
7
Results

In this chapter, we present several results on flows with suspended and

floating particles, obtained using the fictitious domain formulation and Lag-

range multipliers that we propose in this thesis. We validate our formulation

and implementation in Sections 7.1, 7.2 and 7.4 by comparing the results in

different test problems that simulate the fluid–particle iteration for one or

more particles in a closed box. The agreement with previous and theoretical

results was excellent. We also performed a parametric study of our formula-

tion in more complex and non–standard particulate flow (see Section 7.3) and

floating particles (see Section 7.5) test problems.

For all results presented on this chapter, we included one figure (that is

the composition of images) illustrating the test case dynamics. The first image

in each figure (except in the last three tests) is the overlap of the particle’s

position obtained from some chosen key frames of the simulation. The other

images are the full representation of each key frame and include also the fluid’s

velocity field representation. The fluid’s velocity is colored according with its

magnitude. In all images, the cross marks inside each particle helps us to

visualize the angular orientation change of the particles during the simulation.

7.1
Single particle sedimentation

The first test case presented is the sedimentation of one particle in

a closed box. The results are shown in Figure 7.1. The complete set of

parameters is the following: the domain Ω is a closed box parametrized by

[−0.286, 0.286] × [−1.0, 1.0], discretized by a mesh of 504 squared elements

with P4–P2 finite elements basis functions. The fluid phase Ωf is a Newtonian

incompressible fluid with density ρf = 1.0. The fluid’s viscosity is μf = 0.01.

A single particle with radius Rp = 0.0714 and density ρp = 1.5 is embedded on

the fluid. The particle is initially at rest and at position �Xp = (0, 0.869). The

simulation’s time step is δt = 0.01 deciseconds and the total simulated time is

10 deciseconds. Finally, following the work of Diaz-Goano et al (2003)(9), we

set the Lagrange multiplier parameter α to be 150.
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Figure 7.1: Single particle sedimentation: a particle of density 1.5 embedded on
a incompressible fluid of viscosity 0.01 and density 1.0 falling under the gravity
force. Images (a)–(e) show the particle’s position and the fluid’s velocity at 0.6,
1.3, 2.5, 4 and 5.5 ds of simulated time.

Figure 7.2 shows the evolution of the particle’s velocity for different

particle’s densities, which varies from 1.5 to 1.8. The particle accelerates until

it reaches a terminal velocity. The magnitude Ut of the terminal velocity of a

cylinder falling in a box in the limiting case of Re → 0 can be evaluated based

on the drag force acting on the cylinder. The magnitude of the drag force is

obtained through an asymptotic solution of the Stokes’ problem (31):

Fd =
4πμf

Δ

3

2
Ut, (7-1)

where,

Δ = U0 − (1 +
∑

i

WiΓ
i)ln(Γ) +

∑
i

ViΓ
i.

The ratio of the cylinder radius to the box half–width is denoted by Γ = Rp/w,

U0 = −0.915689 and the even–numbered dimensionless coefficients Wi and Vi

are shown in Table 7.1:

W2 0.5 V2 1.26654
W4 0.054648 V4 -0.91804
W6 -0.264629 V6 1.87710
W8 0.792986 V8 -4.66549

Table 7.1: Dimensionless coefficients for the computation of the drag force
using the asymptotic solution of the Stokes’ problem.

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 68

Figure 7.2: Evolution of the particle’s velocity in the sedimentation case using
different densities for the particle: In Figure (a) the particle’s density is 1.5, in
(b) ρp = 1.6, in (c) ρp = 1.7 and finally in (d) ρp = 1.8.

If we suppose that the drag force �Fd is equal the relative weight of the

particle when it reaches the terminal velocity, that is Fd = P −E with, P and

E being the particle’s weight and the buoyancy force respectively, we get an

theoretical expression for the magnitude Ut of the terminal velocity:

Ut =
2

3

(ρf − ρp)R
2
pgΔ

4πμf

(7-2)

The red horizontal line on each graph of Figure 7.2 represents the

theoretical terminal velocity obtained using the previous expression. As we

can see, the agreement with the simulated terminal velocities is excellent,

except for the higher particle density. The reason is that, in this case, the

particle Reynolds’ number, e.g. Re ≈ 10, is not small enough for the validity

of Equation 7-2.

For the flow around a falling cylindrical particle, the Reynolds number is

computed using the magnitude of the terminal velocity reached by the particle,

its radius and the fluid properties, more precisely its density and viscosity:

Re =
2ρfUtRp

μf

(7-3)

In order to evaluate the effect of the Reynolds number on the terminal

velocity, we plot the dimensionless terminal velocity u =
μfUt

(ρf − ρp)R2
pg

as

a function of Reynolds number, defined by Equation 7-3, in Figure 7.3. As

we can observe, if the Reynolds number is above Re ≥ 10, creeping flow

approximations cannot be used.
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Figure 7.3: Dimensionless velocity as function of the Reynolds number: the
magnitude of the velocity increases on flows with high Reynolds. The Reynolds
number axis is plot using a logarithmic scale.

As shown during the derivation of the formulation, the Lagrange multipli-

ers imposes the rigid body constraint to the fluid’s velocity onto the particle’s

region Ωp, avoiding viscous deformations inside each particle. Figure 7.4, shows

the Lagrange multipliers and the constrained velocity field solution obtained

by our code in a given frame on the single particle sedimentation test case,

presented in Figure 7.1. Notice that the solution is symmetric along a ver-

tical line passing through the center of the particle, and this behavior keeps

the angular orientation unchanged during all the simulation. In this figure,

the vectors of the Lagrange multipliers are normalized for better visualization,

and their modulus are represented by colors that scale from blue to red. The

gray circle shows the boundary of the particle’s domain. It is clear that the

velocity field inside the particle corresponds to a rigid body motion, which in

this particular case is a constant velocity.

Figure 7.4: Zoom in the Lagrange multipliers effect over the velocity field in
the particle sedimentation test. The Lagrange multipliers are non–zero only
inside the particle region as we can see in Figure (a). It enforces the rigid body
constraint inside the particle, as we observe in Figure (b).
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Figure 7.5: Single particle sedimentation: a particle not aligned with the ver-
tical line that divides the domain, with density 1.5 embedded on a incompress-
ible fluid of viscosity 0.001 and density 1.0 falling under the gravity force.

The example shown in Figure 7.5 clearly shows the coupling between the

flow and the particle dynamics. The problem is the same as the one presented

in Figure 7.1, except from the fact that the fluid’s viscosity is now set to be

μf = 0.001 and the particle’s initial position is not aligned with the vertical

line that equally divides the domain, more precisely �Xp = (0.05, 0.869). With

the lower fluid viscosity, the particle velocity is higher and so is the Reynolds

number of the flow. A periodic flow motion develops in the wake of the cylinder

as the result of the von Karman vortices. The asymmetry of the flow is clear

in Figure 7.5(c). In this case, the particle does not fall vertically.

7.2
Drafting, kissing and tumbling

The next test problem is the sedimentation of two cylindrical particles

(see Figure 7.6), which is a benchmark for particulate flows and is known as

the drafting, kissing and tumbling problem.

The complete set of parameters for the simulation is the following: the

domain Ω is a closed box with dimensions [−0.5, 0.5]× [−1.0, 1.0], discretized

by a mesh of 350 square elements with P4–P2 finite elements basis functions.

The fluid phase Ωf is a Newtonian incompressible fluid with density ρf = 1.0

and viscosity μf = 0.01. Two cylindrical particles with radius R1,2 = 0.0514

and density ρ1,2 = 1.5 are embedded on the fluid. The particles are initially

at rest and at position �X1 = (0.015, 0.9) and �X2 = (−0.015, 0.75). The

simulation’s time step is δt = 0.01 deciseconds and the total simulated time is
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10 deciseconds. Again, we set the Lagrange multiplier parameter α to be 150,

following the work of Diaz-Goano et al (2003)(9).

Figure 7.6: Two particles sedimentation: two particle of density 1.5 embedded
on a incompressible fluid of viscosity 0.01 and density 1.0 falling under the
gravity force. We can observe the simulation reproduces the particles iteration
dynamics usually called drafting, kissing and tumbling.

Particle pair interactions are a fundamental mechanism that enter

strongly into all practical applications of flows with suspended particles. The

flow generated by one particle motion contributes to the motion of another

particle. The principal interactions between neighboring cylindrical particles

in Newtonian liquids can be described as drafting, kissing and tumbling.

When one falling cylinder enters the wake of another, it experiences

reduced drag, drafts downward toward the leading particle, and almost touches

it, a phenomenon generally referred to as kissing. The two kissing particles

momentarily form a single long body aligned parallel to the stream. But the

parallel orientation for a falling long body is unstable and the pair of kissing

particles tumbles to a side-by-side configuration. Two touching particles falling

side-by-side are pushed apart until a stable separation distance between centers

across the stream is established; they then fall together without further lateral

migrations.

The drafting, kissing and tumbling dynamics can be easily observed on

Figures 7.6 and 7.7. The blue lines on the profiles of Figure 7.7 refers to the

particle initially at the higher position, and the red ones describe the profiles

of the particle initially at the lower height.

Analyzing the profiles, we observe that the drafting stage takes place from

the beginning of the simulation until approximately 2.5 ds, since the second

coordinate of the position profiles decreases until its intersection. This indicates

that the particle initially at the higher position was on the wake of the lower

particle that increased its velocity. The kissing stage begins near 2.5 ds and

goes until 3.75 ds when the particles almost touch each other and change its

positions (the particle initially higher become lower). Finally, in the tumbling
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Figure 7.7: Two particles sedimentation: time history of the coordinate func-
tions of the position and velocity solution obtained from the drafting, kissing
and tumbling simulation illustrated on Figure 7.6.

stage we observe that the first velocity’s coordinate function converges to zero

and indicates that the particles are falling side by side. The total time in this

example was 10 ds and the particles reach the bottom wall near to 8 ds.

The last example, shown in Figure 7.8, plots the comparison between

the position time histories obtained using our code and the ones of the work

of Wan and Turek (2007) (43). In this example the dimensions of the box

were [−1.0, 1.0] × [−2.5, 2.5], the initial position of the particles were �X1 =

(0.01, 2.0), �X1 = (0.0, 1.5), the fluid’s properties were μf = 0.01 and ρf =

1.0 and the particle density ρp = 1.5. As we can see the agreement of the

trajectories is good, which again validates our code.

Figure 7.8: Two particles sedimentation: time history of the first (left) and
second (right) coordinate functions of the position and its comparison with
the results of (43), which are shown in black.
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7.3
Particles dragged by the fluid

The next test problem studies the motion of cylindrical particles that are

being dragged by the flow inside a lid–driven cavity. The aim of this test case

is to show the capability of the method to study sediment transport.

As we said in Chapter 3, the lid–driven cavity problem has been used

as a test or validation case for new codes or new solution methods because

the problem geometry is simple, the boundary conditions are also easy to

model and the flow is quite complex with the presence of recirculation. The

standard case is a fluid contained in a square domain with Dirichlet boundary

conditions on all sides, with three stationary sides and one moving side (with

velocity tangent to the side). In our test case, a solid cylindrical particle is also

embedded on the fluid.

The complete set of parameters for the simulations shown on Figure 7.9

is the following: the domain Ω is a closed box with dimensions [−1.0, 1.0] ×
[−0.25, 0.25] whose lid moves with velocity �ul = (1, 0), and is discretized

by a mesh of 400 squared elements. The fluid phase Ωf is a Newtonian

Figure 7.9: Particle dragged by the fluid: when the particle is heavier than
the fluid (left column) the particle is dragged by the fluid on the bottom wall,
when the particle is lighter than the fluid (right column), it moves upwards
and floats in the upper side of the cavity.
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incompressible fluid with density ρf = 1.0 and viscosity is μf = 0.01. One

cylindrical particle with radius Rp = 0.0714 is embedded on the fluid.

The particle is initially at rest at position �Xp = (0.0, 0.177). The sequence

shown in the left column of Figure 7.9 presents the results for particle density

equal to 1.5 while the right column, the results for particle density equal to

0.5. The simulation’s time step is δt = 0.02 and the total time 10 ds. The

Lagrange multiplier parameter is α = 150.

Observe that if the particle’s density is larger that the fluid’s density (see

Figure 7.9 and 7.10, left) the hydrodynamic forces are not strong enough to

lift the particle from the bottom wall so it is dragged towards the left until the

end of the simulation. When the particle is lighter than the fluid (see Figure

(see Figure 7.9, right and 7.10, left), it moves upwards and it ends up floating

near the up–right corner of the cavity.

Figure 7.10 shows time history of the particle’s position and velocity

using several scenarios. Our goal is to show the sensitivity of the results with

respect to the particle’s density, the lid’s velocity and the cavity’s width. On

Figure 7.10: Particle dragged by the fluid: time history of the particle’s position
and velocity when we change its density (left column), the lid’s velocity (middle
column) and the cavity’s width (right column). In the lid test we set the
particle’s density to be bigger than the fluid while in the width testes its
density was smaller that the fluid.
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the first column, the particle’s density was 0.32 (red), 0.5 (blue), 1.0 (green)

and 1.5 (purple). On the second column, the particle’s density was ρp = 1.0

and the lid’s velocity were �ul = (1.0,0.0) (blue), �ul = (2.5,0.0) (red) and �ul =

(5.0,0.0) (green). On the last column, ρp = 0.2 and the cavity’s width were 1.3

(blue), 1.5 (red) and 2.0 (green). For all tests the fluid’s viscosity was μf =

0.01. The results presented in the first column show that at these conditions,

the drag force is weak and particles heavier that the liquid are not suspended.

The time histories presented in Figure 7.10 (middle) show that if we

increase the lid velocity, heavy particles reach bigger horizontal velocities since

the velocity of the lid determines the drag force acting on the particle. The first

coordinate of the particle’s velocity together with the first coordinate of the

particle’s position show that low lid velocities produce almost zero acceleration

on the particle, while high lid’s velocity create big variations on the particle’s

acceleration. Observe that the second coordinate of the particle’s position show

that the particle height is almost constant during the simulation, with null

vertical velocity.

The last column on Figure 7.10 shows that for cavities with small width,

the drag force over the particle increases and that is way the particle gets

higher velocities and quickly moves upward. Observe also that the velocity

vector changes its orientation during the simulation.

7.4
Single particle flotation

In this section we validate our floating particles formulation, observing

the equilibrium position of one floating particle. The basic setup in the next

examples is the following: the domain Ω is a closed box with dimensions

[−1.1, 1.1]× [−0.5, 0.5] discretized by a mesh of 254 squared elements and filled

with two Newtonian incompressible fluid phases Ωf1 and Ωf2 . The density and

the viscosity of the upper and lower fluid phases are different in each example

and will be defined latter for each test case. One particle with radius Rp = 0.14

is embedded on the fluid and is initially at rest at the position (0.0,−0.25).

Figure 7.11 shows the evolution and the final position obtained by three

simulations using different densities for the particle. In this case the density

of each fluid phase was ρf1 = 1.0 and ρf2 = 0.0 and their viscosity μf1 = 0.01

and μf2 = 0.001. From left to right, the particle’s density ρp was 0.3, 0.5 and

0.8. In this example, the vertical component of the capillarity force was not

considered.
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Figure 7.11: Single particle sedimentation: the equilibrium height of flotation
varies when we change the particle’s density. From left to right, its value was
set to be ρp = 0.3, ρp = 0.5 and ρp = 0.8.

When ρf2 = 0.0, we can validate the buoyancy force computation

verifying the immersed volume of the particle. In these cases, the immersed

volume Vs must be equal to Vs =
μp

μf1

Vp . So, if ρp were 0.3, 0.5 and 0.8 the

theoretical immersed volumes Vs must be 0.3, 0.5 and 0.8. In our code, the

immersed volumes obtained were 0.3117, 0.4864 and 0.8189 that represents an

error of around 2% and shows that the equilibrium state obtained by our code

agrees with the theory.

Figure 7.12 shows the velocity profile of the fluid phases at the vertical

line that passes through (0.0,−0.5) and (0.0, 0.5) in each of the previous

example (from left to right) at an instant of time equal to 0.3 ds. The profile

of the horizontal component is painted in blue, while the vertical component

profile is shown in red. The interface between the two liquid phases is located

at y = 0.12. At the interface between the phases, predicted discontinuity of

the derivative of the profiles is related to the viscosity ratio of the two phases.

Figure 7.13 shows another test on single particle flotation. At this time,

the particle’s density and the lower fluid’s physical properties are fixed and

set to be ρp = 0.5, ρf1 = 1.0 and μf1 = 0.01. The properties of the upper
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Figure 7.12: Single particle sedimentation: velocity profiles obtained from the
simulations of Figure 7.11 (reading from left to right), measured on a vertical
line that passes trough (0.0,−0.6) (see first row) and (0.0, 0.6) (see second
row). The blue lines are the profiles of the first and the red ones the profiles
of the second coordinate functions of the velocity.

fluid phase varies, from left to right its density is ρf2 = 1.0, ρf2 = 0.025 and

ρf2 = 0.01 and the viscosity is μf1 = 0.01, μf1 = 0.0025 and μf1 = 0.001.

Observe that as we decrease the top liquid density, the particle tends to be

half immersed in the lower fluid and half inside the upper fluid at equilibrium,

as expected.

Figure 7.13: Single particle sedimentation: The flotation height varies when we
change the fluid’s properties. From left to right, the upper fluid’s densities are
set to 0.1, 0.025 and 0.01 and its viscosity 0.01, 0.0025 and 0.001.

Finally, Figure 7.14 shows the effect of the vertical component of the

capillarity force when the fluid phases have densities ρf1 = 1.0 and ρf2 = 0.1

and viscosities μf1 = 0.01 and μf2 = 0.001. From left to right, the surface

tension parameter on the capillarity computation was set to vary from 0.06 to

1.2. We observe that the final position of the particle changes as we increase

the surface tension parameter.
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Figure 7.14: Single particle sedimentation: The equilibrium height of flotation
varies when we change surface tension parameter when computing the capil-
larity force. From left to right its value is set to 0.06, 0.09 and 0.12.

7.5
Horizontal capillarity force

The last problem presented in this thesis aims to study the final arrange-

ment of a set of particles floating at the interface between two fluid phases. As

we said before on chapter 5, one of the physical phenomena that determine this

final disposal is the horizontal component of the capillarity force, that occurs

in particle–particle and particle–wall interactions. We show that, given differ-

ent initial configurations for the same set of particles, their final arrangement

may be completely different.

For all examples shown in this section, the basic set of parameters is the

following: the domain Ω is a closed box with dimensions [−1.0, 1.0]×[−0.5, 0.5],

discretized by a mesh of 253 squared elements with P4–P2 finite elements basis

functions. The fluid phase Ωf is filled with two Newtonian incompressible fluid

phases with interface height 0.7. The lower phase’s density is defined to be

ρf1 = 1.0 and its viscosity is μf1 = 0.01 and the upper fluid parameters is set to

ρf2 = 0.0 and its viscosity is μf1 = 0.01. A single particle with radius Rp = 0.14

is embedded on the fluid. The particles are initially at rest in random positions

that we describe later. The simulation’s time step is δt = 0.01 decisecondsand

the total simulated time is 10 seconds. Finally, we set the Lagrange multiplier

parameter α to be 150.

Figure 7.15 shows two different simulations using almost the same initial

configuration. A pair of particles with initial position, �Xp1 = [−0.5,−0.15]

and �Xp2 = [0.5,−0.15] in the left column and �Xp1 = [−0.25,−0.15] and
�Xp2 = [0.25,−0.15] in the right column, flow in the lower fluid until they float

at the interface between the fluids. The left column shows five key frames of the

simulation and as we see the particles are not near enough at the interface so

there is no horizontal component of the capillarity force to attract each other.

In the right column, the particles are closer and by capillarity the particles are

attracted to each other when they reach the interface.

Figure 7.16 shows other two simulations. In the example on the left, we

see the simulation of three particles, initially at rest inside the lower fluid. In
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this example the first particle on the left is attracted to the wall due to the

capillarity, while the other two particles are attracted to each other. In the

right column, four particles initially at rest fall from the upper fluid phase and

drop in the lower fluid phase. The particles float at the interface between the

fluids, and don’t attract each other. This happens because, in this example,

the influence radius of the lateral capillarity is smaller than in the previous

ones. The force is not strong enough to make the particles form clusters.

Finally, Figure 7.17 illustrates the simulation of the motion of five

particles initially at rest on the upper fluid phase that fall down, drop in

the lower fluid phase, float at the interface, forming clusters due to action of

the horizontal capillarity force. The left column shows the particles falling and

dropping in the lower fluid, while the left column details the clustering process.

In this example the original set of particles creates two clusters one with four

particles that are attracted to the left wall and the other with one particle

attracted to the right wall. This example shows the potential of our method

to a further study of the clustering formation problem, given a large set of

particles.
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Figure 7.15: Two particles floating at the fluids interface: the particles are not
near enough in the left column so the horizontal component of capillarity force
doesn’t exist and the particles are not attracted to each other. On the other
hand, on the right column when the particles are close enough when they reach
the interface they are attracted to each other.
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Figure 7.16: The left column shows the simulation of three particles, initially
at rest on the lower fluid. Observe that the left particle is attracted to the wall
while the two others attract each other. The right column shows four particles
which are initially at rest, falling from the upper fluid phase and dropping in
the lower fluid phase. As the influence radius of the capillarity force is small
the particles don’t form a cluster.
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Figure 7.17: Floating particles clustering: five particles initially at rest on the
upper fluid phase that are falling down, drop in the lower fluid phase (left
column) and after floating at the two fluids interface, form two clusters near
the walls due to action of the horizontal capillarity force (right column).
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