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methods for incompressible viscous flow around moving rigid

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 86

bodies. The Mathematics of Finite Elements and Applications, p. 155–

174, 1997.

[21] HU, H. H. Direct simulation of flows of solid-liquid mixtures.

International Journal of Multiphase Flow, 22(2):335–352, 1996.

[22] HU, H. H.; JOSEPH, D. D. ; CROCHET, M. J. Direct simulation

of fluid particle motions. Theoretical and Computational Fluid

Dynamics, 3(5):285–306, 1992.

[23] HYMAN, M. A. Non-iterative numerical solution of boundary-

value problems. Applied Scientific Research, 2(1):325–351, 1952.

[24] KRALCHEVSKY, P.; NAGAYAMA, K. Capillary interactions

between particles bound to interfaces, liquid films and biomem-

branes. Advances in Colloid and Interface Science, 85(2-3):145–192, 2000.

[25] KRALCHEVSKY, P.; NAGAYAMA, K. Particles at fluids interfaces

and membranes: attachment of colloid particles and proteins

to interfaces and formation of two-dimensional arrays. Elsevier

Science, 2001.

[26] KRALCHEVSKY, P.; PAUNOV, V.; DENKOV, N. ; NAGAYAMA, K.

Capillary image forces. Journal of Colloid and Interface Science,

167:47–65, 1994.

[27] KRALCHEVSKY, P.; PAUNOV, V.; IVANOV, I. ; NAGAYAMA, K. Ca-

pillary meniscus interaction between colloidal particles attached

to a liquid-fluid interface. Journal of Colloid and Interface Science,

151(1):79–94, 1992.

[28] LAGE, M.; LEWINER, T.; LOPES, H. ; VELHO, L. Che: A scalable

topological data structure for triangular meshes. Technical report,

PUC–Rio de Janeiro, 2005.

[29] LOPES, H.; TAVARES, G. Structural operators for modeling 3-

manifolds. In: PROCEEDINGS OF THE FOURTH ACM SYMPOSIUM

ON SOLID MODELING AND APPLICATIONS, p. 10–18. ACM New

York, NY, USA, 1997.

[30] NAVIER, C. Memoire sur les lois du mouvement des fluides. Mem.

Acad. Sci. Inst. France, 6(2):375–394, 1822.

[31] PASQUALI, M. Polymer molecules in free surface coating flows.

PhD thesis, University of Minnesota, 2000.

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 87

[32] PATANKAR, N. A.; SINGH, P.; JOSEPH, D. D.; GLOWINSKI, R. ;

PAN, T. W. A new formulation of the distributed Lagrange multi-

plier/fictitious domain method for particulate flows. International

Journal of Multiphase Flow, 26(9):1509–1524, 2000.

[33] PAUNOV, V.; KRALCHEVSKY, P.; DENKOV, N.; IVANOV, I. ;

NAGAYAMA, K. Capillary meniscus interaction between a mi-

croparticle and a wall. Journal of Colloids and Surfaces, 67:119–119,

1992.

[34] PAUNOV, V.; KRALCHEVSKY, P.; DENKOV, N. ; NAGAYAMA, K.

Lateral capillary forces between floating submillimeter particles.

Journal of Colloid and Interface Science, 157(1):100–112, 1993.

[35] ROSSIGNAC, J.; SAFONOVA, A. ; SZYMCZAK, A. Edgebreaker

on a corner table: A simple technique for representing and

compressing triangulated surfaces. Hierarchical and geometrical

methods in scientific visualization, p. 41, 2003.

[36] SCHREIBER, R.; KELLER, H. Driven cavity flows by efficient

numerical techniques. Journal of Computational Physics, 49, 1983.

[37] SHANKAR, P.; DESHPANDE, M. Fluid mechanics in the driven

cavity. Annual Review of Fluid Mechanics, 32(1):93–136, 2000.

[38] SINGH, P.; JOSEPH, D. Fluid dynamics of floating particles.

Journal of Fluid Mechanics, 530:31–80, 2005.

[39] STOKES, G. On the theories of the internal friction of fluids in

motion. Transactions of the Cambridge Philosophical Society, 8, 1845.

[40] VEERAMANI, C.; MINEV, P. D. ; NANDAKUMAR, K. A fictitious

domain method for particle sedimentation. In: LSSC, volume 3743,

p. 544–551. Springer, 2005.

[41] VEERAMANI, C.; MINEV, P. D. ; NANDAKUMAR, K. A ficti-

tious domain formulation for flows with rigid particles: A non-

Lagrange multiplier version. Journal of Computational Physics,

224(2):867–879, 2007.

[42] VELEV, O.; DENKOV, N.; PAUNOV, V.; KRALCHEVSKY, P. ;

NAGAYAMA, K. Capillary image forces. 2. Experiment. Journal

of Colloid and Interface Science, 167(1):66–73, 1994.

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



Simulation of flows with suspended and floating particles 88

[43] WAN, D.; TUREK, S. Fictitious boundary and moving mesh

methods for the numerical simulation of rigid particulate flows.

Journal of Computational Physics, 222(1):28–56, 2007.

DBD
PUC-Rio - Certificação Digital Nº 0610743/CA



A
Residue vector and Jacobian matrix computation for fully
implicit and coupled simulations of Newtonian incompressible
flows

In this appendix, we write the entries of the residue vector and of the

Jacobian matrix that we need to solve the non–linear system of equations 3-10

presented on Chapter 3 using Newton’s method.

The residue vector entries for the first and second coordinate functions

of the momentum equation on a node with index i are denoted by �r[mx
i ] and

�r[my
i ] and are written as follows:

�r[mx
i ] =

∑
τ∈Λ

∫
τ

ρ
∂ux

∂t
φi + ρ

[
ux ∂ux

∂x
+ uy ∂ux

∂y

]
φi − gxφi+[

−p + 2μ
∂ux

∂x

]
∂φi

∂x
+ μ

[
∂ux

∂y
+

∂uy

∂x

]
∂φi

∂y
dτ –

∑
ε∈∂Λ

∫
ε

fxφi dε

�r[my
i ] =

∑
τ∈Λ

∫
τ

ρ
∂uy

∂t
φi + ρ

[
ux ∂uy

∂x
+ uy ∂uy

∂y

]
φi − gyφi+[

−p + 2μ
∂uy

∂y

]
∂φi

∂y
+ μ

[
∂ux

∂y
+

∂uy

∂x

]
∂φi

∂x
dτ –

∑
ε∈∂Λ

∫
ε

f yφi dε

(A-1)
The residue entry for the continuity equation on a node with index i is

denoted by �r[ci] and is computed using the following expression:

�r[ci] =
∑
τ∈Λ

∫
τ

(
∂ux

∂x
+

∂uy

∂y
)χdτ (A-2)

To compute the entries of the Jacobian matrix, we must derivate the

residue entries �r[mx
i ] and �r[my

i ] in relation to the degrees of freedom ux, uy and

p of a node with index j. The derivatives of the residue �r[mx
i ] are denoted by

J[mx
i , u

x
j ], J[mx

i , u
y
j ] and J[mx

i , pj] and are written as:
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J[mx
i , u

x
j ] =

∑
τ∈Λ

∫
τ

[
ρ
φiφj

δt

]
+ ρ

[
φj

∂ux

∂x
+ ux

∂φj

∂x
+ uy

∂φj

∂y

]
φi+[

2μ
∂φi

∂x

∂φj

∂x

]
+

[
μ

∂φi

∂y

∂φj

∂y

]
dτ

J[mx
i , u

y
j ] =

∑
τ∈Λ

∫
τ

ρ

[
φiφj

∂ux

∂y

]
+

[
μ

∂φi

∂y

∂φj

∂x

]
dτ

J[mx
i , pj] =

∑
τ∈Λ

∫
τ

−
[
χj

∂φi

∂x

]
dτ

(A-3)

Analogously, we can compute the Jacobian entries related with the

residue of the second coordinate function of the momentum equation �r[my
i ],

that are denoted by J[my
i , u

x
j ], J[my

i , u
y
j ] and J[my

i , pj] and written as:

J[my
i , u

x
j ] =

∑
τ∈Λ

∫
τ

ρ

[
φiφj

∂uy

∂x

]
+

[
μ

∂φi

∂x

∂φj

∂y

]
dτ

J[my
i , u

y
j ] =

∑
τ∈Λ

∫
τ

[
ρ
φiφj

δt

]
+ ρ

[
φj

∂uy

∂y
+ ux

∂φj

∂x
+ uy

∂φj

∂y

]
φi+[

2μ
∂φi

∂y

∂φj

∂y

]
+

[
μ

∂φi

∂x

∂φj

∂x

]
dτ

J[my
i , pj] =

∑
τ∈Λ

∫
τ

−
[
χj

∂φi

∂y

]
dτ

(A-4)

Finally, the Jacobian entries that follows from the derivatives of the

residue of the continuity equation �r[ci] are denoted by J[ci, u
x
j ] and J[ci, u

y
j ]

and they are computed through the following expression:

J[ci, u
x
j ] =

∑
τ∈Λ

∫
τ

[
χi

∂φj

∂x

]
dτ

J[ci, u
y
j ] =

∑
τ∈Λ

∫
τ

[
χi

∂φj

∂y

]
dτ

(A-5)

In fact, as the basis functions φi have compact support, the summation

in the residue vectors expression is computed only over the elements that are

incident to the node i. Therefore, the boundary integral terms in �r[mx
i ] and

�r[my
i ] are computed only for the boundary nodes. This reduces and makes local

the computational effort.
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B
Residue vector and Jacobian matrix computation for fully
implicit and coupled simulations of flows with suspended
particles

In this appendix, we write the entries of the residue vector and of the

Jacobian matrix that we need to solve the non–linear system of equations 4-25

and 4-26 derived on Chapter 4.

The residue vector entries for the first and second coordinate functions

of the momentum equation on a node with index i are analogous with the

ones shown in Appendix A, but now we need to add to the residue the

Lagrange multipliers term. The momentum residues for simulations of flows

with suspended particles are denoted by �r[mx
i ] and �r[my

i ] and are written as

follows:

�r[mx
i ] =

∑
τ∈Λ

∫
τ

ρ
∂ux

∂t
φi + ρ

[
ux ∂ux

∂x
+ uy ∂ux

∂y
− gx

]
φi +

[
−p + 2μ

∂ux

∂x

]
∂φi

∂x
+

+μ

[
∂ux

∂y
+

∂uy

∂x

]
∂φi

∂y
− μ

[
∂lx

∂x

∂φi

∂x
+

∂ly

∂x

∂φi

∂y

]
− [αlx] φidτ+

+
∑
ε∈∂Λ

∫
ε

(μtx − fx)φi dε

�r[my
i ] =

∑
τ∈Λ

∫
τ

ρ
∂uy

∂t
φi + ρ

[
ux ∂uy

∂x
+ uy ∂uy

∂y
− gy

]
φi +

[
−p + 2μ

∂uy

∂y

]
∂φi

∂y
+

+μ

[
∂ux

∂y
+

∂uy

∂x

]
∂φi

∂x
− μ

[
∂lx

∂y

∂φi

∂x
+

∂ly

∂y

∂φi

∂y

]
− [αly] φidτ +

+
∑
ε∈∂Λ

∫
ε

(μty − f y)φi dε

(B-1)
The residue entry for the continuity equation on a node with index i

is exactly the same as in the case of Newtonian incompressible fluids. It is

denoted by �r[ci] and computed using the expression:

�r[ci] =
∑
τ∈Λ

∫
τ

(
∂ux

∂x
+

∂uy

∂y
)χdτ (B-2)

The residue entries for the first and second coordinates of the linear

velocity and the entry related with the angular velocity of a particle with
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index pi are denoted by �r[Ux
pi

], �r[U y
pi

] and �r[wpi
] and their expressions are:

�r[Ux
pi

] =
∑

τ∈Λpi

∫
τ

(ρpi
− ρf )

∂Uy
pi

∂t
− ρpi

gx +
∂p

∂x
+ αlx dτ

�r[U y
pi

] =
∑

τ∈Λpi

∫
τ

(ρpi
− ρf )

∂Uy
pi

∂t
− ρpi

gy +
∂p

∂y
+ αly dτ

�r[wpi
] =

∑
τ∈Λpi

∫
τ

ωpi
+

1

2
(
∂ux

∂y
− ∂uy

∂x
) dτ

(B-3)

The last entries needed to compute the residue vector are the ones of the

Lagrange multipliers equations inside and outside the particle’s region and the

equation of the position of the particle pi. Those entries are denoted by �r[lxi ],

�r[lyi ], �r[Xx
pi

] and �r[Xy
pi

]. Their expressions are:

�r[lxi ] =
∑
τ∈Λf

∫
τ

lxφi dτ in Λf

�r[lxi ] =
∑

τ∈Λpi

∫
τ

[(
ux − Ux

pi

)− ωpi

(
xy −Xy

pi

)]
φi dτ in Λpi

�r[lyi ] =
∑
τ∈Λf

∫
τ

lyφi dτ in Λf

�r[lyi ] =
∑

τ∈Λpi

∫
τ

[(
uy − Uy

pi

)− ωpi

(
xx −Xx

pi

)]
φi dτ in Λpi

�r[Xx
pi

] =
∂Xx

pi

∂t
− Ux

pi
for pi ∈ (1 . . . np)

�r[Xy
pi

] =
∂Xy

pi

∂t
− Uy

pi
for pi ∈ (1 . . . np)

(B-4)
The Jacobian matrix entries are computed deriving the residues in

relation to the degrees of freedom of the problem. The derivatives of the

momentum residue in relation to the extended fluid’s velocity and pressure

is analogous to the ones shown in the previous appendix and will be omitted

here. The derivatives of the momentum residue in a node of index i in relation

to the Lagrange multipliers unknowns lxj and lyj of a node with index j are

denoted by J[mx
i , l

x
j ], J[mx

i , l
y
j ], J[my

i , l
x
j ] and J[my

i , l
y
j ] and computed using the

expressions:
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J[mx
i , l

x
j ] =

∑
τ∈Λ

∫
τ

−
[
μ

∂φi

∂x

∂φj

∂x
+ αφiφj

]
dτ

J[mx
i , l

y
j ] =

∑
τ∈Λ

∫
τ

−
[
μ

∂φi

∂y

∂φj

∂x

]
dτ

J[my
i , l

x
j ] =

∑
τ∈Λ

∫
τ

−
[
μ

∂φi

∂x

∂φj

∂y

]
dτ

J[my
i , l

y
j ] =

∑
τ∈Λ

∫
τ

−
[
μ

∂φi

∂y

∂φj

∂y
+ αφiφj

]
dτ

(B-5)

The Jacobian entries related with the continuity equation of the extended

fluid velocity also remain unchanged in relation to the ones presented in the

previous appendix. The Jacobian entries for the residue of the linear and

angular velocities of a particle with index pi are given by:

J[Ux
pi
, lxj ] = J(Uy

pi
, lyj ) =

∑
τ∈Λpi

∫
τ

αφj dτ

J[Ux
pi
, Ux

pi
] = J(Uy

pi
, Uy

pi
) =

∑
τ∈Λpi

∫
τ

(ρpi
− ρf)

δt
dτ

J[wpi
, ux

j ] =
∑

τ∈Λpi

∫
τ

∂φj

∂y
dτ

J[wpi
, uy

j ] =
∑

τ∈Λpi

∫
τ

−∂φj

∂x
dτ

J[wpi
, ωpi

] =
∑

τ∈Λpi

∫
τ

2 dτ

(B-6)

The non–zero Jacobian entries of the Lagrange multiplier equations in a

node i are:
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J[lxi , l
x
j ] = J[lyi , l

y
j ] =

∑
τ∈Λf

∫
τ

φiφj dτ

J[lxi , l
x
j ] = J[lyi , l

y
j ] =

∑
τ∈Λpi

∫
τ

φiφj dτ

J[lxi , U
x
pj

] = J[lyi , U
y
pj

] =
∑

τ∈Λpi

∫
τ

−φi dτ

J[lxi , ωpj
] =

∑
τ∈Λpi

∫
τ

(
xy

i −Xy
pj

)
dτ

J[lyi , ωpj
] =

∑
τ∈Λpi

∫
τ

(
Xx

pj
− xx

i

)
dτ

J[lxi , X
x
pj

] = −J[lyi , X
y
pj

] =
∑

τ∈Λpi

∫
τ

ωpj
φi dτ

(B-7)

Finally, the Jacobian entries for the particle’s position are computed

using the following expression:

J[Xx
pi
, Ux

pi
] = J[Xy

pi
, Uy

pi
] = −1

J[Xx
pi
, Xx

pi
] = J[Xy

pi
, Xy

pi
] =

1

δt

(B-8)

Again, the basis functions φi have compact support, which implies that

the summation in the residue vectors and Jacobian matrix entries expression

are computed only over the elements that are incident to the node i, which

again reduces and makes local the computational effort.
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