
2 
Concepts and Technologies 

In [Boehm and Basili, 2001] it is stated that about 50% of the deployed 

software contains non-trivial defects. Although their statement is directed towards 

user developed software (e.g. spread-sheets), it is frequently mentioned that 

software in general is still too failure prone. As mentioned in the PITAC
1
 Report 

to the President  of the USA (1999), section 2 Priorities for Research: 

The demand for software has grown far faster than our ability to produce it. Furthermore, 

the Nation needs software that is far more usable, reliable, and powerful than what is being 

produced today. We have become dangerously dependent on large software systems whose 

behavior is not well understood and which often fail in unpredicted ways. Therefore, 

increases in research on software should be given a high priority. Special emphasis should 

be placed on developing software for managing large amounts of information, for making 

computers easier to use, for making software easier to create and maintain, and for 

improving the ways humans interact with computers.  

It is our hypothesis that developing recovery oriented software is an 

effective step to reduce the failure proneness of software. Much work has already 

been done in this area, as we will show in the next section. Most of this effort is 

focused on web-based systems. We are also interested in non web-based software 

as well as in embedded software. 

 

2.1. 
Recovery Oriented Software development process characteristics 

As stated in the previous chapter, it is not the goal of this work to propose 

the modification of an existing, or even to propose a new software development 

process. However, we are fully convinced, by our experiments, that a recovery 

oriented software development process must concentrate efforts in the following 

areas:  

                                                

1 PITAC President's Information Technology Advisory Committee (1999) - Report to the 

President of the USA. URL: http://www.nitrd.gov/pitac/report/exec_summary.html 
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2.1.1. 
Defect prevention effort  

This is the effort spent during development time to avoid the presence of 

defects in a system. It concentrates mainly on specification, architecture, design, 

coding, inspection, test, verification and validation. Essentially, it corresponds to 

the conventional development effort, as well as to the maintenance or evolution
2
 

effort once the cause of a problem has been identified. Obviously, this effort can 

be reduced by means of the use of best practices aiming at correctness by 

development
3
, maintainability and evolveability. 

 

2.1.2. 
Potential failure detection effort  

It is important to distinguish between two distinct types of defects: the ones 

that are under the control of the developer and that we wish to minimize by means 

of prevention, and the ones that are not under the developer’s control, whose 

causes are usually external to the system, such as hardware failure or interference 

from another system. These latter failures require a specific design effort, enabling 

the corresponding errors to be observed and properly handled.  

The potential failure detection effort is the effort spent during development 

time to identify failures that might happen at runtime. Such failures can be caused 

by inaccurate coding, but may also be caused externally to the software due to 

exogenous errors. The major characteristic of potential failures is that they are not 

known beforehand. This effort includes not only the design overhead, but also 

operational costs, i.e. the computational effort spent in control actions that do not 

directly contribute to software functionalities. It is represented by artifacts like 

dedicated hardware and software, use of redundancy or even software clones 

[Staa, 2000] as well as replicas in order to detect inconsistencies by comparing 

                                                

2  We distinguish between maintenance (corrective, perfective and preventive maintenance) 

and evolution (enhancement and adaptive maintenance) [Kemerer and Slaughter, 1997]  

3
  Software is said to be correct by construction if it contains no defect previous to the first 

test. It is said to be correct by development if it contains no defect previous to distribution or 

deployment. 
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different outputs from a single input [Pullum, 2001], like some techniques used in 

fault tolerance. As examples of software dedicated to failure detection, we can 

mention: 

1. Self-checkable data structures: these are data-structures containing 

redundancy that allows verifying their structural consistency (e.g. 

conformance with structural invariant assertions) without requiring 

knowledge of the system state [Taylor, 1986];  

2. Data-structure verifiers: code designed to verify self-checkable data 

structures [Staa, 2000]; 

3. Data-structure recoverers: code designed to recover damaged data-structures. 

When such code is embedded within the data-structure, it is considered a 

“recoverable data-structure”. 

4. Self-test functions: created to run self-consistence tests in a system. 

 

It is possible to conclude three things: 

1. A recovery oriented software has components dedicated exclusively to 

failure detection, as well as having an internal organization suitable to allow 

for data verification during runtime; and 

2. Software must be designed to be recovery oriented. Such a feature is very 

expensive and error-prone to be added to already developed software. 

3. But recovery oriented software must provide more things – once a failure 

has been detected, some action must be triggered recovering the system to a 

state from which it may continue working dependably. Furthermore, this 

action must require a very small amount of time (few minutes, or sometimes 

even fractions of minutes). We will discuss this subject in more detail in the 

chapter Recovery Techniques 

 

2.1.3. 
Failure handling effort (FHE) 

This is the effort spent during development and maintenance time 

(architecture, design, implementation and test) to add ways to handle failures 
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detected during runtime (see item above). By failure handling we mean “recover 

as gracefully as possible” (although there is no clear way to measure “how 

gracefully a failure has been handled”), i.e.: 

• minimizing the need of manual intervention 

• reducing the loss of work; 

• giving precise information to the user about what happened, using his/her  

viewpoint, and how to continue working in the best possible way. 

For example, a failure detected in a sensor or in the software that controls 

the sensor can be handled automatically, maybe by removing the defective sensor 

from operation and starting a new equivalent one, or simply deactivating the 

defective sensor and leaving the task to the remaining ones - although the system 

will operate in a degraded way, the reliability of other operations possibly will not 

be affected. In other cases, the best thing to do is to roll back to a previous safe 

state and restart the program in order to minimize damage propagation. 

In addition to handling failures as they are detected, it is also necessary to 

remove, or, in case of external failures, encapsulate them, which means isolating 

the system from them – for example, if a magnetic sensor must acquire data 

between 1 and 10 Gauss, but is known for giving sometimes spurious readings, 

then the system must be aware of that and, hence, identify and ignore spurious 

values maintaining the amount of false positives under control.. Considerable 

effort is then spent in order to provide means to either encapsulate or eliminate the 

causes of a failure. 

For web applications, different from conventional fault tolerance, failure 

recovery may require some user intervention. The user can provide valuable 

information to minimize loss of data or may even require that no recovery be 

made – in such cases the user will attempt to recover the data himself. For 

example, if the system detects an invalid record in a database, it is important to 

ask the user before whether it should either simply erase it, or mark it as bad – 

which would be preferred for debugging purposes, but implies that the design 

must have taken the “marked bad” state into consideration. In other cases, the 

system must decide if the failure is severe enough to require its termination, or if a 

degraded operation is acceptable [Bentley, 2005]. Essentially, the goal is to keep 

the system operating, even if degraded, while the defective component is being 

repaired. According to [Fox and Patterson, 2002], there exist specific MTTR 
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thresholds below which the user experience is not appreciably disrupted by a 

transient failure (so that further improvement beyond that threshold yields only 

marginal benefit) and another above which it is intolerable (so that users give up 

or click over to a competitor). In other words, users tolerate failures to some 

extent. The question is how to keep the system operating dependably within this 

extent. 

For embedded or control systems, user intervention is almost always 

impossible. The system must decide for itself what to do in order to keep running. 

This means that, if a failure is detected, it should be properly handled – if internal, 

the components that caused it should be deactivated and, if external, it should be 

encapsulated - which means that, every time the external condition that triggers 

the failure is detected, the system should act in order to avoid significant 

consequences of this failure. 

The effort spent in this item corresponds typically to designing, 

implementing and testing recovery code, whose purpose is:  

1. when detecting a failure, to restore the system to a valid state; or 

2. perform a “house cleaning” procedure (for example, code that terminates the 

system in order to preserve or even restore data integrity of persistent data; or 

code to roll-back the system to a previous safe state); or 

3. provide redundancy of hardware or software in order to guarantee service 

availability. 

 

2.1.4. 
Defect removal effort (DRE) 

This is the effort spent to both identify and eliminate defects, i.e. the causes 

responsible for the failures, or to encapsulate failures in such a way that potential 

damages are certainly kept below an acceptable level. The problem here is that 

such defects have not been identified when testing or using software. Instead we 

observe failures caused by these defects and, according to the symptoms 

associated with the failures, one tries to find the offending defect. As mentioned 

before, failures may be due to defects in the code, but may also be due to external 

factors. In the latter case, it is necessary to include code that detects malfunction. 
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For example, in case of data entry, it is strongly recommended to add data 

verification code. In the case of gathering data from sensors, each datum could be 

compared to a valid range or to the current mean of the read values, in order to 

detect potential outliers. Once identified and isolated, defects can be removed or 

failures could be encapsulated. 

As mentioned before, according to Basili and Boehm [Basili and Boehm, 

2001], more than 50% of software systems contain non-trivial defects. For these 

non-trivial defects, the failure analysis effort may be very hard or impossible to 

estimate. One way to reduce this effort is to invest resources in failure detection 

(item 2), as early detection not only contributes to avoiding inconsistent states and 

data from spreading throughout the system, potentially increasing damage, but 

allied to a debugging data collection policy may also help to identify and isolate 

the corresponding defect. Another important issue is that, the faster one detects a 

failure, the closer (considering time) the detecting code will be to the point where 

the error occurred, thus reducing the FDE. 

Once the responsible defect is detected, it is necessary to decide if it will be 

removed – in some cases the defect removal may be too costly compared to the 

impact caused on the service provided by the system. For example this would be 

the case when the DRE is too expensive. This is the case when a defect is found in 

embedded software that is installed in many equipments. The costs of an upgrade 

may prohibitive. Another case is for software that is used in critical processes that 

cannot be stopped to allow redeployment without impacting its production. 

Even though a great part of the DRE takes place at production time, it is 

during the development time that instruments must be developed so that the mean 

time to identify the cause of a failure, to remove it and to deploy the corrected 

version is assuredly kept below a given level. Such instruments are mainly pieces 

of code that gather as much relevant information about the system state as 

possible, thus facilitating defect identification. 

 

2.2. 
Fault tolerant software versus recovery oriented software 

Fault tolerance is the property that enables a software system to continue 

operating properly in the event of a failure of some of its components [Wikipedia, 
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2008]. This is directly related to failure handling, and it means that fault tolerance 

is a characteristic of recovery oriented software. However, recovery oriented 

software must care about some other issues: 

Recovery oriented software must be able to provide accurate information 

that help the developers fix it when a failure is reported, even during development 

time [Candea and Fox, 2003] when in the hands of the testers; 

Recovery oriented software must provide means to quickly restore the 

workbench and minimize possible damages to the service provided as well as to 

the execution environment when a failure is detected [Fox and Patterson, 2002]; 

Recovery oriented software must be able to re-establish full operational 

power as fast as possible (this means that operating in a degraded way cannot be 

simply accepted as a possible long-term solution for failure handling) [Fox and 

Patterson, 2002], [Candea and Fox, 2003]; 

 

2.3. 
Technologies and tools that support the development of recovery 
oriented software 

There are many technologies, tools and best practices that enable the 

development of recovery oriented software. Some of them are listed as follows: 

 

2.3.1. 
Debuggable Software 

Debuggable software is written containing dedicated instruments (pieces of 

code) to provide specific and accurate information for the developers in case of 

failure, thus helping the fault removal process. One of the consequences of the 

development of debuggable software is the reduction of the number of non-trivial 

faults [Boehm and Basili, 2001] that are identified during the production time of 

the software. In order to understand the reason for this statement, it is necessary to 

analyze what makes a fault non-trivial. We start by considering the fault removal 

effort (DRE), whether the faults are trivial or not. We split DRE into two parts: 

 

1) Fault diagnose effort (FDE): 
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We do not observe faults but rather their symptoms, i.e. failures. This is also 

true for the debugging process. Using fault diagnosis applied to a given failure, 

we search and determine its corresponding fault. 

 

2) Fault Correction Effort (FCE): 

 

After a failure has been diagnosed, the corresponding defect must be fixed 

or encapsulated. In addition, we must demonstrate that it has been correctly and 

completely dealt with and that the new deployable version of the software 

contains the complete correction. It is important to state that not every defect can 

be removed. For example, external errors such as data transmission errors occur 

due to unpredictable and inevitable causes. However, often it is possible to add 

redundancy (e.g. sum checks), allowing the detection of the error and, 

subsequently, to control its possible damage. Inserting the redundancy, the 

corresponding detection code and the damage handling code is what we call error 

encapsulation. 

One of the major problems with defect removal is to estimate, a priori, the 

FDE. Even though the FCE might be considerable, once the fault has been 

diagnosed, removing it corresponds to conventional software development or 

maintenance activities. Hence there is already a large amount of knowledge and 

experience regarding FCE. According to [Satpathy et al, 2004], FCE can be 

reduced using best development practices.  

Nevertheless, very little effort is being spent developing techniques 

designed to reduce the FDE, which is still very dependent on programmer skills 

and on sophisticated debugging environments. One way of reducing the FDE 

could be achieved by reducing or ideally eliminating non-trivial faults. However, 

as mentioned before, this seems to be a utopian proposal. Hence, an alternative 

would be to transform non-trivial into trivial faults. This leads to our definition of 

debuggable software: 

Debuggable software is one in which the chances of observing a non-trivial 

fault is very low. Aside from assuring that it is easy to correct the software after 

some failure, debuggable software also promotes the development of software 

containing very few defects (faults). Hence the chance for failing should be rather 

small when considering debuggable software. 
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In other words, debuggable software is explicitly developed to reduce the 

number of non-trivial faults and, consequently, contributes to reduce the Fault 

Diagnose Effort as well. Debuggable software fits the principles of recovery 

oriented software – the more debuggable it is, the more recovery oriented it is.  

One problem that could be stated is how could one assure that non-trivial 

faults do not exist. A less ambitious goal could be similar to fault-based testing 

[Morell, 1990], where the absence of a set of known classes of faults is verified by 

means of specific tests. Hence a less ambitious definition would be: Debuggable 

software is one in which the chances of observing a non-trivial fault of a given 

category is very low, approaching zero. The problem with this approach is that we 

are bound to a set of known fault categories, which, although possibly increasing 

as time passes, does not assure the absence of non-trivial errors. This approach is 

quite similar to fault-based testing [Morell, 1990]. It is beyond the scope of this 

work to detail this issue. 

How could one reduce the number of non-trivial errors (internal or external) 

without prior knowledge of the error? The key idea is to prepare the software for 

the error instant. The error instant is the very instant when an error occurs. When 

an internal defect is exercised, or when an external error occurs, an error may be 

generated. When this error is observed, we have a failure. As long as it is not 

observed, it is still an error, not a failure. Thus, we cannot diagnose errors, but 

could possibly diagnose failures. The longer the time passed from the instant the 

error is generated to the instant of its observation, the harder will be the failure 

analysis and, consequently, the greater will be the FDE. Furthermore, the damage 

provoked by the malfunction might increase considerably. The error instant is thus 

one of the most important, if not the most important, event considering the fault 

removal effort. It is the ideal instant to collect information that will help to 

identify the related faults. When debuggable software fails, it must be able to 

provide precise information about itself: 

• Information about internal state of execution: for example, allocated 

memory, variables, objects, threads, allocated resources, etc; 

• Information about the environment state of execution: for example, database 

state, established socket connections, execution logs, etc; 
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• Information about how to reproduce the failure: for example, method 

invocations stack, user interactions with the interface, etc. In non-

deterministic software (e.g., multi-threading or distributed systems), exact 

failure reproduction may be very hard or even impossible to be achieved. 

Debuggable software should help the developer to identify and isolate the 

causing thread, providing means to reproduce exactly the failure. 

 

2.3.2. 
Software Components 

Software components are widely present in current literature as a key 

technology for developing recovery oriented software [Fox and Patterson, 2002], 

[Candea and Fox, 2003], [Candea et al, 2003], [Fox, 2002], [Aghdaie and Tamir, 

2003], [Castro et al 2003], [Ponnekanti et al, 2002], [Kcman and Fox, 2004]. The 

use of software components is a key-issue for implementing some of the proposed 

techniques for improving availability, like micro-reboots [Candea et al, 2003] and 

path-based failure and evolution management [Chen at al 2004]. 

Structuring a system in small loosely coupled modules promotes: 

1. Increase of control over the development complexity, following the “small is 

beautiful” lemma [Zisman, 2009]; 

2. Increase of control over defect detection, as they will tend to be in well 

isolated points and due to a limited number of factors;  

3. Increase the chance of complete recovery in case of failures, due to the 

possibility (in many cases) of substitution of the defective components for 

new instances; 

4. Increase of software reuse, which promotes the maturity of many modules 

reducing the failure rates. 

5. It is important to notice that the concept of module, in many cases, may be 

confused with the software component concept – often, software components 

can be understood as super-modules composed of modules or other 

components. 
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2.3.3. 
Design by contract and Design for Testability 

According to [Payne et all, 1997], early adoption of some activities in the 

development lifecycle of a system is able to increase its testability. This practice is 

known as design-for-testability (or DFT), and it is well-known by the hardware 

development community [Payne et all, 1997]. It is based on the creation of 

embedded tests and measurement of pre-established parameters in order to 

facilitate the defect identification and correction in development time. DFT is 

usually used in the development of complex hardware components in order to 

guarantee their correct operation before the serial production phase, as the cost of 

a defect correction in this phase would be prohibitive. 

Design by Contract (DBC) [Meyer, 1992] follows the DFT concept. A 

contract is a formal specification of the state regarding items of the interface of an 

artifact. It refers to data, functions and methods that are visible in the interface of 

a class, component, agent or service. Abstract concepts of the artifact may also be 

used – for example, a stack may be empty or not, so a contract may use 

expressions that consider these two states. However contracts should not involve 

attributes and properties that are encapsulated in the artifact. If such items must be 

made visible they in fact correspond to interface items and, hence, should be 

described there.  

Assertions, on the other hand, are used to specify the internal state of an 

artifact. They may consider private attributes and methods. Assertions may be: 

1. Invariants that define consistency conditions for a state of one or more 

interdependent objects;  

2. Pre-conditions, that define conditions to be satisfied before activating a 

method; and 

3. Post-conditions, that precisely define what a method is supposed to do, i.e., 

the conditions to be satisfied at the end of a method execution, taking into 

consideration the different ways of terminating or suspending it. 

Assertions and contracts may also establish relations involving elapsed time 

and other measurable properties such as number of handled transactions and 

access frequencies of given attributes or methods.  
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Since assertions may involve encapsulated items as well as items that are 

visible in the interface we may conclude that contracts are a special case of 

assertions. We will use the term assertion to denote both contracts and assertions, 

except when considering explicitly contracts. Keeping up with already established 

terminology, we will use the term Design By Contract (DBC) to denote the 

specification of contracts (interface properties) as well as of assertions 

(encapsulated properties). 

Assertions can be checked at runtime, by means of specific code designed to 

check them. Such code is called executable assertion or executable contract. The 

use of assertions embedded in code is a common practice for already a long time. 

However, functions such as “assert” usually involve simple conditional 

expressions. But when verifying the correctness of data structures or of data 

collections frequently the code is far more elaborate often requiring quantifiers. 

The use of executable assertions may increase the effort spent in modeling 

and coding phases, but it reduces significantly the test and acceptance phases as it 

promotes a kind of “self-evaluation and test at runtime” [Staa, 2000; Gotlieb and 

Botella, 2003] considering the components in which they are applied. There is 

also a huge potential to reduce the effort spent in development due to incorrect, 

incomplete or inconsistent specifications, since such mistakes will become 

apparent when trying to write assertions. Another positive aspect when using 

design by contract is the increase of the efficiency in failure detection and defect 

removal at production time as well as in beta versions of the software. This is due 

to: 

1. It is highly probable that the location of the defect is limited to the lines of 

code executed from the point where assertions were checked last up to the 

point where an assertion is found to be broken (i.e. the failure is observed); 

2. The early detection of a failure by means of an assertion allows gathering 

useful information to help finding the defect. 

3. During production time, defects are prevented from being introduced due to 

the more formal approach inherent to design by contract. Thus, the software 

will contain fewer defects to start with. 

When developing a system using DBC, it is up to the client (client 

programmer, calling method, etc.) to assure that all pre-conditions are satisfied. It 
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is up to the developer of the method to assure that all invariants and post-

conditions will be satisfied. However, when designing for testability, one must 

assume that developers may not have assured these conditions, so it is necessary 

to add code to verify the contract even in parts where it could be assumed that it is 

valid. Usually, instead of assuming that all contracts are obeyed, it is assumed that 

they might not have been obeyed. This implies adding verification code at the 

beginning and immediately after the execution of a method or a function. This 

could be achieved with an instrumentation wrapper as shown in Figure 1. Since 

verifying an invariant of a large data structure might prove to be to costly, 

verifying the invariant just at the local context of the call might be sufficient in 

most cases. For example, instead of verifying a whole list, one might verify just 

the node of the list that will be handled by the specific call. 

 

 

 

Figure 1: An instrumentation wrapper encapsulating the verification 

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA



 

 

34 

 

Executable assertions may be kept in the release version as an error 

detection tool. Executable contracts may be kept in the release version for 

components that shall interact with unreliable artifacts. 

 

2.3.4. 
Mock Components 

Mock objects are a test pattern proposed in [Mackinnon et al, 2001] and 

[Hunt and Thomas, 2003] where an object is replaced by an imitation (the mock 

object) that simulates the behavior of the object during a test. In our work, we 

extended this concept to what we call mock components. These are groups of 

modules and classes that can be replaced by imitations in order to ease the test of 

other parts of a system. A mock component can be an entire subsystem, a 

component, a software agent or, in the simpler case, a single class. A mock 

component must have the same interface of the replaced element. 

Mock components could be used when one or more of the following 

conditions occur [Hunt and Thomas, 2003]:  

1. The real element has a non-deterministic behavior;  

2. The real element is hard to configure; 

3. The real element may have abnormal behavior that is hard to reproduce (for 

example, a connection error); or the test needs to simulate some form of 

malfunction 

4. The real element is too slow;  

5. The real element does not yet exist; 

6. The test needs to perform measurements such as to gather information about 

the frequency of use of the real element (for example, how many times a 

service is being used).  

The most frequent use is to obtain information about how the element is 

being used, measuring:  

1. Which services were executed during the test;  

2. How may times a service has been called;  

3. In which order a set of services has been executed;  
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4. What values were returned or passed as arguments. 

In this work mock components were used to simulate parts of the system 

that were being developed by different teams, or parts that would be developed in 

the future. Mocks were also heavily used to simulate abnormal conditions, in 

order to check if the system was really robust enough to recover from them. This 

is a possible strategy when applying the defect based test technique proposed in 

[Morell, 1990], as one can verify experimentally that a set of possible failures is 

effectively under control. 

There are some Java APIs that enable the Mock Objects mechanism like 

Easy Mock [EasyMock, 2007], JMock [JMock, 2007] and Mock Maker 

[MockMacker, 2007]. 

At first sight, a mock component may look like a simple stub, but there are 

some characteristics that make it more than just a stub [Fowler, 2007]. While a 

stub is usually used to return specific data when a service is invoked with specific 

arguments or to execute small tests, the mock is used to gather information about 

the execution of an element. In spite of this difference, tools used to generate 

mocks are usually efficient for creating stubs. 

It is important to state that the use of mock components is limited to 

development time only. 

 

2.3.5. 
Formal Methods 

Another interesting area of research dedicated to developing robust software 

is using formal methods to specify and develop systems [Sobel, 2002] [Gerhart et 

al, 1994] [Hall, 1990]. 

[Agerholm and Larsen, 1998] propose the use of “lightweight formal 

methods”. The authors use the term “light” or “lightweight” in the sense of “less-

than-completely-formal” or “partial”, where the methods can be used to perform 

partial analysis on partial specifications, without a commitment to developing and 

baselining complete, consistent formal specifications. [Fitzgerald and Larsen, 

1995] report some similar results when arguing that “proof is not often a high 

priority. Formal or rigorous reasoning were not felt to be cost-effective”. 
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Despite of the good results that have been reported in some experiments, 

some even in industry [Agerholm and Larsen, 1998] [Fitzgerald and Larsen, 

1995] [Hall, 1990], the resistance to adoption of formal methods still remains due 

to the myth of its complexity and extra costs [Holloway, 1997] [Hall, 1990]. 

 

2.3.6. 
Patterns 

A pattern is a general reusable solution to a commonly occurring problem in 

software. Design patterns deal specifically with problems at the level of software 

design. Other kinds of patterns, such as architectural patterns, describe problems 

and solutions that have alternative scopes [Gamma et al, 1995]. 

Patterns can speed up the development process by providing tested, proven 

development schemata. Effective software design and architecture require 

considering issues that may not become visible until later in the implementation. 

Reusing patterns helps to prevent subtle issues that can cause major problems, and 

it also improves code readability for coders and architects who are familiar with 

the patterns. 

In this work, some architectural and design patterns were fundamental for 

achieving the desired level of reliability. Some of them are specific for detecting 

failures; some are specific for development; some of them are destined to failure 

handling. We discuss this below. 

 

2.3.6.1. 
Design Patterns 

In this chapter, we discuss some existing design patterns that had proven to 

be useful when applied to our experiments with Recovery Oriented Software 

development. 

2.3.6.1.1. 
Adapter 

The adapter pattern, often referred to as the wrapper pattern or simply a 

wrapper, was originally thought to translate one interface for a class into a 

compatible interface [Gamma et al, 1995]. However, this concept can be extended 

to components. An adapter allows components to work together that normally 
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could not because of incompatible interfaces, by providing its interface to clients 

whilst using the original interface. The adapter translates calls to its interface into 

calls to the original interface, and the amount of code necessary to do this is 

typically small. 

Another use for the adapter pattern is to decouple the client (user of the 

services provided by a component) from the server (provider of the services) by 

defining a unique interface used by the client, which should be implemented by 

any server that is to be used. It is, during development time, suitable for creating 

mock elements that are to replace internal parts of a software. 

 

2.3.6.1.2. 
Decorator 

The decorator pattern can be used to make it possible to extend (decorate) 

the functionality of a class at runtime [Gamma et al, 1995]. This works by adding 

a new decorator class that wraps the original class. This wrapping is typically 

achieved by passing the original object as a parameter to the constructor of the 

decorator when it is created. The decorator implements the new functionality, but 

for functionality that is not new, the original (wrapped) class is used. The 

decorating class must have the same interface as the original class. 

Decorators can be used to write pre and post conditions for methods. The 

idea is to separate the method implementation, which contains the business logic, 

from the pre and post conditions. This allows for running the component with, or 

without, the verifications, (which may significantly affect runtime performance) 

and may enhance the overall quality of the design and code as it separates two 

independent concerns. 

 

2.3.6.1.3. 
Abstract Factory and Factory Method 

A factory is the location in the code at which objects are constructed. The 

intent in employing factory patterns is to insulate the creation of objects from their 

usage. This allows for new derived types to be introduced with no change to the 

code that uses the base class [Gamma et al, 1995]. 
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Factory patterns must be combined with adapters (mock elements) and 

decorators (pre and post conditions) to reduce as much as possible the need of 

writing new code. 

 

2.3.6.1.4. 
Singleton 

The singleton pattern is used to restrict instantiation of a class to a specific 

number of objects [Gamma et al, 1995]. 

Singletons must be used to restrict some classes to have a unique instance 

like loggers or failure handlers. 

 

2.3.6.1.5. 
Observer 

The observer pattern (sometimes known as publish/subscribe) allows an 

object to maintain a list of its dependents, and notifies them automatically of any 

state changes, usually by calling one of their methods [Gamma et al, 1995]. 

However, this concept can be extended to allow for the notification not only of 

state changes, but also for any relevant event that might be of interest of the 

dependents, like important method invocations, current state (and not only state 

changes) or identified failures at runtime. 

Observers can be used to write failure detectors and failure handlers. For 

example, imagine a situation where a method that accesses a specific database 

table is invoked. This method may have a method execution observer, which 

concerns are related to guaranteeing that the database is consistent. If any database 

inconsistency is detected, some cleanup must be executed and, if the problem may 

be fixed, the execution can continue normally, without any knowledge of the 

called method. However, if the problem cannot be properly fixed, it may be a 

good idea to terminate the feature execution. This can be achieved by raising an 

exception. If the problem is too serious, software termination can be also 

considered as a plausible solution, in order to avoid further damage. The piece of 

code below illustrates this situation. 
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-- Interface for the observer 

public interface Observer 

{ 

   void reportDatabaseAccess(); 

} 

--- Class that uses the database 

private void reportDatabaseAccess() 

{ 

for ( Iterator<Observer> it = observers.iterator(); 

it.hasNext(); ) { 

      it.next().reportDatabaseAccess(); 

   } 

} 

 

public void addUser( User user ) throws InvalidDBStateException  

{ 

   reportDatabaseAccess(); 

   // add user 

} 

 

public void removeUser( User user ) throws InvalidDBStateException  

{ 

   reportDatabaseAccess(); 

   // remove user 

} 

 

public void updateUser( User user ) throws InvalidDBStateException  

{ 

   reportDatabaseAccess(); 

   // update user 

} 

It is important to notice that failure detectors and failure handlers written as 

observers completely separate business logic from failure detection/handling 

concerns, and may also promote reuse of code – consider again the example of the 

database access. This code can be used throughout the software, in any place 

where a database access occurs. If the database is too large, it is also possible to 

write specific table verifications, which shall be invoked whenever necessary. 

Observers can also be very useful for logger implementations. 
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2.3.6.1.6. 
Memento 

The memento pattern provides the ability to restore an object to a previous 

state [Gamma et al, 1995]. Even though it is primarily used for undo purposes, 

mementos may be very useful for recovery code of operations that change the 

state of many objects.  

Imagine data acquisition software that has to perform the following 

operations: 

• Acquire data from a set of sensors of different types: ultrasound levels, 

magnetic fields, geometric profiles, temperature and pressure levels; 

• Give these data to handlers that shall perform operations on these 

values. A handler may perform operations with more than one type of 

value, and should also define its internal state according to the values 

received. 

Consider that these values are only meaningful if used together – this means 

that, if a failure is detected in one handler, all data should be discarded. A way to 

implement this is using the memento pattern for the handlers. 

Before initiating the refresh process, a memento for each handler should be 

created. If any inconsistency is detected, for example, by raising an exception, the 

previous state must be restored. The following piece of code illustrates the 

proposed solution:  

 

public void newSample( Sample sample ) throws 

InvalidSampleException { 

   Map<Handler, Memento> m = new HashMap<Handler, Memento>(); 

   try { 

      for ( Iterator<Handler> it = handlers().iterator(); 

 it.nasHext() ; ) { 

         Handler h = it.next(); 

         m.add( h, h.getMemento() ); 

         h.newSample( sample ); 

      } 

   } catch ( InvalidSampleException ex ) { 

      for ( Iterator it = m.keys().iterator(); it.nasHext() ; ) { 

         Handler h = it.next(); 

         h.setMemento( m.get( h )); 
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      } 

      throw ex; 

   }  

} 

 

This guarantees that not only a valid state for the handlers shall be 

maintained, but also that the invalid sample event will be reported (by raising an 

exception). 

 

2.3.6.2. 
Architectural Patterns 

In this chapter, we discuss some new and existing architectural patterns that 

had proven to be useful when applied to our experiments with Recovery Oriented 

Software development. 

 

2.3.6.2.1. 
Watchdog 

A watchdog is a component that has its own thread of execution and 

constantly checks for specific conditions, which indicate that the overall system is 

working properly. If any invalid condition is detected, actions in order to restore 

proper system execution must be carried out. For example, restarting affected 

components, or even restarting the whole system. A watchdog must never hang 

due to errors, and must be simple enough to be reliable. 

The general structure for a watchdog is as follows: 

public class Watchdog extends Thread 

{ 

   public void run() 

   { 

      while ( systemRunning() ) { 

         if ( !check_conditions_ok() ) { 

            fix(); 

         } 

         sleep_for_some_time(); 

      } 

   } 

} 
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It is important to state that the fix, systemRunning and 

check_conditions_ok methods must be simple enough in order to guarantee that 

the watchdog itself is not going to hang. Another important issue is that a software 

watchdog heavily relies on operation systems reliability to properly work. 

A watchdog may have to check structures that are under constant evolution. 

This implies that some sort of synchronization between the watchdog and 

methods that change the structure must me implemented. This may impose a 

challenge: if the structure is big, simply locking it for reading or writing may have 

significant impact on the overall performance of the system. A way to avoid this 

is to break the watchdog into small pieces, each one responsible for checking a 

specific part of the structure. Methods that change the structure must them inform 

the watchdog whenever they are executing, and this can be done by setting a 

“dirty bit”. This requirement must be well documented so that developers follow 

it. 

A watchdog may be implemented completely within the software, but also 

with some part outside it by means of an external hardware. A very simple 

watchdog can be built with a hardware based on a 74423 TTL monostable [TTL, 

2008], in such a way that: 

1) The monostable signal pin is connected to a processor reset pin; and 

2) The system constantly triggers the monostable clock. 

If the software hangs, the monostable will not be triggered and after some 

(pre-defined) time, the processor will be reset. Note that this hardware 

implementation replaces the software watchdog component. 

Simple watchdogs can be easily used with stateless systems, as this kind of 

system can be restarted without the need of any further state restoration. 

An important issue to address is that watchdogs must be as simple as 

possible. This will reduce the chances of faults due to code complexity. 

 

2.3.6.2.2. 
Secure state change 

The secure state change guarantees that after a series of complex (and 

maybe tied) operations, either a valid state is achieved, or the previous valid state 
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is restored. If any of the operations fails, the complete process is rolled back to the 

previous valid state. 

The general structure for a secure state change is as follows: 

 

--- Interface for the handler. 

public interface Handler 

{ 

   public Memento getMemento(); 

   public void setMemento(); 

} 

--- Method that encapsulates some complex operations. 

--- Imagine that there are n handlers to perform complex 

operations. 

public void complexOperations( Parameter parameter ) 

throws InvalidParameterException { 

   Map<Handler, Memento> m = new HashMap<Handler, Memento>(); 

   try { 

         m.add( handler_1, handler_1.getMemento() ); 

         h_1.doComplexOperation(parameter); 

         m.add( handler_2, handler_2.getMemento() ); 

         h_2.doAnotherComplexOperation(parameter); 

         m.add( handler_3, handler_3.getMemento() ); 

         h_3.doAThirdComplexOperation(parameter); 

         (…) 

         m.add( handler_n, handler_n.getMemento() ); 

         h_n.doLastComplexOperation(parameter); 

      } 

   } catch (InvalidParameterException ex) { 

      for ( Iterator it = m.keys().iterator(); it.nasHext() ; ) { 

         Handler h = it.next(); 

         h.setMemento( m.get( h )); 

      } 

      throw ex; 

   }  

} 

This guarantees that not only a valid state for the system is maintained, but 

also that the invalid parameters will be reported (by raising an exception). Note 

that this architectural pattern is instantiated in the Design Patterns section, 

illustrating the use of Memento pattern. 
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2.3.6.2.3. 
Dirty row flag 

The idea with the dirty row flag is to mark bad records in a database so that 

they will not be used under normal software use. 

The general structure for this is to add a specific column in tables to mark 

the bad records. Every query executed to retrieve data from these tables must then 

include the state of this column, so that no broken information is retrieved during 

normal runtime operation (but allowing further retrieve for other purposes, as 

discussed below). This can be easily done either manually, or with the aid of some 

relational-object mapping framework like Hibernate [Hibernate, 2008]. 

The dirty columns must be marked by a database integrity verifier. They can 

be further examined for two main purposes: 

Restore information, avoiding loss of work; and 

Identify and correct software bugs that led to the inconsistent state. 

 

2.3.6.2.4. 
Application restarter 

This strategy is proposed in [Fox, 2002], but without the status of an 

architectural pattern. It consists in restarting software from time to time, as an 

efficient way to improve availability. This is an interesting claim if we understand 

it as a way to say that “it is very hard, with the tools and techniques available at 

the present time, to build a system that executes forever”. Restarting a system can 

be a simple and efficient way to free leaked resources, especially those not 

allocated by application code. Consider a system written in Java that runs on a 

virtual machine. The virtual machine may fail to release resources already 

released by an application’s code. This is also true if a 3
rd

 party library is used – 

no one can guarantee that it is free of leakages. 

 

2.3.6.2.5. 
Inverse function 

 “Inverse functions” can be used to double check results. For example, 

consider a case where a color chart for thirty channels acquired from a specific 
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inspection tool must be drawn in a window, where each row of the window refers 

to a specific channel, and each group of columns represent a time position. 

Consider that a click on a window must give the value of the channel drawn on 

the clicked position. A way to implement this is to create a pair of functions to 

map a pixel to a channel (pixelToChannel) used for the click process, and a 

channel to its pixel (channelToPixel) used for channel drawing. It is easy to notice 

that, for a given channel c: 

pixelToChannel(channelToPixel(c)) = c 

And that, for a given pixel p: 

channelToPixel(pixelToChannel(p)) = p 

This condition could be used to generate code that, in both functions, 

invokes the inverse one in order to verify consistency. A way to avoid an infinite 

loop would be to create two auxiliary functions, with private scope, that calculate 

the values, and two public functions, that check for the conditions: 

 

int channelToPixelInternal( int c ) { 

  // calculate the pixel p 

   return p; 

} 

 

int channelToPixel( int c ) { 

   int p = channelToPixelInternal( c ); 

   int calcC = pixelToChannelInternal( p ); 

   if ( calcC != c ) { 

    // error! 

   } 

   return p; 

} 

 

int pixelToChannelInternal( int p ) { 

  // calculate the channel c 

   return c; 

} 

 

int pixelToChannel( int p ) { 

   int c = pixelToChannelInternal( p ); 

   int calcP = channelToPixelInternal( c ); 
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   if ( p != calcP ) { 

      // error! 

   } 

   return c; 

} 

 

Sometimes, there is no need for the inverse function, from the functional 

requirements point of view – this is true when one side for the conversion is not 

required. Even on such occasions, it might be interesting to write the function, for 

consistency check. 

 

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA




