
4
Flows with suspended particles

In this chapter we describe a new formulation for modeling flows with

suspended particles using the well–known technique called fictitious domain

(23). This new formulation is one of the main contributions of this work.

It modifies the formulation of Diaz-Goano et al (2003) (9), adjusting the

action of the buoyancy force over the particles and including the gravity force

contribution on the fluid’s equations. We show that our new formulation is

based on a constraint force that avoids viscous deformations and enforces rigid–

body motion inside the particles.

This chapter is organized as follows: the first section 4.1 reviews the

fictitious domain concept. In Section 4.2 we derive the differential formulation

for particulate flows using the fictitious domain method. In Section 4.3 we write

the variational version of these equations and finally in Section 4.4 we discuss

a fully implicit and coupled method to discretize the variational formulation

using the finite element method and an implicit time integrator.

4.1
Fictitious domain methods

Fictitious domain methods comprise a large class of solution methods

for partial differential equations and were introduced by Hyman (1952) (23).

The basic idea is to extend a problem defined on a geometrically complex

and possibly time–dependent domain, to a larger and simpler one called the

fictitious domain (see Figure 4.1). This conceptual framework provides two

key advantages in constructing computational schemes:

• The extended domain is geometrically simpler, so it admits more reg-

ular meshes which makes it easier to design efficient codes for solving

the partial differential equations and improves their numerical solution

stability.

• The extended domain may be time–independent even if the original

domain is time dependent, thus the same fixed mesh can be used for the

entire computation, eliminating the need of using remeshing algorithms.
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Figure 4.1: Fictitious domain: a problem defined on a geometrically complex
domain (white region on the first two pictures), extended to a larger and
simpler fictitious domain (white region on the last image).

Of course, the boundary conditions on the original boundary must still

be enforced, in order to the solution of the extended problem to match the

solution of the original problem on the original domain.

The first works using the fictitious domain technique to simulate fluid–

particle interactions were proposed by Glowinski et al. (18, 20). In those papers,

the authors described a method to study viscous unsteady flows around rigid

particles, which have prescribed motions. Later, Glowinski et al. (19) proposed

a more general method that simulates the motion of particles caused by the

hydrodynamic forces and torque.

Originally, simulations of flows with suspended particles based on the

fictitious domain method choose the region occupied by the fluid to be the

original complex domain, and the extended domain to be the region occupied

by the fluid together with the interior of the particles. The no–slip condition

on the particles’ boundary is enforced as a side constraint, using an auxiliary

mesh of Lagrange multipliers inside the particles region.

More recently, Diaz-Goano et al. (9) improved Glowinski method, avoid-

ing the need of maintaining auxiliary meshes inside the particles. In this thesis

we use Diaz-Goano’s methodology, but we modify the formulation in order to

correctly account for the fluid–particles interaction forces and to include the

gravitational force action on the fluids’ governing equations.
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4.2
Formulation of flows with suspended particles using fictitious domain

To begin the derivation of the differential formulation of the problem

using the fictitious domain method, let us define a velocity field �up to be a

rigid body velocity inside each particle pi and zero in the fluid region Ωf , i.e.:

�up =

{
�Upi

+ ωpi
×(�x − �Xpi

) in Ωpi
with pi ∈ (1 . . . n)

0 in Ωf

(4-1)

The integral momentum equation for �up restricted to Ωpi
can be written as

follows: ∫
Ωpi

ρpi

D�up

Dt
dΩpi

=

∫
Ωpi

ρpi
�g dΩpi

+

∫
∂Ωpi

�npi
· σf d∂Ωpi

(4-2)

were �npi
is the outward normal to ∂Ωpi

.

It is important to notice that the surface integral term on the previous

equation includes the total hydrodynamic force and torque acting on particle

pi. Diaz-Goano et al (9) derived their formulation for flows with suspended

particles starting from a expression quite similar to Equation 4-2. The main

difference between our approach and Diaz-Goano’s formulation is that the

particle’s weight, the second integral term on the previous equation, is written

by Diaz-Goano et al. as the particle’s relative weight. In our approach, we used

the absolute particle’s weight instead, since the relative weight represents the

absolute particle’s weight under the action of the buoyancy force. However,

the total hydrodynamic force acting on the particle boundary already includes

the buoyancy force. Conceptually, using the relative weight implies that the

buoyancy force is being computed twice in the momentum equation for the

field �up inside Ωpi
. Diaz-Goano’s formulation may lead to wrong velocities for

the particles and unphysical behavior in the particle–fluid interaction.

Assuming that the liquid is Newtonian, the stress tensor σf can be

extended over the entire domain Ω. Such extension can always be done if

we define �u and p to be extensions over Ω of the velocity and pressure fields

�uf and pf satisfying �u |Ωf
= �uf and p |Ωf

= pf . The extended stress tensor,

denoted by σ, can be written as:

σ = −pδ + μ(∇�u +∇�ut).

Using this extended stress tensor we can apply the divergence theorem

and rewrite equation 4-2 as:∫
Ωpi

ρpi

D�up

Dt
dΩpi

=

∫
Ωpi

ρpi
�g dΩpi

+

∫
Ωpi

∇ · σ dΩpi
. (4-3)
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Now, if we adopt the following notation:

�F =

⎧⎨
⎩ −ρf

D�u

Dt
+ μ��u in Ωpi

with pi ∈ (1 . . . n)

0 in Ωf

(4-4)

together with an additional constraint to the extended velocity field �u that

imposes �u = �up in Ωp , the momentum equation for particle pi becomes:∫
Ωpi

(ρpi
− ρf )

D�u

Dt
dΩpi

=

∫
Ωpi

ρpi
�g −∇p + �F dΩpi

. (4-5)

It is very important to observe now that we can see the additional

force per unit of volume �F in the previous equation, as the force that

avoids viscous deformations on the fluid inside the particle’s region and also

enforces the buoyancy force action on the particles. Again, we observe that our

formulation is different from Diaz-Goano’s (9) approach. In their formulation,

the additional force �F was chosen in order to vanish the stress tensor σ inside

the region filled by particles, which removes the hydrodynamic forces and

torque terms from the equations. This is a consequence of the wrong choice

of the particle’s weight on equation 4-2. As we will show next, this constraint

force �F enforces the rigid body motion onto the fluid velocity field within each

of the particles.

From the previous equation 4-5, reminding that �u describes a rigid body

velocity inside each particle pi, that is �u = �Upi
+ ωpi

× (�x − �Xpi
) in Ωpi

, and

regarding the material derivative definition, we can write:

D�u

Dt
=

D

Dt
(�Upi

+ ωpi
× (�x − �Xpi

)) =
∂

∂t
(�Upi

+ ωpi
× (�x − �Xpi

)). (4-6)

If we substitute the material derivative of the velocity field �u by the last term

of the equality 4-6 the first integral on the equation 4-5 becomes:∫
Ωpi

(ρpi
− ρf )

∂�Upi

∂t
dΩpi

+

∫
Ωpi

(ρpi
− ρf )

∂

∂t
(ωpi

× (�x − �Xpi
)) dΩpi

in Ωpi
. (4-7)

Since the area of the particle domain Ωpi
is time independent and observing

that the particle pi is perfectly circular, we can change the order between the

time derivative and integration operators in the second term of equation 4-7,

which gives us the following identity:

∂

∂t

∫
Ωpi

(ρpi
− ρf )(ωpi

× (�x − �Xpi
)) dΩpi

= 0. (4-8)

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 42

Using 4-5, 4-7 and 4-8, we get the final equation for the particle’s velocity �Upi
:∫

Ωpi

(ρpi
− ρf )

∂�Upi

∂t
dΩpi

=

∫
Ωpi

ρpi
�g −∇p + �F dΩpi

. (4-9)

We can recover the angular velocity ωpi
assuming a no–slip boundary

condition on the surface of particle pi.

ωpi
× (�x − �Xpi

) = (�u − �Upi
) in ∂Ωpi

.

Then, clearly we can write:∫
∂Ωpi

(ωpi
× (�x − �Xpi

)) · �npi
ds =

∫
∂Ωpi

(�u − �Upi
) · �npi

ds. (4-10)

Using Stokes’ theorem and properties of the curl operator, we can write the

following equation for the particle’s angular velocity:∫
Ωpi

ωpi
dΩpi

=
1

2

∫
Ωpi

∇× (�u − �Upi
) dΩpi

. (4-11)

Using the fictitious force �F , the extended velocity �u and pressure p fields

and stress tensor σ, we can rewrite the momentum equation for the fluid phase

(equation 2-1) as follows:

ρ
D�u

Dt
= ∇ · σ + �g − �F in Ω. (4-12)

As we observed before, it is now clear from equations 4-9 and 4-12 that �F

is a term that avoids viscous deformation onto the field �u inside each particle

pi. Moreover, the gravity force �g is present in the final version of momentum

equation 4-12, which is intuitively expected for particulate flows problems. In

Diaz-Goano’s approach the gravity was left out of the momentum equation.

The gravity term is conceptually important since it enforces a hydrostatic

pressure profile in the fluid domain, which may be desired in the analysis of

free surface or immiscible two phase flows with interface (see Figure 4.2).

The force �F is non–zero only within the domain of the particles Ωpi

however, its impact on the fluid’s velocity is over the entire domain, due to

equation 4-12. Substituting �F by its definition 4-4 in equation 4-12, we see

that the extra force �F , as we argued before, represents the force necessary

to avoid viscous deformations over the particle’s domain. The momentum

equation inside the particle becomes the buoyancy force definition:∫
Ωpi

∇p dΩpi
= Mf�g (4-13)
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Figure 4.2: Hydrostatic pressure profile obtained by our formulation, using the
gravity force on the �u momentum.

where Mf =

∫
Ωpi

ρf dΩpi
represents the fluid mass on region Ωpi

.

Following the approach of Diaz-Goano et al (2003) (9), we can now

define a global Lagrange multiplier �l that is related to �F through the following

boundary value problem:

�F = −α�l + μ��l in Ω (4-14)

�l = 0 on ∂Ω (4-15)

where α is a positive constant parameter.

The problem defined by equations 4-14, 4-15 is a well posed problem

for �F and it is more efficient to use its unique solution to impose the rigid–

body constraint on the extended velocity field �u. Notice that �l has the same

smoothness properties and spatial regularity of �u. Observe also that the

Lagrange multipliers field is non–zero only inside the particles domain, so we

can explicitly require �l to be zero on the fluid region, that is �l = 0 in Ωf .

In conclusion, the complete formulation of the flow with suspended

particles using the fictitious domain method is:

ρ
D�u

Dt
= ∇ · σ + �g + α�l − μ��l in Ω

∇ · �u = 0 in Ω

∫
Ωpi

(ρpi
− ρf )

∂�Upi

∂t
dΩpi

=

∫
Ωpi

ρpi
�g −∇p − α�l + μ��l dΩpi

in Ωpi

∫
Ωpi

ωpi
dΩpi

= 1
2

∫
Ωpi

∇× (�u − �Upi
) dΩpi

in Ωpi

(4-16)
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In addition to the system of equations 4-16, the rigid body constraint, the

Lagrange multipliers and the particle advection equations must be included in

the complete formulation:

�l = 0 in Ωf

�u = �Upi
+ωpi

× (�x − �Xpi
) in Ωpi

∂ �Xpi

∂t
= �Upi

for pi ∈ (1 . . . np)

(4-17)

The formulation proposed in this chapter takes into account the buoyancy

forces in each particle and therefore is more adequate to study complex flows

with particles that float in the interface of two immiscible fluids. This type of

flow will be discussed in the following chapter.

4.3
Variational formulation

To write the system of differential equations stated in the previous

section (see Equations 4-16 and 4-17) in a variational form we need to choose

the solution space for the physical unknowns related with the problem. The

mathematical argumentation in the previous section was based on the fact that

the velocity field �u is constrained to be a rigid–body motion inside particle’s

domain Ωp, avoiding its viscous deformations inside the particle’s domain Ωp.

A natural choice for solution space of the fluid’s velocity and pressure, the

Lagrange multipliers field and the particle’s velocities is:

C={(�u, p,�l, �Upi
, ωpi

) | �u ∈ V, p ∈ P, �l ∈ L, �Upi
∈ R

2, ωpi
∈ R} (4-18)

were pi ∈ (1 . . . np) and the spaces V, P and L are defined as:

V := {�u ∈ H
1(Ω) | �u |∂Ω= 0}

L := {�l ∈ H
1(Ω) | �l |Ωf

= 0}

P := {p ∈ H
0(Ω)}

From this combined solution space, we can give a different interpretation

for the previous strong formulation (Equations 4-16 and 4-17). In our fictitious

domain approach the extended formulation over the whole domain is obtained

removing the fluid’s velocity restriction inside the particles �u = �Upi
+ωpi

×(�x−
�Xpi

) from the combined solution space, and enforcing it as a side constraint. As

we saw before, this is done using the Lagrange multipliers �l , which is non–zero
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only inside the particles and can be interpreted as the traction force required

to avoid viscous deformations inside the particles domain Ωpi
and maintain its

rigid–body motion.

Observe that the last two equations in the differential formulation of the

governing equations (see Equation 4-16) are a differential and an algebraic

equation respectively that are used to determine the unknowns �Upi
and ωpi

and therefore they must be incorporated into the final variational system.

The equation for the angular velocity ωpi
(last Equation on 4-16) will be

taken without additional mathematical manipulations, while for the particle’s

velocity equation we will use the divergence theorem in the Laplacian of the

Lagrange field, which gives:∫
Ωpi

(ρpi
− ρf )

∂�Upi

∂t
dΩpi

=

∫
Ωpi

ρpi
�g −∇p − α�l dΩpi

+

∫
∂Ωpi

μ∇�l · �npi
d∂Ωpi

(4-19)

The variational formulation for the fluid’s momentum and continuity

equations for particulate flow problems are almost the same derived on the

previous chapter 3 for incompressible flows. The only difference between them

is that we need to complete the formulation of the momentum equation of

the particulate flow problem with the variational version of the equation that

describes the constraint force �F in terms of the Lagrange multipliers �l .

Let us denote by �φ =
∑

i ci
�φi ∈ H

1(Ω) and χ =
∑

j cjχj ∈ H
0(Ω) two

arbitrary fields in their respective Sobolev spaces, where �φi and χj are basis

of H
1(Ω) and H

0(Ω) respectively. We can write the variational form of the

Lagrange multipliers part of the momentum equation as follows:∫
Ω

(α�l − μ��l) · �φ dΩ (4-20)

If we use the identity:

��l · �φ = ∇ · (∇�l · �φ)−∇�l : ∇�φ

and the divergence theorem, we can rewrite the equation 4-20 as follows:∫
Ω

α�l · �φ + μ∇�l : ∇�φ dΩ −
∫
∂Ω

μf̂ · �φ d∂Ω (4-21)

where f̂ = ∇�l · �n and �n represents the outward normal to ∂Ω.

The variational version for the governing equations of problems using the

fictitious domain method based on Lagrange multipliers can be finally stated

in the following way:
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Find �u ∈ V , p ∈ P , �l ∈ L , ωpi
∈ R and �Upi

∈ R
2 such that

∀�φ ∈ H
1(Ω) and ∀χ ∈ H

0(Ω):∫
Ω

(
ρf

D�u

Dt
− �g

)
· �φ dΩ =

∫
Ω

(α�l · �φ − σ :∇�φ + μ∇�l :∇�φ) dΩ in Ω

∫
Ω

(∇ · �u)χ dΩ= 0 in Ω

∫
Ωpi

(ρpi
− ρf )

∂�Upi

∂t
dΩpi

=

∫
Ωpi

ρpi
�g −∇p − α�l dΩpi

in Ωpi

∫
Ωpi

ωpi
dΩpi

= 1
2

∫
Ωpi

∇× (�u − �Upi
) dΩpi

in Ωpi

(4-22)
Observe that the integrals over the domain’s boundary ∂Ω (in the

fluid’s momentum equation) and over the boundaries of particles ∂Ωpi
(in the

particle’s velocity equation) were removed from the final weak formulation.

The first boundary integrals will be enforced as Neumann boundary conditions

for the velocity �u and the Lagrange multipliers �l fields. The last boundary

integral over the particle’s surface will be neglected because, as we will discuss

in the next section, the particle’s boundary are not explicitly represented in

our approach. However, the error induced by this approximation is small and

does not degrade the solution obtained by the method, see (9).

In addition to the system of equations 4-22 the rigid body constraint for

the fluid’s velocity inside the particle’s domain and the Lagrange multipliers

equations must be included in the final variational formulation. We must also

solve the differential equation that describes the particle’s advection. The

variational form of this last set of equations is straightforward:∫
Ωf

�l·�φ dΩf= 0 in Ωf

∫
Ωpi

(�u − �Upi
)·�φ dΩpi

=

∫
Ωpi

ωpi
(�x − �Xpi

)·�φ dΩpi
in Ωpi

∂ �Xpi

∂t
= �Upi

for pi∈(1 . . . np)

(4-23)
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The momentum and the continuity equations are defined over the whole

domain Ω, and that is the reason why the weak formulation can be discretized

in space on a single and fixed discretization of Ω, avoiding the need of remeshing

around the particles, as we will describe in the next section. Observe that

we must only solve the rigid body constraint, the particle’s velocity and

angular velocity equations inside the region covered by particles. The Lagrange

multipliers field must also be solved over the whole domain Ω.

4.4
Fully coupled and implicit discretization

The fictitious domain formulation for simulations of flows with suspended

particles described in this thesis allows us to discretize the whole computational

domain Ω by means of a single and fixed mesh. As usual, in finite element

method, we need to choose the finite dimensional solution space, which will

approximate the solution space previously defined in 4-18. Let us say that the

finite element solutions are defined to be in the following space:

C={(�u, p,�l, �Upi
, ωpi

)|�u∈ V, p∈P,�l∈L, �Upi
∈R

2, ωpi
∈R} (4-24)

were pi∈(1 . . . np) and the spaces V, P and L are defined as:

V := {�u ∈ P4(Λ)× P4(Λ) | �u |∂Λ= 0}

L := {�l ∈ P4(Λ)× P4(Λ) |�l |Λf
= 0}

P := {p ∈ P2(Λ)}

where we used P4–P2 elements to build the mesh Λ which approximates

the simulation domain Ω. Quadrangular or triangular P4–P2 elements have

continuous biquadratic interpolation for the velocity �u and the Lagrange

multiplier field �l , and continuous bilinear interpolations for the pressure p

approximations. It is well known that P4–P2 elements are stable basis functions

for solving the Navier–Stokes equations using the finite element method and

for this reason we also adopted it on our particulate flow application.

Using this finite dimensional approximation solution space C, we can

rewrite the variational formulation for the governing equations 4-22 in the

finite element discret fashion, as follows:
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Find �u ∈ V , p ∈ P ,�l ∈ L , ωi ∈ R and �Ui ∈ R
2 such that ∀�φ ∈

P4(Λ) and ∀χ ∈ P2(Λ):

∑
τ∈Λ

∫
τ

(
ρf

D�u

Dt
− �g

)
· �φ dτ =

∑
τ∈Λ

∫
τ

(α�l · �φ − σ :∇�φ + μ∇�l :∇�φ) dτ in Λ

∑
τ∈Λ

∫
τ

(∇ · �u)χ dτ= 0 in Λ

∑
τ∈Λpi

∫
τ

(ρpi
− ρf )

∂�Upi

∂t
dτ=

∑
τ∈Λpi

∫
τ

ρpi
�g −∇p − α�l dτ in Λp

∑
τ∈Λpi

∫
τ

ωpi
dτ= 1

2

∑
τ∈Λpi

∫
τ

∇× (�u − �Upi
) dτ in Λp

(4-25)
The discrete version of the rigid body constraint for the fluid’s velocity

inside the particle’s domain and the Lagrange multipliers variational equations

are also straightforward:∑
τ∈Λf

∫
τ

�l·�φ dτ= 0 in Λf

∑
τ∈Λpi

∫
τ

(�u − �Upi
)·�φ dτ=

∑
τ∈Λpi

∫
τ

ωpi
(�x − �Xpi

)·�φ dτ in Λp

∂ �Xpi

∂t
= �Upi

for pi∈(1 . . . np)

(4-26)
As in chapter 3, the finite element discretization of the variational

formulation 4-22 and 4-23 leads to a non–linear system of time–dependent

differential equations. Again we will perform the time integration using the

implicit Euler method that leads to a system of non–linear algebraic equations.

The equations are fully coupled and solved together using Newton’s method.

The entries of the Jacobian matrix and of the residue vector are presented in

Appendix B.

We numerically compute the integrals that appear on the weak formu-

lation using the Gaussian quadrature method, which has very good accuracy.

However, a special attention is necessary when computing the integrals over

the particle’s domain, since Ωpi
in general is not exactly covered by the mesh

elements (see Figure 4.3).
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Figure 4.3: Gaussian quadrature: only Gaussian points lying inside the particles
pi are used to integrate over the domain Ωpi

.

In case that the surface of the particle intersects the interior of a given

element, we can choose to perform one of the two options: the first approach

considers only the Gaussian points that lies inside the particle pi to perform

the integration over Ωpi
, and the second option virtually adapts the mesh

around the particle, that is, a mesh refinement is done without changes on

the original mesh. The first approach was the integration procedure used on

the results that will be presented on the next chapters. This choice was based

on the simplicity and on the efficiency of the implementation when compared

with the subdivision approach. Despite being less accurate, the results show

that this scheme works well and that the error on the integral over the particle

domain does not compromise the results.

Figure 4.4 shows the variation of the area of a particle moving along

a finite element mesh. On the example, we used a uniform mesh of square

elements, with 9 Gaussian points. The ratio of the elements’ area with respect

to the particle’s area was 0.15 (three first graphs of the figure) and 0.05

(three last graphs of the figure). The first plot on each group shows the

approximated area of a particle with 0.0176 cm2. The second plots shows the

absolute approximation error in each time step. Finally, the last graph shows

the percentage of the area neglected by the approximation. If the relative area

of the element to the particle is smaller than 0.05 the relative error on the

evaluation of the particle area is kept smaller than 5%.

We implemented the proposed formulation using the C++ programming

language, and the results obtained are presented in Chapter 7.
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Figure 4.4: Gaussian quadrature: variation of the area of a particle during the
simulation time. The first graphs show the results obtained using an area ration
0.014, and the last ones a ration 0.05. In each case, we show the approximated
area, the absolute error and the percentage of the analytical area that is
neglected by the approximation.
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