
6
Computational Framework

In this chapter we describe important aspects of our finite element code.

The aim of the chapter is to discuss these aspects, and not to comment the

technical details. In Section 6.1 we propose a new data structure for mixed

meshes with triangular and quadrangular elements called ECHE that is scalable

in size, based on integer containers and integer arithmetic rules. In Section 6.2

we describe the implementation of the basic finite element framework used

in Chapter 3. Finally, in Section 6.3, we discuss the extension of our code to

handle fictitious domain simulations of flows with suspended particles.

6.1
Scalable topological data–structure for triangles and quadrangles meshes

The ECHE (Extended Compact Half–Edge) data structure extends the

Compact Half–Edge (28) and at the same time can be considered a concise

version of the Handle–Edge (29), since it can represent mixed meshes with

triangles and/or quadrangles. It uses generic containers instead of pointers

or static arrays. Similarly to the Corner–Table (35), it explicitly represents a

few adjacency and incidence relations between the elements and uses a set of

integer arithmetic rules to obtain the others.

The ECHE data structure actually has three levels, each one completing

the previous in order to accelerate the execution time, but consuming a little

more memory. It uses the concept of half–edge (see Figure 6.1) to represent

the association of a face with one of its bounding edges, or equivalently the

association of this edge with one of its vertices. Any access to the elements of

a face is performed through its half–edges that are denoted by he.

Level 0: The level 0 of the ECHE represents only a soup of triangles and

quadrangles by storing the starting vertex of each half–edge. The half–edges,

the vertices and the faces are indexed by non–negative integers. Each face is

represented, according to its type, by 3 or 4 consecutive half–edges that define

its orientation. The indexing rules for the half–edges are the following: all

half–edges belonging to faces of the same type comes in sequence, and triangle

half–edges come before the quadrangle ones.

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 57

Figure 6.1: Level 0 of ECHE. Only a soup of triangles and quadrangles is
represented (left). It is based on the concept of half edge (right). A half–edge
is the association of a face with one of its bounding edges. In a given element
the next and the previous half–edges are obtained using integer arithmetic
rules.

The association of each half-edge he to its starting vertex is stored in one

of the two containers of integers, named Tri–Vertex and Quad–Vertex containers

and denoted by Vt[] and Vq[]. If he is a triangle half–edge, the integer v = Vt[he]

is the index of its starting vertex, when he is a quadrangle half–edge, its starting

vertex is given by v = Vq[he − 3nt]. The size of Vt[] is 3nt while Vq[] has 4nq

entries, where nt and nq denote, respectively, the number of triangles and

quadrangles on the mesh.

Given a half–edge with index he, the first half–edge inside the face of he

has index:

fbasehe(he) =

{
3�he/3� when he < 3nt

4�(he− 3nt)/4�+ 3nt otherwise

Therefore, the indexes of the three half–edges that belong to the triangle

with index t are 3t, 3t + 1, and 3t + 2. The indexes of the four half–edges

of a quadrangle with index q are 4q + 3nt, 4q + 3nt + 1, 4q + 3nt + 2 and

4q + 3nt + 3. The next and previous half–edges of a given half–edge he on its

associated element can be obtained by the use of the following rules and are

shown in blue in Figure 6.1:

nexthe(he) :=fbasehe(he) + (h̄e + ftypehe(he) )%ftypehe(he),

prevhe(he) :=fbasehe(he) + (h̄e + ftypehe(he)− 1)%ftypehe(he).

where ftypehe(he) = 3 if he < 3nt and 4 otherwise. We also use the notation,

h̄e to represent the index of the half–edge given the geometry of its incident

element, that is: h̄e = he if he < 3nt and h̄e = he− 3nt otherwise.

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 58

Figure 6.2: Level 1 of ECHE. Adds to level 0 the adjacency information of
each element (left). The adjacency is encoded using the container of opposite
half–edges. Two half–edges are opposites when they have the same vertices,
but with opposite orientation (right).

Level 1: The level 1 of the ECHE adds to the level 0 the adjacency

information of each element. Since we are working with 2–manifold, each

half–edge is incident to one or two elements (see figure 6.2). In order to

explicitly represent the adjacency relation of two elements, the ECHE uses

another container of integers, named the Opposite container, denoted by O[].

The edge–adjacency between neighboring elements is represented by

associating to each half–edge he its opposite half–edge O[he], which has the

same vertices but opposite orientation. If the half–edge he is on the boundary,

then it doesn’t have an opposite, which is encoded by O[he] = −1. Thus,

the value of O[he] allows to directly check whether a half–edge he is on the

boundary or not. The size of O[] is 3nt + 4nq.

Level 2: The level 2 of ECHE extends the Level 1 adding explicit

representation for the vertices, edges and faces of the mesh (see Figure 6.3).

It is useful to store a new container that we call Extra vertex container and

denote by VH[]. To compute simple geometry operators such as derivation, it

is necessary to obtain the star of a vertex efficiently (we will define the vertex

star later). Therefore, we can store on VH[] an integer that for each vertex v

associates an index of the lower half–edge incident to vertex v. In the case the

vertex is on the boundary, the stored half–edge should be the boundary one.

Such container has size nv, where nv is the number of vertices on the mesh.

Moreover, incidence relations on edges are essential in many applications

such as simplification and subdivision algorithms in computer graphics or finite

elements in scientific computing. An edge is identified by its half–edge of lower

index. The edges can be explicitly represented by a map called Edge map

denoted by EH[], which maps an edge to the index of the lower of its two

incident half–edges, and eventually to its attributes such as color, collapse cost

and finite element’s related degrees of freedom. The map EH[] has ne entries,

where ne is the number of edges on the mesh.

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 59

Figure 6.3: Third level of ECHE. Adds to the level 1 explicit representation of
edges and faces of the mesh (left). To perform topological queries efficiently,
the index of one incident half–edge is stored for each vertex of the mesh, as
the blue boundary half–edge in the example (right).

Finally, in finite element, it is also useful to store an additional container

called Face container and denoted by FH[] to represent the unknowns defined

inside the faces. The map FH[] has nf entries, where nf is the number of

elements on the mesh.

Using the proposed data structure, we can develop, in each level, to-

pological procedures to transverse the mesh elements. The efficiency of those

algorithms depends on the chosen ECHE level. When using the first levels, the

computational performance decreases in order to get memory storage capabil-

ity. On the other hand, working on higher levels costs more in terms of memory

but reduces the execution time of topological queries. Those levels are implicit

to the users by virtual inheritance: an object-oriented programming feature

that avoids the programmer to care about which structure level is being used.

With this resource, the topological queries always have the same interface,

however their implementations may change at each new level.

Let us denote the topological query that returns the elements incident

to a vertex by R02, which is also known as the vertex star and is essential in

the search structure that we propose in Section 6.3.

The ECHE answers relations R02 in time O(nt + nq) at level 0, since

the function has to transverse all the Vt[] and Vq[] containers. At level 1, the

Vt[] and Vq[] containers are traversed until one half–edge incident to the input

vertex v is found, after that the vertex star is obtained in time O(deg(v)) by

the use of the O[] and the rules described above. Thus, the worst case at level 1

has complexity O(nt+nq), but it is in average deg(v) times faster than for level

0. Finally, at level 2 the complexity of finding the star of a vertex v is reduced

to O(deg(v)), since VH[] directly stores the starting half–edge to traverse the

vertex star. The algorithm to compute the R02 topological operation in the last

ECHE level is described in Algorithm 2. More details on the implementation

and efficiency of those topological queries are found in (28).

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 60

Algorithm 2 The vertex star

he ← VH[v] //Gets the first incident half–edge
he0 ← he //Auxiliary half–edge
repeat

he ← nexthe(O[he])
R02.push(facehe(he))

until he0 �= he OR O[he] = −1

6.1.1
ECHE example

In this sub–section we show explicitly the containers of the ECHE using

a very simple example. The chosen mesh is the planning of a pyramid with

squared base and without one of its lateral faces. In this simple example we

can observe all features of ECHE in all its levels (see Figure 6.4).

In level 0, the containers Vt[] and Vq[] store the initial vertex of each

half–edge belonging to triangles and quadrangles respectively. In level 1, the

container O[] is added to the data–structure, and stores the opposite half–

edges. Observe that the opposite of the boundary half–edges (he = 1, he = 8,

he = 12) are set to -1. In the last level, we represent the first half–edge that

parts from each vertex on the VH[] container. If we observe the entry VH[0]

we see that, as the vertex v = 0 is a boundary vertex, its associated half–edge

is the one with id he = 1 since it is the boundary half–edge parting from

the vertex v = 0. Finally, we show the container EH[]. For each edge, we get

its lower half–edge to be its identifier. When the edge is at the boundary, its

identifier is its single half–edge, as we see in the edge with index he = 1.

Figure 6.4: Simple example of ECHE. The left image shows a mesh with its
half–edges while the right image shows the ECHE containers in each level.

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 61

Figure 6.5: An overview of the relation between the most important classes in
our code. The code description in this section follows this scheme.

6.2
Finite element code

Our finite element code was developed using the C++ programming

language and inspired by the work of (4) where the authors describe structuring

concepts and programming paradigms used to develop the finite element

library called deal.II. By means of the structuring capabilities of C++, the

different objects used in such a finite element simulation program are well

separated. In particular, the separation of meshes, finite element spaces, and

linear algebra classes allows for a very modular approach in programming finite

element codes.

Although we use concepts proposed on the deal.ii library, the goals of

our code are quite different. We did not intend to develop a general propose

finite element library. Our aim was to have a fictitious domain finite element

application using Lagrange multipliers based on the formulation proposed in

Chapters 4 and 5 and use this code to study flows with suspended particles,

that can float at the interface between immiscible fluids.

An overview of the relationship between the most important classes of

our code for Newtonian incompressible flows is shown in Figure 6.5. The

implementation description in this section follows this figure from left to right.

Gauss points, FEM basis and Element classes: In our code, the class

Element manages the degrees of freedom in a given element. More precisely,

the local indexation of the vertices, edges and face nodes of given a triangle or

quadrangle are stored in this class. The adopted codification for the nodes is

shown in Figure 6.6.

The indexation of degrees of freedom is closely related with the choice of

the finite element approximation space used to compute the unknowns of the

problem. For this reason, the Element class inherits from the class called FEM

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 62

Figure 6.6: The local indexation and the local system of coordinates (ξ, η)
adopted in the code are shown. The gray and white nodes are used to build
quadratic and biquadratic basis, while for bilinear and linear finite elements
spaces only the gray ones are used.

basis, the basis function’s definition and also its derivatives computed on the

local coordinates (ξ, η) defined inside each element. Figure 6.6 shows the local

coordinate system for each type of element.

In our code, we use biquadratic and bilinear basis function for quadrangu-

lar elements and quadratic and linear functions for triangular elements. Figure

6.6 shows, in gray, the nodes used to build the bilinear (for quadrangles) and

linear (for triangles) basis functions. The gray nodes together with the white

ones are used to define the biquadratic (for quadrangles) and the quadratic

(for triangles) basis functions.

Finally, the Element class also inherits, now from the Gauss points class,

a set of Gauss points and weights that are written in the local system of

coordinates. The Gaussian points are used to perform the numerical integration

of the integral terms that appears on the variational formulation of the

problem. We used 9 Gauss points to integrate over the quadrangles and 6

points for integrations over a triangle.

Mesh, Dof Handler and FEM Map classes: The Mesh class consists of the

ECHE data structure for the domain’s mesh discretization. The Mesh class

together with the local description of the elements given by the Element class

makes possible to create the global indexation of the mesh nodes and its degrees

of freedom. The Dof Handler class creates the global indexation and manages

its relationship with the local indexation. For example given a local node or

degree of freedom and the index of an element, the Dof Handler answers the

global index this degree of freedom and vice versa. Figure 6.7 shows an example

of the local–global indexation relationship.

In finite element codes, the algebraic computations are performed using

a computational domain that is described using a local system of coordinates.

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 63

Figure 6.7: Relationship between the local and global indexation. Given an
element and the index of a local degree of freedom, with Dof Handler class we
can discover its global identifier. In the example of the image, supposing that
we have one degree of freedom for each node, the global index of the degree of
freedom 1 inside the element 7 is 15.

However, it is necessary to map the local and global coordinate system. The

Fem Map class is responsible to perform the computations necessary to perform

this change of coordinates system, from the local (ξ, η) to the global (x, y)

system.

FEM core class: The central class on our finite element code is the FEM

core class. This class manages the main finite element loops: the one in which

the non–linear system of differential equations is written as a Jacobian matrix

and a residue vector and the main simulation loop.

The assembly loops are performed over the mesh elements. Given an

element, the contribution of its nodes to the Jacobian matrix (the residue

vector) are computed and later added to the matrix (vector). The Jacobian

matrix is a sparse squared matrix which size is #dof ×#dof and the residue

vector has dimension #dof , where #dof denotes the number of global degrees

of freedom on the mesh. An entry (i, j) on the Jacobian matrix is non zero if

and only if the nodes with indexes i and j are both incident to at least one

element. The assembly loop for the residue vector is shown in Algorithm 3.

The main simulation loop runs over the time and is responsible to solve

Newton’s method at each time step. Once Newton’s method succeeds, the

solution is updated and the simulation continues to the next time step. The

Algorithm 3 Assembly loops

for all mesh elements e do
Le ← ComputeL(e) // Contribution of the nodes inside e.
C ← Assembly(Le) // Puts on the residue vector/Jacobian Matrix.

end for

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 64

Figure 6.8: An overview of the relation between the most important classes in
our fictitious domain code. The differences from the previous implementation
are the Particle and Search classes.

loop proceeds until it reaches the maximum time or Newton’s method fails.

Observe that the algebraic expressions of the differential equations re-

lated to the problem’s physics are implemented in this class. If one needs to

develop an even more modular code, these computations can be moved to other

class that will inherits FEM core elements and will be the responsible for the

physical description of the problem.

6.3
Fictitious domain code

The code we developed for fictitious domain simulations of flows with

particles is quite similar with the one presented in the previous chapter. The

main difference is that we need to include a description for the particles and

also to maintain updated a search structure that changes with time. The search

structure must answer efficiently when an element or a node is inside any

particle, or reciprocally which elements or nodes are inside a given particle.

The class relationship on the code is shown in Figure 6.8.

Particle and Search classes: The particle class describes the degrees of

freedom of a particle. Given a particle, each of its degrees of freedom is locally

indexed, and their association with a globally defined identifier is managed

by the Dof handler class. By convention the global indexation of the particle’s

degrees of freedom begins after the indexation of the flow degrees of freedom.

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 65

Figure 6.9: Search algorithm: The particle is partially inside the light grey
elements and to update the search structure we only need to test the neighbors
elements, the dark grey ones in the left image. The update result is shown on
the right image.

One of the most important class in our fictitious domain code is the

Search class. We use the power of the ECHE data structure and the adjacency

structure between elements of the mesh to develop the particle–element search

structure.

The search structure uses two integer containers, called Search for Ele-

ments and Search for Particles and denoted by SE[] and SP[]. These generic

containers stores, respectively, the indexes of elements inside a particle pi and

the indexes of particles inside an element e. The size of SE[] is the number of

particles and the size of SP[] is the number of elements on the mesh.

Supposing that the particle displacement is always smaller than the

characteristic size of the mesh’s elements, we can update efficiently the search

structure in each time step, using the ECHE, only testing elements that are

inside any particle in the current step, and also its neighboring elements,

computed using the data–structure. This makes a huge reduction in the number

of tests needed to update the structure and reduces its complexity from

O(np · (nt + nq)) to O(np · n̄e), where n̄e is the average number of elements

that are inside or have a neighbor inside a particle.

The update algorithm is sketched in Figure 6.9. The left picture on

the image shows an hypothetic search configuration on a given time t. The

elements that lie inside the particle are shown in light gray, and together with

its neighbors (the dark gray elements) they are the elements that must be

tested by the update algorithm. The image at right shows the search structure

after the update process.

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA




