
round, the auctioneer announces the items’ price. There is a 
price ‘clock’ for the item and each bidder then indicates the 
total quantity of each product he desires to sell at the current 
prices. In a multiple-item auction the total quantity offered is 
the sum of each bidder’s quantity at that price for each 
product. In subsequent rounds, the price decreases if there is 
excess supply for each item, and the bidders again express the 
total quantity at the new price. As long as there is excess 
supply, the price decreases. The price decrement is determined 
following the best practice methods, essentially in relation to 
the extent of the excess supply. This process is repeated until 
there is no excess supply - or that the excess supply is minimal 
- and that the incumbent prices are smaller or equal to the 
reserve prices. The tentative prices and assignments of 
quantities to each bidder then become final in a uniform 
pricing approach. 

The full auction mechanism has several details (see [20] 
and [21]). We highlight the activity rule, which is intended to 
enhance price discovery by motivating each bidder to bid 
throughout the auction in a manner that is consistent with the 
bidder’s true interests. The most common activity rule is that a 
bidder cannot bid in a subsequent round if he has failed to bid 
in the previous one. This translates into a rule where agents 
are allowed to switch products to respond to changes in the 
relative prices throughout the auction; the only constraint is 
that the total offered quantity cannot exceed the total quantity 
offered in the previous round. 

The Brazilian auction mechanism has also implemented a 
second phase (after the dynamic auction is concluded), formed 
by a multi-product sealed-bid discriminatory final round. This 
work discusses only the bidding strategies and design of the 
uniform-price dynamic auction (“Phase I”). This was the 
phase that invoked most fear to auction participants in this 
first auction given their inexperience on the topic.  

III.  A MODEL FOR BIDDING IN ENERGY AUCTIONS 
The problem faced by the participant is to compute the 

quantity to be offered to each product for each possible price 
vector that could appear during the auction. It is a best-
response function and will be presented next.  

A price-taker Genco is assumed. This assumption is 
justified by the fact that the presence of complex auction rules 
based on a dynamic process with a multiproduct environment 
turns any price-maker strategy quite difficult to be developed. 
In addition, every auction is quite different from the other, the 

New Capacity 

 OLD 
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2005 2006 2007 2012 2013 2014
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frequency of such auctions is not as much as of the day-ahead 
spot auctions and the amount of information released by the 
auctioneer is very limited in each auction (auctioned demand 
is not public, for example). This creates difficulties to use 
information of past auctions to devise a strategic bidding and 
the iterative computation of price-taker best-response bidding 
functions turns out to be the immediate option. Finally, in the 
Brazilian auctions, competition has been very high and market 
power has not been a concern.  

A.  Bidder revenue stream 
The products auctioned were fixed-price financial forward 

contracts for differences. The energy delivery risk belongs to 
seller, who is not obliged to physically produce the contracted 
amount, but must clear the differences between energy 
production and total contracted amount in the spot market. 
The revenue stream of a Genco is composed of three terms: 
the fixed price contract revenue (deterministic) and two 
stochastic components due to the positive or negative market 
clearing and generation expenses (variable costs). Assuming 
the uncertainties are represented by scenarios, the revenue 
stream for each contracting period t (assumed to be monthly 
based) and simulated scenario s of a Genco owing nu 
generation units and with nc forward contracts is given by: 

Rt,s = ∑iPi⋅Ei,t⋅ht + (∑jGj,t,s – ∑iEi,t⋅ht)⋅πt,s – ∑jGj,t,s⋅cj,t. (1) 

Where i indexes the contracts (set of contracts {1,…, nc}), j 
indexes the  generation units (set of units {1,…,nu}), and s 
indexes the scenarios ({1,…,S}). Gj,t,s is the generation 
amount of unit j in each period t and simulated scenario s (in 
MWh); Ei,t is the energy amount (in avgMW) of contract i at 
period t (includes existing and candidate auction contracts); Pi 
is the price of contract i (in $/MWh), ht is the number of hours 
in period t and cj,t is operating cost (in $/MWh) of unit j in 
period t. 

In expression (1) each contract can have different starting 
dates, duration and monthly profiles. Such differences can be 
addressed by means of the Ei,t quantity variable, which should 
cover the time horizon for each contract, assuming zero value 
at periods in which contract i is not available. We assume the 
contract supply profile is fixed and flat (Ei,t = Ei for all t in 
which the contract holds and zero otherwise) and this is 
known in advance. The energy profile Ei,t can be addressed by 
means of an indicator coefficient qi,t, which values one during 
the whole contract i time horizon and zero in the remaining 
periods, multiplied by the average nominal contract energy 
amount ei (in avgMW). Hence, Gencos decisions consist in 
defining how much of each contract should be signed in terms 
of nominal average energy (vector e=[e1,…,enc]T).  

B.  Risks and uncertainties for generators in the contracts 
Energy contracts provide an adequate hedge against spot 

price volatility in the case of thermal plants, since its price-
quantity risk can be limited to its own variable operating cost 
and available capacity. In the case of hydro-based Gencos, 
however, bilateral contracts might not be sufficient to provide 
a complete hedge. Because the Brazilian system is hydro-
dominated, spot prices are higher in drought situations, which 

are exactly when hydro plants have lower production 
capability and need to purchase energy to meet their contract 
obligations. In other words, there is a negative correlation 
between spot price and hydro-plant production. This creates a 
contracting dilemma for hydro: if lightly contracted, the hydro 
will be exposed in low price periods which, occur frequently 
and may last for years; if heavily contracted (e.g. in 100% of 
its FEC amount), it will be exposed to extremely high prices in 
the dry periods, when it may not produce enough to meet its 
contract (hydrological risk, as discussed in [22]). This 
situation is made even worse by the variability of individual 
hydro production in different basins, which have different 
hydrological regimes. This means that hydro plants may be 
often forced to transact substantial amounts of energy in the 
spot market, which might disrupt their revenue streams 
depending on the spot prices. 

The uncertain parameters in our model are the production 
of the generators and the spot prices. They were represented 
by means of scenarios through a “fundamental” (or 
“structural") forecasting, where spot prices and generation 
scenarios are calculated from the solution of a generation 
stochastic dispatch model. Such model simulates the Brazilian 
hydrothermal scheduling for a set of hydrological conditions 
(Monte Carlo simulation) during the study horizon. We use 
the same stochastic hydro-thermal dispatch model that is used 
to calculate the optimal system operation policy of the 
Brazilian power system (as described in Section II) for a 
defined supply and demand scenario, taking into account 
inflows uncertainties. The result of the simulation is a set of S 
scenarios for each stochastic variable (Gj,t,s and πt,s) for each 
time step t.  

C.  Risk-aversion modeling 
Several risk measures can be used to represent a risk 

profile. One example is the Conditional Value at Risk (CVaR) 
[23], which has recently become very popular as a risk 
measure. In this work, however, we decided not to use the 
CVaR approach and the risk preference of the decision maker 
is represented through a von-Neumann Morgenstern Expected 
Utility (EU) functional instead4. The EU functional takes into 
account the whole range of scenarios by “translating” 
monetary outcomes into “utility units” and expresses agents’ 
preferences through the expectation of the resultant “risk-
adjusted” utility scenarios [15]. The objective of a rational 
agent is to maximize the expected utility.  

The agent risk profile is characterized by the form of the 
utility function. A risk-neutral Genco would have an affine 
UF. This means that a revenue increase has the same impact, 
in absolute terms, as a revenue decrease of the same 
magnitude. Instead, a risk-averse agent would have a concave 
UF, as shown in Fig. 2. In this case, the loss of a “bad” 
outcome is not “compensated” by the gain of a “good” one 
with the same magnitude, which means that the marginal 
increasing rate decreases as long as the revenue outcome 
increases. In this figure a decrease (-d) from a reference 

                                                           
4 CVaR could be introduced in our model without additional complexity. 
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wealth outcome (R0) results in a utility loss of DUdw, which is 
greater than the utility gain (DUup) due to a wealth increase of 
the same magnitude (+d) on R0. This is the main characteristic 
of a risk-averse agent, which is the case of this work. Risk-
taking agents, on the other hand, would have a convex UF.  

 
Fig. 2 – Concave UF representing a risk-averse profile. 

D.  Piecewise linear representation of utility functions 
Instead of nonlinear smooth UF’s, such as the logarithmic 

and negative exponential functions, this work adopts a 
piecewise linear representation of the UF (PLUF) as shown in 
Fig. 3.  

 
Fig. 3 – Risk aversion profile through the PLUF. 

Two reasons have motivated the use of a PLUF. The first is 
related to the flexibility needed in real life implementation: in 
the long-term, decision makers are, generally, not interested in 
specifying the risk aversion for the entire revenue domain but 
only for specific points in which Gencos’ financial situation 
(status quo) may change. This is supported by the fact that 
Gencos’ investors are generally locally risk-neutral, but 
globally averse. Such change occurs when a given decision 
makes the total wealth cross a critical revenue point, e.g., the 
operational breakeven, resulting in a worse annual financial 
demonstrative. Thus, for small revenue variations, between 
such critical points, Gencos’ decision makers should behave as 
risk-neutral agents (linear UF). The adjustments in the 
breakpoints and slopes of the PLUF define different risk-
averse behaviors. The second reason is to avoid the 
representation of nonlinear smooth curves, which would 
require the use of nonlinear algorithms to solve the best-
response problem. It is worth mentioning that PLUF’s can 
approximate any concave smooth UF with a demanded 
precision level. 

The EU of a discrete random revenue (R) defined by a set 
of S outcomes and associated probabilities {Rs, ps}s=1,…,S can 
be represented through a linear programming (LP) problem: 

E[U(R)] = Max(u) ∑s us⋅ps 

Subject to: 

(2) 

us ≤ ak⋅Rs + bk     ∀ k, s (2.1) 
us∈ℜ                  ∀ s. (2.2) 

Where, k  represents the segments index ({1,…,K}), ak 
represents the slope of the k-th segment, bk  represents the 
linear coefficient of the k-th segment and us is a decision 
variable that represents the UF of each revenue scenario s. Fig. 
3 shows a PLUF with four segments (Qk represents a break 
point, where the marginal utility changes from ak to ak+1). 

E.  Specification of the PLUF 
Many different approaches can be used to estimate an agent 

UF [15]. Our proposed approach is to construct a PLUF of a 
Genco in order to express the marginal benefit of being in 
different revenue ranges and to represent it based on financial 
or accounting performance indexes. To do that, a Genco needs 
to collect a set of critical revenue points together with the 
marginal utility slope coefficients, which represent the 
marginal satisfaction of the Genco when changing from one 
point to another. Some approaches seemed to be of interest to 
Gencos when applying this methodology in real-life case 
studies. 

In the first one, Gencos calculate reference revenues – the 
breakpoints of Fig. 3 – and define the marginal utilities 
(slopes) according to a given criterion such as the impact of 
reaching lower breakpoints. For example, some Gencos 
associate the slopes with the possibility of not reaching 
financial viability of the company. In this case, whenever the 
cash-flow approaches lower reference revenues (breakpoints) 
the slope increases. In the second approach, still within the 
reference revenue approach, Gencos calculate the slope among 
different breakpoints of the PLUF according to the “spread” a 
bank would charge in loan to a company with such revenue as 
a guarantee. In general, the piecewise linear representation 
gives a lot of flexibility and degrees of freedom for Gencos to 
express their risk aversion according to concrete financial 
indicators. One can adapt this idea in many different ways in 
accordance to any sort of relevant index that can be mapped 
into Genco’s revenue dimension. Examples of alternative 
accounting indexes that can be used are debt-to-equity targets, 
expected spot revenue without contracts, expected revenue of 
risk-neutral decisions, etc. The only requirement is to keep 
marginal utilities coefficients non-increasing in order to keep 
the UF concave. 

Observe that the calibration of the PLUF is a key issue to 
define a plausible risk profile. This is not an easy task. 
Although it is well-recognized in the literature that utility 
specification is a personal and subjective issue, the authors 
experience in real problems has shown that the risk profile can 
be easier expressed if viewed as marginal penalties for 
specified revenue blocks as a PLUF. 

F.  Best-response model: the Willingness-to-Supply Curve  
The strategy for participating in a multi-product descending 

dynamic clock auction can be summarized as follows: for each 
price-vector released from the auctioneer (price of each 
product), a given Genco should choose the quantity-vector 
(quantity to be offered in each product) that maximizes the 
resultant revenue stream. This is similar to a best-response 
portfolio optimization problem under the absence of market 

 

R 
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power, but applied to an iterative auction. This supply function 
can be represented by a willingness-to-supply (WSC) curve, 
which is an optimal bidding curve to be used during the 
contract auction rounds.   

The main idea of the curve is to generate a mapping 
between candidate contract prices and optimal quantity bids 
(see Fig. 4) for a price-taker Genco. Multi-product auctions 
require a multi-dimensional WSC.  

 
Fig. 4 – Bi-dimensional WSC. The gray area is the feasible region for prices 
(the item’s prices are lower than the reserve prices). The right side illustrates a 
possible bidding trajectory due to a given WSC map. 

 The WSC, which is a function of the price vector P=[P1, 
…,Pnc]

T of the products, depends on the uncertainties (spot 
prices and future generation), on the risk profile, and timing 
characteristics: initial dates and durations. The optimal 
quantity bids for a Genco should be limited to its maximum 
amount of annual FEC’s at the first round and to the total 
offered quantity in the previous round. Such constraint allows 
agents to switch their quantities among products to respond to 
changes in the relative prices throughout the auction, but 
guarantees that the total auction offer be monotonically 
decreasing (important to ensure auction’s convergence [18]). 

The following parametric (on prices vector per round) 
stochastic LP model provides the mathematical formulation 
for the portfolio-based optimal bidding strategy under 
uncertainty for a Genco at any auction round r: 

er
*(P) = argmax(u,e,R) ∑t∑s ut,s⋅ps⋅(1+J)-t 

Subjected to: 
(3) 

ut,s ≤ ak⋅Rt,s + bk     ∀ k, t, s (3.1) 

Rt,s = ∑iPi⋅ei⋅qi,t⋅ht + [∑jGj,t,s - ∑iei⋅qi,t⋅ht]⋅πt,s - ∑jGj,t,s⋅cj,t  ∀t,s (3.2) 

∑iei ≤ Qr-1 (3.3) 

ut,s∈ℜ ∀ t,s  and  ei∈ℜ+ ∀ i (3.4) 

In model (3)-(3.4), expression (3) assesses the expected 
utility functional for a separable per-period PLUF maximizer 
agent whose timing preference (inter-period) is accounted 
through the risk-free discount factor (1+J)-t. Expression (3.1) 
was introduced before in (2.1); (3.2) matches expression (1) 
by substituting the per-period contract energy amount (Ei,t) by 
its average nominal amount (ei – decision variable) multiplied 
by its indicator coefficient (qi,t), which values one during the 
time horizon of contract i and zero otherwise. Expression (3.3) 
handles the non-increasing amounts per-round and the total 
FEC constraint. We assume Q0 = FEC and that Qr is updated 
with the sum of the optimal bids (∑iei

*) of the previous round. 
The Genco’s existing portfolio can be accommodated by 
extending the number of contracts and fixing the associated ei 

variables to the known amounts. For the sake of simplicity we 
will omit them in the formulation; however, we remark that 
they should be considered because a bidding strategy is 
affected by the synergies between existing and candidate 
contracts. Moreover, as will be further detailed at section 
IV.C, the existing contract portfolio of the Genco will play an 
important role during the auction process in order to 
incorporate in the bidding model the information of past bids. 

Finally, observe that committing resources too early (for 
example, 1 year ahead) comes at the expense of an opportunity 
cost (sales at the spot market). This tradeoff between a fixed 
contract committed years ahead and sales at the (volatile) spot 
market is explicitly taken into account in the willingness-to-
supply curve (eq. (3.2) of model (3)).  

IV.  A SIMULATOR OF DYNAMIC CONTRACT AUCTIONS  
Once a methodology to calculate a WSC is presented, the 

next step is to incorporate it into an iterative process that 
simulates the descending-price clock auction mechanism and 
rules. As mentioned earlier, dynamic auctions are 
sophisticated mechanisms and dynamic multi-unit auctions are 
quite complex themselves. For this reason, the ability to 
simulate such complex auction rules can be a very powerful 
mechanism for market designers – that can test rules and 
parameters among the many design options before 
implementing them – and for generators, who can estimate the 
auction final price.  

A.  Implementing auction rules in a simulator 
The design of an auction simulator is nothing more than 

implementing the set of auction rules under evaluation. 
Several different rules can be implemented. For example, 
Brazil, Colombia and New England have been recently using 
descending price clock auctions to allocate forward contracts 
(Brazil) and reliability options (Colombia and NEPPOOL) 
([3][6][28]). The auction conceptual design is the same for 
them all, but there are specific rules on reserve prices 
elasticity, stopping criteria, and intra-round bidding in the 
Colombian and New England’s auction rules, which are not 
observed in Brazil. These rules could be implemented in our 
proposed framework as well. 

B.  The auction rules implemented 
In this work we have developed an auction simulator that 

implements the Brazilian auction rules described in Section 
II.B (see the Appendix and [21] for a detailed description of 
these rules). The rules have, in essence, seven main steps: 
1. Auctioneer defines auctioned demand for each product. 
2. Auctioneer defines the opening auction price and the 

reserve price (i.e., maximum price) for each product. 
3. Auctioneer defines a price-decrement rule (for example, 

higher decrements if more oversupply is observed); 
4. Auctioneer releases a vector of prices for each product. 
5. Each generator optimizes its quantity bidding strategy 

using the portfolio based WSC model of Section III. The 
WSC model is loaded with scenarios and data of each 
individual Genco. Alternative bidding models can be used 
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in this step, such as “wizards” (pre-programmed strategies 
following a specific rationale) or even human beings 
bidding on behalf of Gencos. 

6. Auctioneer evaluates if the total supply matches the total 
demand (the summation among all product5). If not, prices 
of products in which supply exceeds demand are reduced 
following the rule defined in 3 and returns to step 4. If yes, 
go to next step. 

7.  Auctioneer verifies if the product’s price is smaller than 
its reserve prices. If yes, the auction finishes for this 
product and supply and demand are cleared at the given 
prices. If not, then demand is reduced so as to ensure a 
little oversupply and the process returns to step 4. 
Fig. 5 depicts the main scheme of the auction simulator 

process that implements these rules (see Appendix for details). 
For a given price vector at each round (provided by the 
“auctioneer”), each agent returns quantities to be sold at the 
actual round prices. The optimization module described in 
Section III can be run to return the optimal quantities to be 
sold at the actual round prices taking into account the risk-
profile of each agent. The auctioneer processes the results 
according to the auction rules and another round is started. 
The process goes on until the auction convergence criteria are 
met. 

 
Fig. 5 – Bidding scheme of each auction’s round.  

C.  Design and platform of the auction simulator 

 The auction simulator was implemented in a distributed 
way, requiring a network of computers using the TCP/IP 
protocol. Each remote computer (station) could represent one 
or more bidders during the auction process. The platform is 
composed of two main modules: the auctioneer “module”, 
which is responsible for setting the key auction parameters 
(number of products, demands, reserve prices, decrements, 
etc), to release price vectors and receive quantity bids, and to 
stop the auction process; and a module for the bidders, which 
basically receive prices and return quantity bids according to 
some preset rule. Such rules can vary from simple user-
defined pre-programmed bidding curves (“wizards”) until 
complex optimization problems such as the WSC portfolio 
optimization model presented in Section III. 

V.   CASE STUDIES 
This section presents some applications of the WSC and the 

auction simulator proposed in this work. We will focus our 
case studies on the same 2004 energy auction that has 
originated the research presented in this paper. 

A.  Modeling of generation companies 
We have modeled the 11 most representative Gencos 

                                                           
5 There are specific rules to deal with undersupply for all products, in this 

case a demand reduction is applied. For more details see [25]. 

present in the 2004 auction. The portfolio of existing selling 
contracts for each of these companies was represented in 
greater details by means of an exhaustive research on public 
databases. The use of representative scenarios for the 
uncertain parameters is a key point in the presented 
methodology. Hence, we have relied on the official technical 
data available from the Independent System Operator website 
and on its same dispatch model to simulate the scheduling of 
the system to produce 200 scenarios of energy spot prices and 
production for each generator of each company represented. 
The study horizon goes from 2005 (starting date of the first 
contract) until 2014 (ending date of the last contract being 
auctioned). Most of the energy supplied was hydro energy. 
Approximately 59% of the available hydro supply is 
accounted for by three federal government-owned companies, 
26% by state government-owned companies, and 15% by 
private players.  

The utility functions used in this case study to model 
Gencos’ risk attitude were constructed to reflect the regret of 
not achieving the existing contracting portfolio price6. An 
annual revenue target was established for each Genco as being 
the average price of each existing portfolio times each 
available FEC for bidding. Intermediary revenue break points 
were set to represent percentages of each Genco’s target 
revenue. Together with such break points, a set of marginal 
utility slopes were defined according to Table I. 

TABLE I - PLUF SEGMENTS 

Segment Revenue segment upper limit  
(% of annual target revenue) 

Segment slope 
(utility / Millions of R$) 

1 50 2.0 
2 70 1.5 
3 100 1.2 
4 + ∝ 1.0 

B.  Willingness to supply curve 
We will first illustrate the results of the WSC model 

presented in Section III for a given Genco. Due to the multi-
dimensional nature of the WSC, 4-dimensional even in the 
case of two-products, we show here the single-product WSC 
of a hydro-thermal Genco having 100 avgMW of FEC. Two 
cases are provided: risk-averse, using the PLUF (Table 1), and 
risk-neutral. 

 

 
Fig. 6 – WSC for both risk-averse and risk-neutral offers (1 USD = 1,7 R$). 

                                                           
6 Authors do not intend to suggest a risk-attitude for each Genco. The 

purpose is to exemplify the usage of the proposed methodology in a realistic 
manner. Nevertheless, the presented way in which the PLUF is specified is not 
“far from” the way most of the Gencos adopted for this auction. 
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The risk-neutral curve is stepwise and shifts from 0 to 100% 
of the total FEC (100 avgMW) at an indifference contract 
price (ICP) of 120 R$/MWh. This is the contract price for 
which the total Expected Net Present Value (ENPV) of the 
candidate contract is greater than the ENPV of the spot sales. 
From this point on, the risk-neutral agent will be willing-to-
supply as much energy as possible in such contract. On the 
other hand, risk-aversive agents will search for a mix between 
spot and contract sales in order to mitigate the portfolio risk 
according to each risk preference, even if the contract price is 
lower than the ICP. This behavior can be verified in Fig. 6. 
Furthermore, the risk-averse WSC captures the hedging effect 
due to the risk of not producing the total contract amount, the 
well-known “quantity risk”, by not contracting 100% of its 
total FEC, at prices even higher than the ICP. Thus, a risk-
averse Genco maintains a safe margin not contracted, to be 
cleared at the spot market, to hedge against scenarios with 
deficit of production and high spot prices.  

The WSC can be calculated to every Genco modeled. These 
curves provide the Genco’s best-responses to each price-
vector of the products. If a single product was being 
auctioned, the price that clears the aggregated WSC of all 
companies and the demand could be a proxy for the auction 
outcome. In a multiple product auction, however, this does not 
strictly hold because of the complexity of the auction rules, 
interdependence between different products and the 
preferences of each Genco over them all. For this reason, in 
order to calculate the auction final (convergence) price, the 
complete auction simulation is carried out next. 

C.  Auction simulation  
The auction simulator described in Section IV was executed 

having the WSC optimization model to calculate the bidding 
at each round. Each product demand and reserve prices were 
set according to Table II (prices are shown in Brazilian 
currency – “Reais (R$)”). 

TABLE II - PRODUCT INFORMATION 
Products 

(start of each 
contract) 

Total Discos 
Demand (avgMW) 

Starting Price 
(R$/MWh) 

Reserve Price 
(R$/MWh) 

2005 14,658.0 106.00 80.00 
2006 6,879.0 106.00 90.00 
2007 1,586.0 106.00 96.00 

Fig. 7 illustrates the evolution of the prices of each product 
per auction round.  

 
Fig. 7 –Prices per round of auction simulation 

We firstly observed the auction convergence after achieving 
its stopping criteria in 78 rounds. This is an interesting market 
design result: in the Brazilian auction each round was 
supposed to last (fixed) 15 minutes. The large number of 
rounds until convergence coupled with this fixed duration 
could have been used by authorities to avoid a long and 
exhausting auction (15 x 78 = 19,5 hours, in this simulation). 
Instead, authorities decided to stick to the fixed round 
duration, ignoring the model results, and the outcome was an 
auction which lasted 6 hours and a subsequent (similar) one 
carried out in 2005 that lasted 18 hours. From 2006 the fixed 
round duration was abolished. The evolution of the product 
prices per round reflects the preference of Gencos between 
contracts: for the same price, earlier contracts are preferred. 
Depending on the relative price difference between products, 
Gencos start to bid in other products, whose prices then start 
to fall because of an excess of supply. 

Table III provides the final prices of each product in the last 
round. Table IV provides the final contracted amounts of each 
Genco per product. 

TABLE III 
FINAL AUCTION PRICES (1 USD = 1,7 R$) 

 
 

TABLE IV 
ENERGY ALLOCATED TO EACH GENCO (AVGMW AND  % OF FEC).   

 
The above results illustrate a few of the several outputs that 

can be produced by this type of simulation tool. Finally, a key 
challenge for the successful application of this type of model 
is a correct calibration. As discussed in Section III.C, eliciting 
risk-averse utility functions is challenging and the calibration 
of the simulation model is even more. A model badly 
calibrated can produce weird and unreasonable results. In the 
author’s experience, the calibration of the model is a time-
consuming task that involves a lot of knowledge and 
experience in the market being simulated. This, however, does 
not prevent or limit the model application from producing 
useful bidding and policy insights and results. 

VI.  CONCLUSIONS 
This work has provided a mathematical formulation for 

long-term WSC of risk-averse and price-takers Gencos. Such 
model has shown to be useful for Gencos when bidding in 
dynamic contract auctions and for regulators in order to 
estimate long-term prices. Furthermore, a vast range of 
applications and market monitoring studies can rise from this 
methodology. By exploring the sensitivities between the 
auction final prices and the inputted parameters, such as, 
Gencos’ risk-profiles, reserve prices and total demand, one 
can assess the impact of each isolated or combined changes in 
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the forward prices. 
We envision several applications for the methodology and 

simulator presented in this work to carry out several analyses 
for the “checks and balances” in the hard task of auction 
design. Some of them are the definition of critical parameters 
of the auction (number and duration of rounds, definition of 
reserve prices, definition of number of products to be 
simultaneously auctioned) and understanding the decision 
space of bidders. 

For future work, we suggest the modeling of the Phase 2 of 
the auction, which includes a final pay-as-bid round once the 
dynamic phase is concluded. A very first approach is to use 
the auction simulator presented here to estimate the auction 
convergence price, which will be the marginal bid in the next 
phase, and thus devise a bidding strategy for Phase 2 that 
undercuts this value while at the same time maximize profits 
(which leads to the well-known strategy of bidding the 
expected marginal clearing price). More sophisticated 
approaches include sampling demand realizations for Phase 2 
and modeling of strategic behavior. 
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APPENDIX – DETAILED AUCTION RULES 
This Appendix presents in detail the rules of the auction 

selected to be implemented in the simulator described in 
Section IV.  

At the beginning of the process the auctioneer sets the 
initial prices for each product as well as their volumes being 
auctioned. Each bidder is allowed to offer standard lots of 1 
average MW each. Transferring quantity lots between 
products is allowed, but it is required that the total amount of 
energy over all products should be monotonically decreasing7.  

At each round Gencos bid the quantity they are willing to 
supply to each product at their incumbent prices. The 
auctioneer sums up the total bids for each product and informs 
bidders about the status of their energy lots: “free lots” or 
“restricted lots”. Free lots are those allocated to products 
where supply exceeds demand, namely “open products”. 
These product prices will be reduced in the subsequent round. 
Restricted lots are those allocated to products where demand 
exceeds supply, namely “closed products”. The price of a 
closed product will not decrease from one round to another. 
While free lots should be reoffered at every round – they are 
allowed to be reduced in the current product or resubmitted to 
other closed or open products – “restricted lots” cannot move 
while they are allocated in a closed product. 

After each round, Gencos adjust their WSC models by 
fixing (constraining) their restricted lots in each product as if 
                                                           

7 This condition is ensured by constraining Gencos to provide decreasing 
quantity bids. It is incorporated in the bidding model by constraint (3.3). 

they were part of their existing portfolios, since such amounts 
are in a closed product and will be sold at the incumbent 
prices if the stopping criterion is achieved. 
 The auction stopping criterion is based on two factors: total 
supply and demand balance and the reserve prices, which are 
externally defined and reflects the consumers’ willingness-to-
pay. The first condition of the stopping criterion requires that 
total supply (lots) over all products meets total demand 
whereas the second one requires that each product price be 
lower than its respective reserve price. If total demand is not 
exceeded by total supply, but the reserve price is not achieved 
for at least one product, there is a demand reduction for the 
product whose incumbent price is higher than the reserve 
price. 

The joint requirement of decreasing quantity offers and 
demand reduction ensures a finite-step convergence for the 
auction under a reasonable assumption that no Genco would 
bid more than zero in the case of prices being zero. This can 
be easily verified in the case where reserve price condition is 
already achieved: if the supply and demand condition is not 
met, at least one product will face a price decrement, and since 
such decrement is positive and bounded below, despite any 
possible lots movement among products, prices will still 
decrease to zero unless quantities are decreased and the 
stopping criterion is reached. In the case where the supply and 
demand condition is already met and there is at least one 
product price greater than its reserve price, a demand 
curtailment will take place in this product, implying in a price 
decrement that will inevitably lead prices to the stopping 
criterion. In the general case, where none of the conditions are 
attended, prices and quantities will decrease until one of the 
aforementioned cases is verified. 
 Finally, once achieved the stopping criterion, the auction 
finishes. All “restricted lots” of each Genco at the last round 
become committed and are then negotiated with Discos by 
means of a cross-bilateral contracting scheme where contracts 
quantities that each Genco sells to each Disco is a proportion 
of the Genco’s final offer. The proportion is taken with respect 
to each Disco’s declared demand. 
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