
5
Experiments and results

In this chapter we will assess the effectiveness of the ideas proposed in the

previous chapters. For this we will present the results obtained while developing

some real world complex applications that have been developed by several

different practitioners following the proposed ideas.

As stated in chapter Introduction, subchapter Evaluation Methods, all of the

systems have the following characteristics:

• They are not a simple information system, as we are interested in active

systems that control, monitor or interact directly with other systems or

hardware. Some of them, however, do have a part purely dedicated to

storing and organizing information, but this part is not the main purpose of

it;

• The development teams have different programmers, but the same software

engineers, which we expect to spread the culture of using the techniques;

Every system was developed using the tools, technologies and explained in

previous sections of this document. The languages used were C, C++ or Java.

The development of each system was monitored, and we chose a set of

metrics that could be automatically derived from the software development. The

following metrics were measured:

• Time spent for modeling the whole system; this includes the architectural

and project phases, but does not include the requirements definition phase;

• Time spent for coding the whole system;

• Number of lines of code; number of lines of code dedicated to failure

detection (assertions); number of lines of code dedicated to failure recovery:

for these metrics to be reliable, every project will use the same code

conventions;

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

62

• Number of failures detected by assertions in simulated production

environment during the test phase; time spent to fix these failures; time

spent for the software to recover from the failure, from a user’s point of

view, if applicable;

• Number of failures not detected by assertions in simulated production

environment during the test phase; time spent to fix these failures; time

spent for the software to recover from the failure, from a user’s point of

view, if applicable;

• Number of failures detected by assertions in the acceptance test phase

(controlled production environment); time spent to fix these failures; time

spent for the software to recover from the failure, from a user’s point of

view, if applicable;

• Number of failures not detected by assertions in the acceptance test phase

(controlled production environment); time spent to fix these failures; time

spent for the software to recover from the failure, from a user’s point of

view, if applicable;

• Number of failures reported while in production considered light (i.e., no

loss of work, recovery limited just to running the system again); time spent

to fix these failures; time spent for the software to recover from the failure,

from a user’s point of view, if applicable;

• Number of failures reported while in production considered serious (i.e.,

loss of work, recovery not limited just to running the system again); time

spent to fix these failures; time spent for the software to recover from the

failure, from a user’s point of view, if applicable;

• Time for “system stabilization” (i.e., time for the number of failures

reported coming to acceptable levels);

• Total development time;

The statistics presented for each study case were extracted from:

• Version control systems (CVS and Mercurial, depending on the project);

• Jira issue tracker;

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

63

• Timesheet spreadsheets from myHours.

For some cases, some small software tools were developed to help the

extraction of the values.

5.1.
Gipmag

This is a software for external pipeline inspection, for which specific

hardware was developed simultaneously. The quality of the system must such as

to permit its dependable use in a production environment that is extremely hostile

from the user and the software perspectives (heavy rain, loud noise, inadequate

illumination, heavy Sun, and so on). The developed software proved to be quite

successful. The first version of the software was used while inspecting oil and gas

lines in Brazil, from July 2005 to December 2005, and subsequent versions

(containing several new features) have been used in Brazil, Argentina and

Venezuela. Recently, (August 2007) there were two inspections: one for sub-sea

lines in Brazil and another one in an oil refinery in Venezuela.

The system architecture is composed of two major components: an

embedded software that controls the tool (data acquisition, speed, working

conditions, etc.) and a supervisory system that runs on a PC-station, used by an

operator while observing the acquisition status and analyzing gathered data.

The communication between the tool and the station can be wireless, using

Bluetooth through USB adapters, or can be performed through a serial port.

Figure 2 illustrates this architecture.

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

64

Inspection Tool Client Computer

Magnetic

Sensor

Embedded Software

Aquisition Layer

Watchdog

Communication System

Buffer Layer

Client Software

Communication System

Buffer Layer
Database

Layer

Business Layer

GUI

Communication

API

Bluetooth

Magnetic

Sensor

Magnetic

Sensor

Magnetic

Sensor

Figure 2: System Architecture

The recovery oriented software concept has been applied in both software

systems, and the results and conclusions were exactly the same.

The development of the supervisory system

The supervisory system was developed with object-oriented technology

using C++, and had a very clear goal: the risk of faults in the software should be

reduced as much as possible and the possibly remaining faults must have a small

impact on the user’s work. It is worth noting that the remaining faults are

necessarily unknown to the developers and quality controllers; otherwise, they

could be immediately removed. Thus, there was extreme concern about the

quality of the artifacts in all levels of abstraction. Methods, classes and

subsystems were developed with one special care: failure detection needed to be

as automated as possible, conveying sufficient information to allow easy fault

diagnosis and removal. This not only increased the final quality of the software,

but also made it easier to debug, test and perform acceptance testing. The whole

system was developed in three months by a three-person team: two experienced

programmers and one senior software engineer.

During the development, the use of DBC techniques was enforced. Every

method with some complexity (i.e., not just a getter or a setter) of all 120 classes

contained in 100 modules (where a module is composed of both an .h and a .cpp

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

65

files) had their pre-conditions explicitly coded. The post-conditions also were

coded in many of them. The pre- and post-conditions were turned into executable

assertions by adding code at the beginning and at the end of each method.

Approximately 13% of the code (measured in lines of code, excluding blank lines

and comments) was dedicated to error identification (3.5%), failure handling

(3.5%) and failure recovery (6%). The software contains approximately 50 kloc

and took approximately 12 weeks for the first deployable version to be completed.

It should be mentioned that specifications were very stable and the effort spent for

developing them has not been accounted in these statistics.

The C/C++ pre-processor was used to allow for conditional compilation of

the executable assertions – this made it possible to turn them on and off as needed.

The executable code was implemented to identify failures (failing assertions) and

to trigger a recovery code. If recovery was not possible, execution needed to be

adequately stopped (fail safe mode), and an error message was to be issued

together with a log containing useful debugging information (state of local

variables, stack, class members, error location, etc.).

Even though it is impossible to assure beyond doubt, there is sufficient

evidence that the extra effort spent in development time due to the writing of pre-

and post-conditions, as well as due to the implementation of the executable

assertions, was responsible not only for the rather small effort spent during tests

(two weeks or 17%, under simulated production environment as compared to the

usual 50% of the total time considering this type of software), and acceptance

phases (two days under real production conditions), but also for the little time

spent in debugging the failures found. The number of failures identified can also

be considered small [DACS, 2009], as shown in Table 1. A possible reason for

this is that the requirement of writing pre- and post-conditions forces the

developer to think substantially about the work, which ends up increasing the

chances of writing a correct code [Sobel, 2002], [Hall, 1990], [Kemmerer, 1990].

The pair programming technique was widely used to build the most

complex parts of the software, which are the core real-time functions and some

analysis features. The engineer, together with the team of programmers, defined

what would require special attention. The code written for those parts was about

8% of the total. One interesting result is that only two of the faults reported in

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

66

table 1 were found in these pieces of code, and both were caught by assertions and

quickly solved, which points to the effectiveness of this technique.

It is important to state that, throughout the five first months under

production, the software was used daily (even on weekends) for approximately

8h/day, for more than 1,200 hours of use. Another important aspect is that all five

failures detected without assertions could have been detected by an assertion that

unfortunately had not been written. The justification given by the development

team was: “the functionality was too simple to justify the effort of writing an

assertion.” They never thought that a problem might arise in those “trivial” code

fragments.

Number of faults identified from failures detected by assertions, in a

simulated production environment during the test phase

22

Number of failures not detected by any assertion, in a simulated

production environment during the test phase

5

Mean time to remove faults identified by means of assertions (including

the time spent to identify the fault from the failure observed)

1h

Mean time to remove faults identified without using assertions (including

the time spent to identify the fault from the failure observed)

6h

Number of failures identified by assertions during the acceptance test

phase (controlled production environment)

2

Number of failures identified without assertions during the acceptance test

phase (controlled production environment)

0

Number of light failures reported while in production within the first two

and a half months after the first official release (i.e., no loss of work,

recovery limited just to restarting the system)

2

Number of serious failures reported while in production (i.e., loss of work,

recovery not limited just to restarting the system)

0

Number of light failures reported while in production (after three months

in production)

0

Number of serious failures reported while in production 0

Table 2: Number of failures identified

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

67

Use of Mock Components in the supervisory system

An interesting aspect to be discussed is that during much of the

development effort the software development team had no access to the hardware

because it was still under development. To fill this need, a hardware simulator

was developed. This simulator gave the development team total control over the

data sent to, and received from, the supervisory system. The simulator looked like

a mock component, or better, a mock agent, due to its system independent nature,

extremely configurable and pro-active characteristics. The simulator made it

possible to simulate anomalous execution conditions, guaranteeing that the

software was ready to properly handle those situations.

The simulator can operate in two modes: it can read the commands from a

text file, or it can “replay” a data file in the format that is generated by the

software station.

The first mode lets the simulator generate a unique acquisition, by

generating samples and events according to the parameters defined in a command

file. For instance, the simulator can be configured to generate data for hours

straight, at a desired rate, with a desired rate of sensor failures, in order to test the

station for memory leakages, for example. And it can be configured to generate

more anomalies in a specific area of the pipe.

The second mode makes it possible to check if the data sent by the tool

would be correctly interpreted and stored – the saved file in the station must be

equal to the data file used by the simulator, and also provides a greater control

over the samples. In fact, the simulator was, at the beginning of the tests, heavily

used in the first mode. However, after a good collection of data files had been

generated, they were used to generate “mutants” with small changes according to

what should be tested, not only online but also offline (as the software in the

station should also provide data analysis support).

An important issue is that the data acquisition is time triggered, and there is

a special sensor, called odometer, that serves as a way to measure the distance

covered by the inspection tool. The precision required was “one sample per

millimeter.” This implies that there is a maximum speed supported by the tool,

above which the desired precision is lost, limited by the data acquisition rate. The

simulator was able to simulate this condition.

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

68

The real tool was also designed to be “smart” enough to send samples only

when the odometer changes, i.e., when the tool moves. The tool may also move

forwards, and backwards. The simulator had to support all these features. Other

important sensors, like battery voltage, tool orientation and internal temperature

could also be simulated, as well as the failures in these sensors.

This approach was so successful that, when the software was finally tested

with the real hardware, only a few failures were observed, where the

corresponding faults were quickly fixed. It took less than four hours to integrate

and achieve a fully operational system consisting of hardware and software.

Strategy for tests and acceptance tests for the supervisory system

In order to assure quality, a test suite was developed to cover every line of

code of the software. The tests were executed with the help of the Valgrind

[Valgrind, 2007] tool, making it possible to identify and fix failures due to

memory access violation.

The first tests were made with the simulator, as the hardware was under

development. The existence of a highly flexible and configurable simulator

allowed the creation of a test suite. Even though not all features are directly

related to real-time operation, almost every feature is directly related to the nature

of the data generated (clear pipe, pipe with corrosions, cracks, dents, thickness

change, etc), so it was possible generate data that an analyst could use with tests.

In fact, this strategy has proven to be so successful that the software ended

up used as a tool to test the final release of the hardware, due to its extreme

reliability. The first release used in the acceptance tests was compiled with all

assertions turned on. This version was used in a controlled development

environment, to allow for the development of the hardware. The controlled

environment was validated against a pipe with a known profile of anomalies.

Some faults were identified and fixed, all of them captured by executable

assertions (all of them have been counted in Table 1). Afterwards another version

with all assertions on was released. The number of failures was very small: in two

months the software failed only two times, always observed by an assertion. The

consequences of the failure were very small: no work was lost and recovery was

limited to restarting the software.

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

69

Failure report procedure

The failure report procedure used was to take a screenshot of the message

shown by the software and add a small description of what the user was doing at

the moment of the failure. This made the debugging process sufficiently efficient

and effective.

It is important to notice that modern machines are so powerful that we

observed that the additional operational cost due to leaving assertions on did not

significantly affect the overall performance of the production system. Up to the

present moment, all releases were compiled with the assertions turned on, hence

there are no plans to turn assertions off in future compilations.

Evolution phase for the supervisory system

Since the first release, many new features have been added to the system,

some derived from features already present in the system, and some developed

from scratch. The assertions are still helping, as they reduce the impact of faults

introduced due to the change in component interfaces, or incompatibilities of

behavior of components. During the nine months that passed since the first

release, more than thirteen thousand lines of code have been added to the

software. Eight percent of these aim at identifying, handling and recovering from

failures. This is smaller than the 13% measured before. The major reason for this

is that several new parts of the software rely on older parts that already contain

assertions and recovery code. While adding new functionalities, several times it

occurred that older assertions were triggered by new code, thus helping in early

identification and solution of problems.

5.2.
Catadef

Catadef is a small project which aims to develop an automated system for

locating defects in oil and gas pipelines by analyzing data gathered by

autonomous internal inspection tools (called PIGs) instrumented with geometric

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

70

sensors. Catadef’s goal is to minimize the effort (specially time) spent by

specialized and well-trained expert analysts processing the gathered data, besides

contributing for the elimination of possible errors due to human fallibility in a

process that is error-prone.

Catadef shall automatically analyze data gathered by a PIG instrumented

with geometric sensors and generate a file containing the location of all interesting

identified features. Each line on the file contains a single indication, with relevant

information like the type of the possible defect, axial and radial positions on the

pipeline.

It is important to take into consideration that the algorithm used to locate the

features may not be 100% precise – not every reported indication may be a defect,

as the algorithm may fail, so it is important to have a good precision (the

percentage of reported features that are confirmed as real defects) and a recall (the

percentage of defects that have been reported from the complete set of existing

defects).

In order to estimate the accuracy of catadef, a set of tests will be run on PIG

inspections which defects have already been manually identified. This will allow

for calculating the precision and recall. For example, consider the following data

has been reported by catadef:

• Number of existing anomalies: 50

• Number of identified features by catadef: 60

• Number of features that were identified as real defects: 40

In this example, the precision would be 67% (equals 40/60) and the recall

would be 80% (40/50).

For the purposes of catadef, not reporting an existing defect is completely

unacceptable (false negative). The consequences of a pipeline failure may vary

from economic losses to irreversible environmental problems (in case of oil

pipelines) and even loss of life (in case of gas pipelines). So, the only acceptable

level of recall if 100%. The precision can be lower, as the indications will be

checked by an analyst. This means that “false positives” can be tolerated to some

extent, but no “false negative” is tolerated.

The average effort spent by an analyst to process a typical inspection varies

from a week to a month of work, depending on the extent of the pipeline. Usually,

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

71

no more than fifty geometric defects are identified. Previous tests indicated that it

takes, at most, two minutes for an analyst to distinguish between a real defect and

a false positive. This means that, even if we consider the worst case, i.e., a

pipeline with fifty defects, precisions greater that 10% would mean a significant

decrease in the effort spent by an analyst. Another very important consequence is

that, sometimes, an analyst may not report an existing defect. This may happen

because the analysis process is manual, boring and error-prone. Catadef

minimizes this problem by limiting the number of indications that will be

processed by the analysts.

The development

The system was developed with object-oriented technology using C++, and

had a very clear goal: the recall must be 100%, whereas the precision could be

lower. The whole system was developed in three months by a two-person team: an

experienced programmer and a senior software engineer. Compared to the other

experiments, this was a rather small one.

During the development, the use of DBC techniques was enforced. Every

method with some complexity (i.e., not just a getter or a setter) had their pre-

conditions explicitly coded. The post-conditions also were coded in many of

them. The pre- and post-conditions were turned into executable assertions by

adding code at the beginning and at the end of each method. Approximately 9% of

the code (measured in lines of code, excluding blank lines and comments) was

dedicated to identification (4.5%) and handling (4.5%). The software contains

approximately 8 kloc and took approximately 5 weeks for the first deployable

version to be completed. It should be mentioned that specifications were very

stable and the effort spent for developing them has not been accounted in these

statistics.

The C/C++ pre-processor was used to allow for conditional compilation of

the executable assertions – this made it possible to turn them on and off as needed.

The executable code was implemented to identify failures (failing assertions).

Whenever a failure was found, the execution was adequately stopped (fail safe

mode), and an error message was to be issued together with a log containing

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

72

useful debugging information (state of local variables, stack, class members, error

location, etc.).

The number of failures identified can also be considered small, as shown in

Table 3. A possible reason for this is that the requirement of writing pre- and post-

conditions forces the developer to think substantially about the work, which ends

up increasing the chances of writing a correct code [Sobel, 2002], [Hall, 1990],

[Kemmerer, 1990].

Number of failures detected during development 33

Number of failures located with the help of assertions 14

Number of failures located without the help of assertions 19

Table 3: Catadef failures

Table 4 details some data gathered for the failures:

Mean time to diagnose the defect for failures located with assertions (min) 2,5

Mean time to fix the fault for failures located with assertions (min) 35

Mean time to diagnose the fault for failures located without assertions (min) 58

Mean time to fix the fault for failures located without assertions (min) 37

Table 4: Time to fix catadef failures.

The mean time to diagnose the fault(s) for failures located with the help of

assertions was about 96% lower than the ones located without assertions. This is

because the assertion clearly indicated the point in the code where the failure was

detected, and this point was usually very close to the corresponding fault, what

helped a lot the task of fixing it. The mean time to fix the faults which failures

were located by assertions was comparable to the ones not located by assertions.

5.3.
RTScan

The goal of rtscan Project was to develop a software for executing internal

pipeline inspection with non-autonomous tools (called PIGs) instrumented with

ultra-sonic sensors. Such a tool locates defects in a pipeline, like corrosions, dents,

ovalizations and cracks, thus helping to avoid accidents that might cause serious

environmental consequences.

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

73

The ultra-sonic technology developed for this project is composed by a

specific hardware associated with embedded software. It can have up to 512

channels, each one representing a single sensor, and it is very flexible as it can be

assembled in many ways, for example, in a circular display to inspect a pipeline

(which is the goal of this project) or in a rectangular display, to inspect a pipeline

from the outside or (in the future) to inspect a ship hull.

The architecture requires the presence of a control station, with a

supervisory software. This station communicates with the firmware in the

hardware. The hardware must be assembled in a tool specifically designed for the

inspection target (which may involve a considerable mechanical project).

Figure 3: RTScan Architecture

The software developed for this study case is the supervisory system, used

in the control station to acquire and to visualize the data from the array of sensors

mounted in the hardware. It was developed in C++, using the QT library

[Trolltech, 2009], due to multi-platform requirements.

The operational system used for development was Linux Suse 10.2. Fedora

Core 3.0 and 6.0 were also used during the development time. Windows and Suse

10.2 were used as final targets for the developed software.

The development

The supervisory system was developed with object-oriented technology

using C++, and the QT development library. It was very much like Gipmag

experience where there was a very clear goal: the risk of faults in the software

should be reduced as much as possible and the possibly remaining faults must

have a small impact on the user’s work. It is worth noting that the remaining faults

were necessarily unknown to the developers and quality controllers; otherwise,

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

74

they could have been immediately removed. Thus, there was extreme concern

about the quality of the artifacts in all levels of abstraction. Methods, classes and

subsystems were developed with one special care: failure detection needed to be

as automated as possible, conveying sufficient information to allow easy fault

diagnosis and removal. This not only increased the final quality of the software,

but also made it easier to debug, test and perform acceptance testing.

The whole system was developed in eight months by a four-person team:

three experienced programmers and one senior software engineer. One important

thing to notice is that the development team was composed by developers from

different organizations: the third developer belonged to the customer’s

organization. This was imposed by contract, because the customer wanted to

retain some knowledge of the development process. This developer had to be

trained in order to use the same conventions, tools, conditions and technologies.

During the development, the use of DBC techniques was enforced. Every

method with some complexity (i.e., not just a getter or a setter) had their pre-

conditions explicitly coded. The post-conditions also were coded in many of

them. The pre- and post-conditions were turned into executable assertions by

adding code at the beginning and at the end of each method. Approximately 10%

of the code (measured in lines of code, excluding blank lines and comments) was

dedicated to identification (4.0%) and handling (6.0%). The software contains

approximately 45 kloc and took approximately 16 weeks for the first deployable

version to be completed. It should be mentioned that specifications were very

stable and the effort spent for developing them has not been accounted in these

statistics.

The C/C++ pre-processor was used to allow for conditional compilation of

the executable assertions – this made it possible to turn them on and off as needed.

The executable code was implemented to identify failures (failing assertions), but

there was no recovery code – the execution was adequately stopped (fail safe

mode), and an error message was to be issued together with a log containing

useful debugging information (state of local variables, stack, class members, error

location, etc.).

The number of failures identified is shown in Table 1. A possible reason for

this is that the requirement of writing pre- and post-conditions forces the

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

75

developer to think substantially about the work, which ends up increasing the

chances of writing a correct code [Sobel, 2002], [Hall, 1990], [Kremmerer, 1990].

Number of failures found 119 100%

During development time 60 50%

During simulated production environment 59 50%

Indicated by an assertion 34 29%

Not indicated by an assertion, but could have been indicated 15 13%

Not indicated by an assertion, and could not have been

indicated

70 58%

Table 5: General statistics for RTScan

It is important to state that not every failure can be detected using assertions

in a system that generates visual responses to users. For example, it is hard to

check, with contracts and assertions, rendering errors. This made it even more

important testing with final users in a simulated and controlled production

environment in order to detect this kind of failures. Table 5 shows that this

procedure was responsible for the identification of approximately half of the

failures.

It was possible to estimate the effort spent for the removal of each fault,

divided in fault identification (from the failure) and fault removal efforts. The data

is presented in table 6.

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

76

 Total time (min) Time to identify the

fault (min)

Time to fix the

fault (min.)

Located by an

assertion

84 26 48

Not located by an

assertion

160 105 55

Table 6: Fault removal statistics for RTScan

Failure report procedure

The failure report procedure used was to take a screenshot of the message

shown by the software and add a small description of what the user was doing at

the moment of the failure. This made the debugging process sufficiently efficient

and effective.

It is important to notice that modern machines are so powerful that the

additional operational cost due to leaving some assertions on did not significantly

affect the overall performance of the production system. Up to the present

moment, all releases were compiled with all the assertions which resources

consumed do not affect significantly the overall performance turned on, hence

there are no plans to turn assertions off in future compilations.

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

77

5.4.
Pipescan

This software allows for processing data gathered by autonomous tools for

internal pipeline inspection. These tools are instrumented with geometric and

magnetic sensors that collect readings from the pipeline wall, in order to find

anomalies such as corrosions, cracks and dents. Some inspected lines may be

more than a hundred kilometers long, which may take months to be fully

processed.

The software is intended to be used by two different user roles:

• The analyst, that is the user that looks throughout the data looking for

anomalies and also for notable points that could be used as a reference to

locate the anomalies (such as known welds, valves, bends and so on);

• The pipeline manager, that is the user that receives the data gathered by the

analyst and decides the best course of action for the line (time frame for

maintenance, operation pressure reduction, risk analysis).

The development

The software was developed with object-oriented technology using C++,

and had a very clear goal: the risk of faults in the software should be reduced as

much as possible and the possibly remaining faults must have a small impact on

the user’s work – this is specially true for the analyst, that usually spends

considerable time using the software in a single session. It is worth noting that the

remaining faults were necessarily unknown to the developers and quality

controllers; otherwise, they could have been immediately removed. Thus, there

was extreme concern about the quality of the artifacts in all levels of abstraction.

Methods, classes and subsystems were developed with one special care: failure

detection needed to be as automated as possible, conveying sufficient information

to allow easy fault diagnosis and removal. This not only increased the final quality

of the software, but also made it easier to debug, test and perform acceptance

testing. The whole system was developed in six months by a three-person team:

two experienced programmers and one senior software engineer.

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

78

During the development, the use of DBC techniques was enforced. Every

method with some complexity (i.e., not just a getter or a setter) of all 130 classes

contained in 70 modules (where a module is composed of both an .h and a .cpp

files) had their pre-conditions explicitly coded. The post-conditions were also

coded in many of them. The pre- and post-conditions were turned into executable

assertions by adding code at the beginning and at the end of each method. Some

data structures were also instrumented with redundancy, on order to detect illegal

states of execution.

Approximately 11% of the code (measured in lines of code, excluding blank

lines and comments) was dedicated to identification (3.0%), handling (3.0%) and

partial failure recovery (5%) – the failure recovery could be more sophisticated

for some failures, however due to time restrictions, a simplified solution was

adopted. The software contains approximately 30 kloc and took approximately 12

weeks for the first deployable version to be completed. It should be mentioned

that specifications were very stable and the effort spent for developing them has

not been accounted in these statistics.

The C/C++ pre-processor was used to allow for conditional compilation of

the executable assertions – this made it possible to turn them on and off as needed.

The executable code was implemented to identify failures (failing assertions) and

to trigger a recovery code. If recovery was not possible, execution needed to be

adequately stopped (fail safe mode), and an error message was to be issued

together with a log containing useful debugging information (state of local

variables, stack, class members, error location, etc.).

Even though it is impossible to assure beyond doubt, there is sufficient

evidence that the extra effort spent in development time due to the writing of pre-

and post-conditions, as well as due to the implementation of the executable

assertions, was responsible not only for the rather small effort spent during tests

(two weeks under simulated production environment as compared to the usual

50% of the total time considering this type of software), and acceptance phases (a

week under real production conditions), but also for the little time spent in

debugging the failures found. The number of failures identified can also be

considered small, as shown in Table 7. A possible reason for this is that the

requirement of writing pre- and post-conditions forces the developer to think

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

79

substantially about the work, which ends up increasing the chances of writing a

correct code [Sobel, 2002], [Hall, 1990], [Kemmerer, 1990].

The first version of the software was used by a group of four analysts for

approximately five months, daily (except for weekends) for approximately

8h/day, which means more than 3,000 hours of use.

Number of faults identified from failures detected by assertions, in a

simulated production environment during the test phase

44

Number of failures not detected by any assertion, in a simulated

production environment during the test phase

9

Mean time to remove faults identified by means of assertions

(including the time spent to identify the fault from the failure observed)

45 min

Mean time to remove faults identified without using assertions

(including the time spent to identify the fault from the failure observed)

3h

Number of failures identified by assertions during the acceptance test

phase (controlled production environment)

6

Number of failures identified without assertions during the acceptance

test phase (controlled production environment)

1

Number of light failures reported while in production within the first

two and a half months after the first official release (i.e., no loss of

work, recovery limited just to restarting the system)

2

Number of serious failures reported while in production (i.e., loss of

work, recovery not limited just to restarting the system)

0

Number of light failures reported while in production (after two and a

half months in production)

2

Number of serious failures reported while in production 0

Table 7: Failure statistics for Pipescan

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

80

5.5.
Biogènie

The goal of this project was to build a prosthesis manufacturing solution.

The idea is to allow a professional to model the prosthesis in a software that

would be immediately be generated in a machine. The machine would be

controlled by an embedded software, that should care about the prosthesis build,

overall machine conditions (like measuring temperature, current in the step

motors, drill sharpness, etc) and safety conditions (like interrupting the drill if any

compartment is open while the machine is working).

The system architecture is composed of two major components: an

embedded software that controls the machine and a supervisory system that runs

on a PC-station, used by the doctor to model the prosthesis. The communication

between the machine and the station follow a protocol that is based on TCP/IP.

Due to its nature, the risk of faults in both software should be reduced as

much as possible and the possibly remaining faults must have a small impact on

the user’s work. However, the embedded software was critical, as it had to make

important decisions regarding to safety – the point was that, as the link was based

on a TCP/IP network that is inherently not fail-safe and the costs to make it fail-

safe were prohibitive, the supervisory software could not be used to handle

mission critical issues. So, for the purpose of this work, we will consider only the

results in the embedded software.

The Development

The development team was composed by a senior software engineer and a

senior programmer. The embedded software was developed in C, designed to run

under a Linux kernel on an Intel-X86 based machine. There was extreme concern

about the quality of the artifacts in all levels of abstraction. Functions, modules

and subsystems were developed with one special care: failure detection needed to

be as automated as possible, conveying sufficient information to allow easy fault

diagnosis and removal. This not only increased the final quality of the software,

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

81

but also made it easier to debug, test and perform acceptance testing. The whole

system was developed in five months.

During the development, the use of DBC techniques was enforced.

Approximately 12% of the code (measured in lines of code, excluding blank lines

and comments) was dedicated to identification (3.0%), handling (4.0%) and

failure recovery (5.0%). The software contains approximately 13 kloc and took

approximately 8 weeks for the first deployable version to be completed. It should

be mentioned that specifications were very stable and the effort spent for

developing them has not been accounted in these statistics. Table 8 shows the

endogenous failure statistics for this development.

Number of faults identified from failures detected by assertions, in a

simulated production environment during the test phase

23

Number of failures not detected by any assertion, in a simulated

production environment during the test phase

3

Mean time to remove faults identified by means of assertions

(including the time spent to identify the fault from the failure

observed)

45 min

Mean time to remove faults identified without using assertions

(including the time spent to identify the fault from the failure

observed)

3.5h

Number of failures identified by assertions during the acceptance test

phase (controlled production environment)

20

Number of failures identified without assertions during the acceptance

test phase (controlled production environment)

0

Number of light failures reported while in production within the first

two and a half months after the first official release (i.e., no loss of

work, recovery limited just to restarting the system)

6

Number of serious failures reported while in production (i.e., loss of

work, recovery not limited just to restarting the system)

0

Number of light failures reported while in production (after three

months in production)

1

Number of serious failures reported while in production 0

Table 8: Number of failures identified for Biogènie

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

82

5.6.
Comparison of the results

Following table summarizes the results collected by the experiments:

Table 9: Overall results of the experiments

It is possible to notice that the time spent to fix faults corresponding to

failures that have been observed by assertions is considerably and consistently

lower that the time spent to fix failures not observed by assertions in a ratio that

varies from 1 to 6 (gipmag – largest difference) up to 1 to 1.6 (rtscan – smallest

difference).

The ratio of faults identified and removed with the help of instrumentation

varies from 42% (catadef) to 94% (Biogénie). Another interesting thing is that

Gipmag, Pipescan and Biogènie have ratios higher than 80%, whereas Catadef

and RTScan have rations below 70%. This is possibly due to the different level of

experience that each team had – the projects that had higher ratios were developed

by more experienced programmers that rapidly understood the benefits that using

recovery oriented software techniques could bring.

The ratio of code dedicated to instrumentation varies from 9% (catadef) to

13% (gipmag). However, catadef and rtscan do not have code dedicated to failure

recovery, which means that their ratios could get higher. Another interesting thing

is that rtscan and catadef differ significantly in terms of lines of code. This may

indicate that there is no significant relation between the size of a project and the

amount of code dedicated to instrumentation.

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

