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Vieira Lopes; co–advisor: Marcio da Silveira Carvalho. —
2009.

v., 94 f: il. ; 29,7 cm

1. Tese(Doutorado em Matemática) - Pontif́ıcia Univer-
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A todos os professores que contribúıram de alguma maneira durante os

10 anos que se passaram desde o começo de minha graduação. Em especial

ao Geovan pela amizade e confiança que sempre depositou em mim, além dos

professores Thomas, Sinésio e Marcos.
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Abstract

Ferreira, Marcos de Oliveira Lage; Lopes, Hélio Côrtes Vieira; Car-
valho, Marcio da Silveira. Simulation of flows with suspended
and floating particles. Rio de Janeiro, 2009. 94p. D.Sc. Thesis
— Departamento de Matemática, Pontif́ıcia Universidade Católica
do Rio de Janeiro.

Flows with particles in suspension is still a challenging task important in

many applications such as sedimentation, rheology and fluidized suspen-

sions. The coupling between the suspending liquid flow and the particles’

motion is the central point in the complete understanding of these pheno-

mena. Moreover, the study of the evolution of the configuration of particles

at an interface between two immisible fluid phases is also a very important

research area, since it occurs in many engineering and industrial processes

like slurries transport and drying processes of micro and nano suspension

coating. This work proposes a new fictitious domain formulation based on

Lagrange multipliers that solves the Navier–Stokes and rigid body equations

to perform the simulation of the flow and of the flotation of particles embed-

ded on one or more immiscible fluid phases that we numerically discretize

using a fully implicit and coupled finite element approach. The method is

validated using different test problems. The results obtained are compared

with previous works, and the agreement is excellent.

Keywords
Fluid Simulation; Capilarity Force; Finite Elements; Fictitious

Domain; Lagrange Multipliers;
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Resumo

Ferreira, Marcos de Oliveira Lage; Lopes, Hélio Côrtes Vieira; Car-
valho, Marcio da Silveira. Simulação de fluxos com part́ıculas
suspensas e flutuantes.. Rio de Janeiro, 2009. 94p. Tese de Dou-
torado — Departamento de Matemática, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Fluxos de part́ıculas em suspensão ainda são um desafio importante em

muitas aplicações, tais como sedimentação, reologia e suspensões em leitos

fluidizados. O acoplamento entre o fluxo da fase ĺıquida e o movimento das

part́ıculas é o ponto central para a compreensão completa deste fenômeno.

Além disso, o estudo da evolução da disposição das part́ıculas na interface

entre duas fases de fluido imisćıveis é também uma área de pesquisa muito

importante, pois tal fenômeno ocorre em engenharia em muitos processos

industriais, tais como transporte de pastas e a secagem de micro e nano

coberturas. Este trabalho propõe uma nova formulação baseada em domı́nios

fict́ıcios e multiplicadores de Lagrange que resolve as equações de Navier–

Stokes e de corpo ŕıgido para realizar a simulação do fluxo e da flutuação

de part́ıculas submersas em uma ou mais fases de fluidos imisćıveis. Para

obtermos a solução discreta das equações utilizamos o método dos elementos

finitos e uma abordagem totalmente impĺıcita e acoplada. Esta formulação

foi validada usando diferentes problemas de teste. Os resultados obtidos

foram comparados com trabalhos anteriores e a concordância foi excelente.

Palavras–chave
Simulação de Fluidos; Força de Capilaridade; Elementos Finitos;

Domı́nio Fict́ıcio; Multiplicadores de Lagrange;
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“Só sabemos com exatidão quando sabemos

pouco; à medida que vamos adquirindo conhe-

cimentos, instala-se a dúvida.”

Johan Wolfgang Von Goethe, escritor alemão.
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