
3 
Combining Technologies to Develop Reliable Software 

In the previous chapters, we presented some concepts that apply to recovery 

oriented software. We also presented some technologies that could be used 

together to build recovery oriented software. In this chapter, we explain our 

experiences in combining those technologies in order to cover each presented 

concept.  

We have already discussed that a recovery oriented software development 

process must concentrate efforts in the following areas: defect prevention effort, 

potential failure detection effort, failure handling effort (FHE) and defect removal 

effort (FRE). The key idea is to balance the efforts during development, so that 

each area receives proper attention.  

An interesting issue to discuss is that the concepts shown are neither related 

to any specific software development process, nor related to any specific step of a 

process. These concepts, which can be seen as concerns – the recovery oriented 

software concerns – must be taken into consideration throughout the whole 

software development, even though some of them are more related to specific 

steps. 

Although each software development process may have its own steps, it is 

possible to group them into higher-level steps: requirements, design, coding, 

testing and deployment. Even the processes that are not waterfall-based can have 

their steps classified according to these higher-level steps, if one considers that the 

higher-level steps do not need to be visited sequentially.  
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3.1. 
Requirements Step 

 

 

The requirements step is mainly related to defect prevention effort and 

potential failure detection effort. We propose this should be done in three ways: 

 

• A list of requirements, as complete as possible, shall reduce the problems 

due to bad specification, such as work redone [Glass, 2008]; 

• Non-functional requirements are the source to look for MTTR or MTBF 

definitions; 

• Functional requirements are a good source for assertions. For example, 

consider a case where an acquisition tool may have between 5 and 30 

sensors. This condition may be checked in runtime for consistency – if a 

tool reports a number of sensors out of this range, it is either defective or 

inappropriate to be used. Actions to be taken in case a failure is identified 

must also be specified. Requirements may also be written in a formal or 

semi-formal language, so that writing assertions can be an easier process. 

 

3.2. 
Design Step 

The design step is mainly related to defect prevention effort, potential 

failure detection effort and failure handling effort, even though there are some 

issues also related to defect removal effort that should be handled too. 

Design by contract and design for testability must be taken into 

consideration in this step – this is where they are planned. Recovery oriented 

software must be carefully designed with enough instruments in order to identify, 

and properly respond to, failures at runtime. These instruments are pieces of code 

that constantly check for system integrity and they must be developed according 

to conditions defined in the requirements step. For example, consider the case 

where an acquisition tool may have between 5 and 30 sensors, as specified in the 

requirements step. This range may be used to generate code that verifies system 
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consistency at runtime, and this code may be used in many places – like when 

registering a new tool, or when receiving data from the tool. The places where 

such code shall be used must be defined during the design step. The conditions – 

also known as assertions – must be carefully thought to cover as many anomalous 

situations as known or justifiable. The completeness of the assertion list is directly 

related to the how much the software will be ready to detect abnormal, unexpected 

or spurious execution conditions. 

An assertion list can be seen as a “potential failures list”. Since, from the 

assertion point of view, it does not matter what caused the failure, what matters is 

the presence of an error (i.e. a state that is inconsistent with the specification). As 

stated before, failures are the observable consequences of faults, which can be 

internal (specification, coding, for example) or external (external hardware 

malfunction, for example). We can consider potential faults as potential risks that 

might affect the software (for example, a damaged sensor). A unique failure may 

be caused by different faults, just as a single fault may be the cause of multiple 

failures. Hence, writing an assertion list in the design step can be, to some extent, 

seen as a “risk-based design” even though the focus is not on the risks themselves, 

but on their possible consequences to the software, no matter what they might be. 

A proper way to write assertions is to use a formal method. Specifying 

assertions using logic, for example, not only help the developers to fully 

understand it [Sobel, 2002][Agerholm and Larsen, 1998][Hall, 1990][Gerhart et 

al, 1994] but also help their implementation in code, in such a way that they could 

be constantly verified at runtime. This was discussed in chapter Formal Methods. 

When an assertion is implemented in code, it is called an executable assertion, and 

is considered an instrument. 

An instrument is a construct designed to help the development process. 

Instruments can be used during development time in order to help developers to 

create software with fewer bugs (defect prevention effort) [Sobel, 2002][Hall, 

1990] [Gerhart et al, 1994] [Agerholm and Larsen, 1998] [Holloway, 1997], but 

can also be used to identify failures (potential failure detection effort) and start 

recovery code (failure handling effort). For example, consider a case where each 

sensor in the previous example may return values between 0 and 1000, but for the 

purpose of a specific system, it is expected to return values only between 0 and 

100. If a sensor returns a value higher than 100, a possible explanation would be 
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that it is either defective, or that it might have read spurious data. This information 

may be used to create an assertion, that will be implemented (turned into an 

executable assertion) that models an instrument that detects such condition to 

trigger a recovery code – maybe disabling the sensor after a defined number of 

spurious measurements have been read, or enabling a new one, or even trying new 

configurations to solve the problem detected. 

Another key issue is redundancy – data structures must contain redundant 

information in order to allow checking for consistency during runtime [Staa, 

2000]. However, redundancy means not only a design overhead, but also that 

more resources are spent at runtime. The redundancy to be inserted must be 

carefully designed envisaging a specific detection and recovery goal [Staa, 2000], 

and depending on its overhead, it must be possible for it to be deactivated in the 

release build. The added redundancy allows verifying whether the data structure is 

not corrupt. Simple examples are assuring that all references are bidirectional and 

adding CRC values. This will be discussed in detail in chapter 4. Assertions can 

also be considered redundancy, as they exist to check whether some conditions 

are true (that, under expected software execution would be true). Redundancy will 

be discussed in more details in the chapter “ 

Recovery Techniques”. 

As instruments may be resource consuming (depending on the conditions 

they check), every instrument used only for development purposes should have a 

switch, so that it could be turned on and off depending on the situation – for 

example, in production time one might disable them in order to achieve a higher 

performance. Instruments used to trigger recovery code should not be disabled in 

the final build, so it is important to analyze their impacts on the system overall 

performance. A way to control the impact of instruments in the final production 

build is using the design patterns as mentioned in the chapter “ 

Technologies and tools that support the development of recovery oriented 

software”. 

In addition to the instruments, it is important to design the system to provide 

enough information for debugging, thus attempting to reduce the defect removal 

effort. For example, consider a case where each record in a table from a database 

must have an integer column whose value is between 5 and 30. If an instrument 

detects a row that does not match this criterion, probably this is due to a system 
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failure. A possible recovery would be to delete such a row (of course, after 

warning the user) but this would also remove the (only) clue for the debugging 

process. Logging may also be difficult, due to the possible relationships with other 

tables. Another possible solution would be marking the row as defective, in such a 

way that the evidence remains in the database to be further analyzed, but will not 

be used further. Notice that this implies specific design and coding for the rest of 

the system to take the “bad row” flag into consideration when executing queries, 

or even for database constraints (this can be considered a debuggable software 

feature). This is proposed by the “dirty row flag” pattern in the  

Patterns chapter. 

The design step shall also lead to the development of componentized 

software, ideally components that could be isolated and restarted if needed. This 

implies not only defining good interfaces through which the components will 

communicate, but also routines for identifying whether a message has reached a 

component and whether it has effectively been processed, this means the 

component which received it did not hang or break. [Candea and Fox, 2003] 

propose that all interactions between components must have a timeout, and that all 

requests must be entirely self-describing. This allows a fresh instance of a 

rebooted component to pick up a request and continue from where the previous 

instance left off. Requests also carry information on whether they are idempotent. 

Recovering from a failed idempotent sub-operation entails simply reissuing it; for 

non-idempotent operations, the system can either roll them back, apply 

compensating operations, or tolerate the inconsistency resulting from a retry. Such 

transparent recovery can hide intra-system component failures from the end user. 

Designing debuggable software is another important issue in order to reduce 

MTTR as low as necessary. Depending on the availability of other system parts, 

one might consider using mock components [Fowler, 2007] to replace them, and 

this must also be handled in the design step. A mock component must implement 

the interfaces of the original component it is going to replace so that the need for 

changes in code is down to a minimum. A mock component must also be 

designed with coherent and controlled behavior, so that it will be possible to 

simulate different states of execution for the other components that are using the 

mock as if it were the original component – this means that, from the point of 
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view of a real component in the system, there shall be no way to know if one (or 

more) components are mock components. 

 

3.3. 
Coding Step 

The coding step is directly related to the defect prevention effort and, as a 

consequence of the design step, related to the potential failure detection effort, 

failure handling effort, and defect removal effort. 

Even though bad design and inaccurate requirements are responsible for 

most of the systematic faults in software, the coding step is potentially the source 

of most of the implementation faults. The process of writing code is inherently 

error-prone, as it is performed by humans. Hence, it is very important to care 

about defect prevention in this step. 

A way to avoid faults is to “use code that generates code”. Examples of such 

features are the “generate getters and setters” and “generate constructors using 

fields” options in Eclipse [Eclipse, 2007]. Generating code automatically tends to 

be more reliable and also improves the productivity of the programmers as it 

usually produces code that must follow strict patterns. Since writing such code 

does not require much skill it is often performed in a sloppy way. 

The instruments designed in the design step must be coded carefully, and 

new assertions should also be written and coded, if identified – in fact it is not 

uncommon that a lot of new conditions are discovered during coding time. For 

example, the “inverse functions” test discussed in the previous section usually 

appears during the coding step. In order for this to happen, it is important that the 

programmers feel “free to think”. This means stimulating the discussion for the 

development of code. Pair programming [Cockburn and Williams, 2001] is a good 

way to do this, especially for the most sophisticated parts of the code. An 

interesting result for the “free to think” technique is that code developed under 

these conditions tends to be correct by construction – this is probably because the 

developers had to think carefully about what they were really coding and, even if 

the code contains faults, these tend to be easier to locate because of the 

instruments written simultaneously. This is similar to “bringing the test step to the 

coding step” as advocated by the test driven development approach. This 
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statement is supported by our experiments which will be explained in the chapter 

“Recovery Techniques” 

This is a good time for the development of the mock components [Fowler, 

2007], that were designed in the Design Step, and which should be used in the test 

step. 

 

3.4. 
Testing Step 

The testing step is directly related to defect prevention effort. Techniques 

such as automated test and the use of testing tools and frameworks should be 

encouraged. The tests should be run with all instruments turned on, this enhances 

the chances of failure detection. 

Our experience with this step is that it ends up being significantly shortened 

by the correct adoption of the instruments described in the previous steps. 

 

3.5. 
Deployment Step 

The deployment step is directly related to defect removal effort. Some 

issues to address when deploying software are: 

• Log locations: the user must be informed of log locations (file and 

directories), so that they will not be deleted or edited by accident; 

• Bug report procedure: the user must be fully aware of how to report a 

problem. How to fill a form, which information to attach (logs, 

screenshots, how-to-reproduce steps), where the information should be 

sent to, how long will it take for a response. Here is a very important 

issue: users usually do not know how to report a bug because they do 

not understand which information is relevant. It is better to log 

information automatically than to count on the user to provide it, thus 

simplifying the process from the user’s point of view. 

• If possible, the instruments should be still on so that any failure might 

be identified as close to the fault location as possible. 
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The user must understand the importance of his role in the development 

process at this point. He must feel as part of the development team, having 

knowledge about how properly reporting failures will help the developers to 

locate the corresponding fault(s) more quickly, thus speeding up the final release 

of the software.  

 

3.6. 
Development Table 

We now show a summary table, that matches technologies and the 

development steps they may be used: 

 

 Requirements Design Coding Testing Deployment 

Formal 

Methods 
X  X   

Debuggable 

Software 
  X X  

Software 

Components 
 X X   

Design by 

Contract 

(Assertions) 

 X X X X 

Design for 

Testability 
 X X X X 

Mock 

Components 
 X X X  

Patterns  X X X  

Table 1: Technologies and development steps 
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