
2
Theoretical framework

The aim of this chapter is to review the governing equations for New-

tonian incompressible fluids (see section 2.3), the equation of motion of rigid

bodies (see section 2.4), and also the capillarity force that acts on particles

floating at the interface of two immiscible fluid phases (see section 2.5). Before

starting the physical framework description, we establish the notation (see sec-

tion 2.1) and the system of measurement units (see section 2.2) that will be

adopted throughout this text.

2.1
Notations

Consider a two–dimensional bounded simulation domain Ω with external

boundary ∂Ω, which is filled with Newtonian incompressible fluids and embed-

ded solid particles. Whenever the context is clear, we call fluid one or more

immiscible, Newtonian and incompressible fluid phases filling the simulation

domain Ω, as illustrated by Figure 2.1.

Figure 2.1: Sketch of a simulation scenario: two immiscible fluid phases Ωf1

and Ωf2 filling a 2d box Ω and one embedded particle covering the region Ωp1 .

We denote Ωf =
⋃nf

fi=1 Ωfi
the region of Ω occupied by nf fluid

phases fi ∈ {1 . . . nf} with densities ρfi
and viscosities μfi

, and we denote

Ωp =
⋃np

pi=1 Ωpi
the region of Ω covered by np rigid particles pi ∈ {1 . . . np}

with densities ρpi
and radius Rpi

. We also represent the interface between fluid

and particles by ∂Ωp =
⋃np

i=1 ∂Ωpi
, and we denote the interface between two

fluid phases fi and fj by ∂Ωfij
. Finally, we observe that Ω = Ωf

⋃
Ωp.
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Figure 2.1 sketches a typical simulation scenario composed by a two

dimensional simulation domain filled by two fluid phases and one embedded

solid particle (right) and its three dimensional representation (left). In the

right image we also use the notations previously defined to identify the fluid

and particle regions.

A mesh Λ is a finite collection of triangles/quadrangles that discretizes

the simulation domain Ω. Such collection satisfies the condition that the

intersection of two triangles/quadrangles is either empty or a common vertex or

a common edge. We call element, and denote by τ , each triangle or quadrangle

of the mesh Λ. We also denote Λf =
⋃nf

fi=1 Λfi
the set of elements belonging

to Λ that are completely inside the fluid region Ωf and by Λp =
⋃np

pi=1 Λpi
the

elements of Λ that lies completely or partially inside the particle domain Ωp,

where Λfi
and Λpi

are the set of elements inside the fluid phase fi and the

particle with index pi respectively. Figure 2.2 sketches a mesh discretization of

a domain Ω filled by two fluid phases and one embedded solid particle.

Figure 2.2: Sketch of the regions of a triangulation of the simulation domain.

Observe that, in general, the element sets Λf and Λp are not disjoint, that

is, Λf

⋂
Λp �= ∅, which indicates that the particle’s boundary are not covered

by the edges of the elements. Otherwise, if we denote an edge on the mesh by

ε ∈ Λ, we choose to build the fluid’s mesh such that each phase fi is disjoint

to the others or shares a set of edges ∂Λfij with each neighbor phase fj. More

precisely, Λfi

⋂
Λfj

= ∅ or Λfi

⋂
Λfj

= ∂Λfij if and only if fi �= fj.

2.2
System of measurement units

This work adopts a system of units in such a way that the entries of the

matrix obtained after the discretization process are of order 1. This reduces

numerical instabilities on the simulations that will be later discussed in this

work. Such choice shows to be more appropriate to reproduce the scale of

some of the real world processes that motivated this thesis, such as coating

and drying processes of small particles.
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The base measurement units of length, mass and time are centimeters

(cm), grams (g) and deciseconds (ds), and its conversion to the International

System of Units (IS) is straightforward. To help the reader to interpret the

physical parameters and the simulations’ results, we show in Table 2.1 some

physical constants, such as viscosity and density of water in the IS system and

its conversion to the system adopted here.

International system Thesis system

Water density 103 kg

m3
1

g

cm3

Water viscosity 10−3 kg

m · s 10−3 g

cm · ds

Water/air tension 70
kg

s2
0.7

g

ds2

Gravity force 10
m

s2
10

cm

ds2

Table 2.1: Physical constants converted from SI to our system of units.

2.3
Navier–Stokes equations

The Navier–Stokes equations model the laminar flow of compressible

and incompressible fluids. Those equations are mathematically complex and

because of that, their theoretical analysis is difficult and the derivation of

general analytical solutions is only possible in very few situations. In this

thesis we will only deal with a special class of fluids known as Newtonian

incompressible fluids which, for example, includes the water.

The Navier–Stokes equations are derived from the physical laws of mass,

momentum, and energy conservation. Before reviewing the physical conserva-

tion laws, we must define the concept of control volume. A control volume V
is a continuum mass without holes, on which the physical conservation laws

can be applied. It can remain fixed in space or change its position. These two

approaches result in different descriptions for the Navier-Stokes equations: the

Eulerian and Lagrangian formulations. The Eulerian formulation, which is ad-

opted in this work, uses a spatial description, where V is fixed in space, while

the Lagrangian approach uses a material description, where V moves along

with the fluid (see Figure 2.3). If the control volume moves along with the

flow, there is no mass flow across its boundary, and the mass inside it is con-

stant. In this particular case, the control volume is called a system.
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Figure 2.3: Eulerian (left) and Lagrangian (right) control volumes.

Using the control volume concept, we can now state the conservation

laws of mass, momentum and energy:

1. Mass conservation: In the absence of sources or sinks of mass (for

which the local mass may disappear), the mass that enters a control

volume V must leave and/or accumulate inside it. The continuity equa-

tion mathematically describes this principle.

2. Momentum conservation: The rate of change of momentum of the

control volume V is equal to the net force acting on it. This physical

principle is also known as the Newton’s second law, and its mathematical

description is called the momentum conservation equation.

3. Energy conservation: The principle of conservation of energy says

that in an isolated system, the internal energy remains constant. This

principle comes from the first law of the thermodynamics and the

resulting equation is called energy conservation equation.

For all physical simulations that we will study through this thesis, we

write the governing momentum and mass conservation equations as follows:

ρfi

D�ufi

Dt
= ∇ · σfi

+ �g in Ωfi
(2-1)

∇ · �ufi
= 0 in Ωfi

(2-2)

where the external body forces, like the gravity force, is denoted by �g, the

subscript fi represents the index of the fluid phase inside the region Ωfi
, the

vector field �ufi
is the phase’s velocity and σfi

is the stress tensor for Newtonian

fluids, which is written as:

σfi
= −pfi

δ + μfi
(∇�ufi

+∇�ut
fi
) (2-3)

where pfi
is the phase pressure and δ the identity tensor.
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The operator D∗
Dt

denotes the material derivative which physically de-

scribes the rate of change of a quantity measured by an observer moving with

the fluid, and is defined as:

D∗
Dt

=
∂∗
∂t

+ �u · ∇∗ (2-4)

where the first term is the local derivative, while the second one represents the

variation due to the flow and is called convective derivative.

A detailed discussion on the Navier–Stokes equations can easily be found

in the literature, for example in the works (5, 7, 30, 39).

2.4
Rigid body motion

We can define a rigid body as an ideal body or solid such that the relative

distances between all material points do not change, even under the action of

an external force. The motion of a rigid body can always be decomposed in

translations and rotations. When a rigid body is translated, its material points

describe parallel trajectories and, when we rotate a solid body, all material

points describe concentric circles (see Figure 2.4).

Figure 2.4: Rigid body motion: a translation (left) and a rotation (right) of a
rigid bar. The material points describe parallel and concentric trajectories.

Let us denote the translational velocity, or only velocity for simplicity,

of the centroid �Xpi
of a particle pi by �Upi

and its angular velocity by ωpi
with

pi ∈ {1 . . . np}. The rigid body motion equations for the translational and

angular velocities of a rigid particle embedded in a fluid can be written as:

Mpi

∂�Upi

∂t
= Mpi

�g + �Hpi
in Ωpi

(2-5)

Ipi

∂ωpi

∂t
+ ωpi

× Ipi
ωpi

= �Tpi
in Ωpi

(2-6)

where Mpi
is the mass of the particle, �Hpi

is the hydrodynamic force acting on

the particle, Ipi
is its inertial tensor and �Tpi

is the hydrodynamic torque about

its center of mass.
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2.5
Capillarity force

It is frequently observed that particles floating on a liquid interface are

submitted to forces which in most cases tend to produce clusters of particles

(6, 14, 17, 24, 26, 27, 33, 34, 42). These particles may be either attracted to

a wall or to each other. The attraction occurs because a concave meniscus is

formed between the particles if they are close enough (the interaction force

increases exponentially when the distance between particles decreases).

The concave meniscus creates a region of sub–ambient pressure un-

derneath it, leading to a net surface force that pulls the particles together.

Moreover, the concave meniscus also leads to a non–uniform line force along

the contact line between the interface and the particle surface, which may also

pull the particles together. The direction of the force may be the opposite,

i.e. the particles are pushed apart, if the wetting characteristic of the particle

surface is such that a convex meniscus is formed.

Figure 2.5 sketches the capillarity effects between two particles. The

images at the first row show the non–uniform force acting along the contact line

between the particle surface and the interface. If we denote the ambient and

two different underneath meniscus pressures by pa, p1 and p2, the second row

on the image shows the pressure configuration due to the interface deformation.

Figure 2.5: Attraction (left) and repulsion (right) behaviors of the lateral
capillarity force between two particles on a liquid interface.

When a single particle is floating at the fluid interface, or when a particle

has no neighbors close enough, the horizontal component of the capillarity force
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cancels along the contact line between the interface and the particle surface.

In this case, only the vertical component of the capillarity force acts on the

floating particle (see Figure 2.6). The vertical component of the capillarity

force, together with the gravity and buoyancy forces, determine the immersed

height of a particle in rest.

Figure 2.6: Sketch of the capillarity force acting on a floating particle and the
parameters related with the body force approach.

We denote by �cpi
the capillarity force acting on a particle pi floating on

the interface between two fluid phases. The horizontal and vertical components

of the capillarity force are denoted by �c h
pi

and �c v
pi

respectively. Using the body

force approach, they are written as:

�c h
pi

= 2ς cos(arccos(
bpi

Rpi

)− ψ) (2-7)

�c v
pi

= 2ς sin(arccos(
bpi

Rpi

)− ψ) (2-8)

where ς represents the surface tension at the phases’ interface ∂Ωfij
, and ψ

denotes the contact angle between the particle and the lower fluid phase. The

value bpi
denotes the immersed height of the particle, and as defined before

Rpi
is the particle radius (see figure 2.6).

One contribution of this work is the development of a numerical method

to simulate the action of flotation forces and the clustering process of floating

particles. In our formulation, we model the capillarity force as an external body

force acting directly on the particles as described by Kralchevsky et al (2001)

(25). The great advantage of this approach is that we can avoid the simulation

of interface deformations, which makes easier the development of the floating

particles algorithm.
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