9 Referências Bibliográficas

BLANCO, R. M. Um método adaptativo de diferenças finitas utilizando wavelets. Dissertação de Mestrado, Departamento de Matemática Aplicada, UNICAMP, 2002.

BURGOS, R. B. Avaliação de cargas críticas e comportamento pós-crítico inicial de pórticos planos. Dissertação de Mestrado, Departamento de Engenharia Civil, PUC-RJ, 2005.

WEAVER, W., JOHNSTON, P.R. – *Finite elements for structural analysis*, New Jersey: Prentice-Hall, 1984

Apêndice A
Implementação Computacional

Para a formulação dos elementos finitos baseados em wavelets de Daubechies e interpolets de Deslauriers-Dubuc é de fundamental importância o cálculo correto dos coeficientes de conexão e dos valores das wavelets, interpolets e suas derivadas nos pontos de interesse.

Uma vez obtidos os coeficientes de conexão, estes podem ser armazenados para serem utilizados a posteriori no cálculo das matrizes de rigidez, geométrica, de massa e no vetor de carregamentos nodais. Os valores das funções wavelet e interpolet e suas derivadas nos pontos de interesse serão utilizados na matriz de transformação do espaço wavelet para o espaço físico. Tais valores serão exatos quando os graus de liberdade do elemento estiverem sobre uma malha diádica. Caso isso não ocorra, o valor no ponto de interesse será aproximado pelo algoritmo piramidal de geração das wavelets e interpolets com um número de iterações adequado.

Tanto os algoritmos para a obtenção das derivadas e integrais quanto aqueles que calculam os coeficientes de conexão baseiam-se em problemas de autovalor cuja solução é feita única a partir de equações adicionais, como pode ser visto no segundo capítulo. Por essa razão, os sistemas resultam em matrizes retangulares, cujas pseudo-inversas devem ser calculadas. O número necessário de equações adicionais depende do posto da matriz original do problema de autovalor.

Toda a implementação foi realizada com o auxílio do programa MATLAB (Chapman, 2003), cujos códigos podem ser encontrados no Apêndice A. O programa já conta com algumas rotinas específicas para a análise wavelet, como o cálculo dos coeficientes de filtro, por exemplo. Foram escritas rotinas específicas para o cálculo de momentos, derivadas, integrais e coeficientes de conexão para as funções wavelet de Daubechies e interpolets de Deslauriers-Dubuc, além da obtenção dos valores das funções em pontos específicos da malha diádica, necessários para a matriz de transformação de espaços.
O algoritmo para o cálculo dos coeficientes de conexão para matrizes de rigidez, de massa e geométrica é baseado no problema de autovalor dado pela seguinte expressão:

\[
(A - \frac{1}{2^{d_1+d_2-1}} I) \Lambda_{d_1,d_2} = 0
\]

O vetor que contém os coeficientes de conexão tem \((N-1)^2\) componentes, sendo \(N\) a ordem da wavelet de Daubechies. Para o caso das interpélets de Deslauriers-Dubuc, o número de coeficientes de conexão é dado por \((2N-2)^2\).

Apesar de serem indexados por \(i\) e \(j\), como uma matriz, os coeficientes de conexão são organizados na forma de um vetor para que o algoritmo possa ser implementado conforme as expressões obtidas anteriormente. Posteriormente, para a formação das matrizes dos elementos, o vetor solução do sistema é reordenado a partir dos seus índices originais.

Pela maneira como são calculados os coeficientes de conexão, pode-se deduzir que a matriz dos coeficientes de conexão pela é simétrica, ou seja, \(\Lambda_{i,j} = \Lambda_{j,i}\). Essa propriedade pode ser aproveitada para reduzir o custo computacional.

A matriz \(\Lambda\) segue a mesma lógica de formação do vetor de coeficientes de conexão, ou seja, é uma matriz que tem quatro índices de formação. A justificativa para essa indexação está na expressão dos coeficientes de conexão que se encontra na Seção 2.7.5.

\[
A_{i,j,k,l} = a_{k-2,i,j}a_{l-2,j} + a_{k-2,i+1,j}a_{l-2,j+1}
\]
O vetor que contém os coeficientes de filtro deve ser estendido com zeros à esquerda e à direita, pois à medida que o algoritmo percorre os quatro índices i, j, l e k podem surgir termos que não pertencem ao conjunto de filtros da função wavelet em questão.

\[a = \{0 \quad \cdots \quad 0 \quad a_0 \quad a_1 \quad \cdots \quad a_{N-1} \quad 0 \quad \cdots \quad 0\} \]

Após a inserção da matriz A no sistema deve-se calcular o posto da matriz resultante e adicionar tantas equações de momento quanto sejam necessárias para tornar o sistema determinado.

\[\sum_i \sum_j M_i^k M_j^k \Lambda_{i,j}^{d_3} = \frac{(k!)^2}{(k-d_3)!(k-d_3)!(2k-d_3-d_2+1)} \]

Para cada valor de k, existe uma equação adicional para o sistema. Uma vez obtidas as equações adicionais necessárias, resolve-se o sistema resultante a partir do cálculo da pseudo-inversa da matriz do problema. O programa MATLAB dispõe de uma função chamada *Backslash Solver* que resolve sistemas representados por matrizes retangulares.
Apêndice B
Aplicação a Placas Finas

Uma placa fina de espessura t tem seu comportamento à flexão modelado segundo a seguinte equação diferencial:

$$D \left(\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} \right) = q(x, y), \quad D = \frac{Et^3}{12(1-\nu^2)}$$

O deslocamento $w(x, y)$ é modelado por wavelets bidimensionais que são formadas por produtos entre as wavelets unidimensionais:

$$w(x, y) = \sum_i \sum_j d_{ij} \phi(x-i) \phi(y-j)$$

Substituindo as expressões das derivadas pode-se escrever:

$$D \left[\sum_{i,j} d_{ij} \left(\phi^{IV}(x-i) \phi(y-j) + 2\phi''(x-i)\phi''(y-j) + \phi(x-i)\phi^{IV}(y-j) \right) \right] = q(x, y)$$

Após multiplicar por $\phi(x-p)\phi(y-q)$ (base de funções teste) e integrar em x e y no intervalo $[0,1]$, as integrais em x e y podem ser separadas e escritas em forma de coeficientes de conexão. O sistema pode ser, então, colocado em forma matricial:

$$kd = f$$

$${k = D \left(\Gamma_{00}^{00} \otimes \Gamma_{04}^{04} + 2\Gamma_{02}^{02} \otimes \Gamma_{02}^{02} + \Gamma_{04}^{04} \otimes \Gamma_{00}^{00} \right)}$$

$$f = \int_0^1 q(x) \Phi^T dx$$
O símbolo \(\otimes \) indica o produto de Kronecker. Para a adaptação ao método proposto, os coeficientes de conexão devem ser reescritos, gerando a seguinte matriz de rigidez:

\[
\mathbf{k} = D \left[\Gamma^{00}_{(0,2m)} \otimes \Gamma^{22}_{(0,2m)} + \nu \left(\Gamma^{20}_{(0,2m)} \otimes \Gamma^{02}_{(0,2m)} + \Gamma^{02}_{(0,2m)} \otimes \Gamma^{20}_{(0,2m)} \right) + \right.
\]

\[
+ \Gamma^{22}_{(0,2m)} \otimes \Gamma^{00}_{(0,2m)} + 2 \left(1 - \nu^2\right) \Gamma^{11}_{(0,2m)} \otimes \Gamma^{11}_{(0,2m)} \right]
\]

Com a utilização da matriz de rigidez acima, pode-se impor apenas as condições de contorno essenciais, como feito anteriormente para problemas unidimensionais.
O coeficiente de conexão com limites de integração genéricos é dado por:

$$
\Gamma_{d_i,d_j}^{d_z} = \int_a^b \varphi_{d_i}^x (x-i) \varphi_{d_z}^z (x-j) \, dx
$$

Aplica-se procedimento semelhante ao que foi feito na dedução do coeficiente de conexão em [0,1] e chega-se a:

$$
\Gamma_{d_i,d_j}^{d_z} = \int_a^{a+1} \varphi_{d_i}^x (x-i) \varphi_{d_z}^z (x-j) \, dx + \int_{a+1}^{a+2} \varphi_{d_i}^x (x-i) \varphi_{d_z}^z (x-j) \, dx + \ldots + \int_b^{b-1} \varphi_{d_i}^x (x-i) \varphi_{d_z}^z (x-j) \, dx
$$

$$
\Gamma_{d_i,d_j}^{d_z} = \int_0^{1} \varphi_{d_i}^x (x-i+a) \varphi_{d_z}^z (x-j+a) \, dx + \int_0^{1} \varphi_{d_i}^x (x-i+a+1) \varphi_{d_z}^z (x-j+a+1) \, dx + \ldots + \int_0^{1} \varphi_{d_i}^x (x-i+b-1) \varphi_{d_z}^z (x-j+b-1) \, dx
$$

$$
\Gamma_{d_i,d_j}^{d_z} = \Gamma_{i-a,j-a}^{d_z} + \Gamma_{i-(a+1),j-(a+1)}^{d_z} + \ldots + \Gamma_{i-(b-1),j-(b-1)}^{d_z}
$$

As equações seguintes mostram um exemplo para a DB4.

$$
\Gamma_{d_i,d_j}^{d_z} = \int_0^2 \varphi_{d_i}^x (x-i) \varphi_{d_z}^z (x-j) \, dx
$$

$$
= \int_0^1 \varphi_{d_i}^x (x-i) \varphi_{d_z}^z (x-j) \, dx + \int_0^1 \varphi_{d_i}^x (x-i+1) \varphi_{d_z}^z (x-j+1) \, dx
$$

$$
= \Gamma_{i,j} + \Gamma_{i-1,j-1}
$$
Os índices \(i \) e \(j \) variam segundo as translações necessárias para cobrir todo o intervalo de integração. No caso do exemplo, \(i \) e \(j \) variam entre \(2-N \) e \(1 \) para as Daubechies; para as Interpolets, \(i \) e \(j \) ficam entre \(2-N \) e \(N \).

Pode-se notar a semelhança existente entre o processo de obtenção da matriz de coeficientes de conexão genéricos e a montagem de uma matriz global de elementos finitos. Para cada elemento \(i,j \) da matriz de coeficientes em \([0,2]\) haverá a contribuição dos elementos \(i,j \) e \(i-1,j-1 \) da matriz em \([0,1]\). Essas matrizes funcionariam analogamente às matrizes global e local de um sistema de elementos finitos.

Como exemplo, tomaremos os coeficientes de conexão \(0,1 \) da DB4 nos intervalos \([0,2]\) e \([0,3]\):

\[
\Gamma_{i,j}^{01} = \int_0^2 \phi(x-i)\phi'(x-j) \, dx, \quad \Gamma_{i,j}^{01} = \int_0^3 \phi(x-i)\phi'(x-j) \, dx
\]

Tomamos a matriz “local” formada pelos coeficientes de conexão no intervalo \([0,1]\).

\[
\Gamma_{i,j}^{01} = \int_0^1 \phi(x-i)\phi'(x-j) \, dx, \quad \Gamma^{01} = \begin{bmatrix}
-0.0670 & 0.1503 & -0.0833 \\
0.3497 & -0.8660 & 0.5163 \\
0.0833 & -1.0163 & 0.9330
\end{bmatrix}
\]

Para o cálculo da matriz em \([0,2]\) a matriz em \([0,1]\) será somada com ela própria deslocada de uma linha e uma coluna:

\[
\Gamma_{i,j}^{01} = \begin{bmatrix}
-0.0670 & 0.1503 & -0.0833 & 0 \\
0.3497 & -0.8660 & 0.5163 & 0 \\
0.0833 & -1.0163 & 0.9330 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 0 & 0 \\
0.3497 & -0.8660 & 0.5163 & 0 \\
0.0833 & -1.0163 & 0.9330 & 0 \\
0 & 0.0833 & -1.0163 & 0.9330
\end{bmatrix}
\]

\[
= \begin{bmatrix}
-0.0670 & 0.1503 & -0.0833 & 0 \\
0.3497 & -0.9330 & 0.6667 & -0.0833 \\
0.0833 & -0.6667 & 0.0670 & 0.5163 \\
0 & 0.0833 & -1.0163 & 0.9330
\end{bmatrix}
\]
Pode-se notar que a terceira linha da matriz é formada pelos coeficientes de conexão de Latto, ou seja, calculados em todo o suporte da wavelet. Isto acontece pois à medida que se aumenta o intervalo de integração, haverá coeficientes de conexão que serão integrados em todo o suporte da função. Pode-se dizer, portanto, que há um intervalo de integração a partir do qual uma linha base será repetida, o que também aconteceria em uma matriz global de elementos finitos de mesmas características (material, tamanho, etc.). Outra semelhança com o MEF é que a matriz de coeficientes de conexão genérico é “em banda”, sendo a largura de banda dada pelo número de translações necessárias para abranger todo o suporte da wavelet.
Apêndice C
Exemplo de Montagem da Matriz dos Coeficientes de Conexão

\[\Gamma_{[0,4]}^{01} = \begin{bmatrix}
-0.0670 & 0.1503 & -0.0833 & 0 & 0 & 0 \\
0.3497 & -0.9330 & 0.6667 & -0.0833 & 0 & 0 \\
0.0833 & -0.6667 & 0 & 0.6667 & -0.0833 & 0 \\
0 & 0.0833 & -0.6667 & 0 & 0.6667 & -0.0833 \\
0 & 0 & 0.0833 & -0.6667 & 0.0670 & 0.5163 \\
0 & 0 & 0 & 0.0833 & -1.0163 & 0.9330 \\
\end{bmatrix} \]

\[\Lambda_{j}^{0,1} = \int_{-\infty}^{+\infty} \varphi(x) \varphi'(x - j) dx, \quad \Lambda^{0,1} = \{0.0833, -0.6667, 0, 0.6667, -0.0833\} \]