
1

Introduction

When examining processes and software development environments

currently being used, one may observe that, although there is a large number of

tools and techniques available to develop software, most of the effort (specially

code writing) is still essentially manual. Hence, there is a great chance of

development errors due to human mistakes. Furthermore, even perfect software

might fail due to hardware or platform failures or due to human usage errors

[Brown et al, 2005]. Software failures are particularly critical in cases where a

system requires a high level of dependability, as is the case of non-internet based

applications like embedded systems, supervisory systems, process control

systems, and also internet-based applications like e-commerce or e-banking

systems.

Recovery oriented systems are built with the perspective that hardware

failure, software defects and operation mistakes are facts to be coped with, not

problems that could be completely prevented at development time [Fox, 2002;

Brown et al, 2002]. The recovery oriented software axioms are the following:

1. It is impossible to build defect-free software, and if we would succeed in

doing so we would not be able to know it.

2. It is not allowed to assume that software, even if perfect, will not be affected

by external issues, such as hardware or platform failure, user interaction

errors, or even environmental issues.

3. It is not allowed to assume that one can foresee all possible failures that

software might display.

4. Some failures can be tolerated to some extent, as long as their consequences

are assuredly below an acceptable threshold.

For the purpose of this work, a software defect, or simply defect, is a code

fragment that, when exercised in a certain way, generates an error. An error is an

unacceptable state with respect to the specification or the real world with which

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

14

the software interacts or which it replicates or simulates. Errors may also be due

to external sources, such as machine failure, operating system failure, or usage

failures among many others. A failure is an error that has been observed by some

means [Avizienis, 2004]. A defect or external error source, i.e. an exogenous

error, is said to be encapsulated if it still remains in the artifact but is controlled in

such a way that its consequences are acceptable. Examples are controls that

observe and adequately handle transient failures.

It may be argued that exogenous errors that go undetected are also a form of

software defect. As a simple example, take an input buffer. During normal use the

buffer is never overrun, hence no error occurs. However, if due to some human

error or intention an excessively long string is inserted, buffer overrun may occur,

unless the software contains some form of overrun control. Not containing this

control is clearly a defect.

It follows that the objective of software development must not just be to

assure that it is free from defects (absolute defect prevention), but it should also

encompass developing a system for which the risk of run-time failures and their

consequences are acceptable. It is important to notice that the causes of the

failures that might happen (either during development time or during usage) are

unknown; otherwise the defects could have been removed or at least encapsulated.

In response to a failure, it must be possible for a user to quickly resume his/her

work [Fox, 2002; Brown et al, 2002]. This means that a recovery oriented system

must minimize downtime time intervals that are due to failures. This is

particularly important in systems for which unavailability or malfunction might

represent an unacceptable potential damage, like embedded systems, e-commerce

systems and e-banking systems, just to mention a few.

The risk and the nature of acceptable failures are a function of the

requirements and the application domain of the system under development.

Among others, factors that affect this identification are: risk of loss of life, serious

damage to equipment, or to the business. Other factors are loss of work and time

to restore the state of the system to a correct state with minimal loss of performed

work.

However, in addition to restoring the system to a valid state as quickly as

possible, it is necessary to properly identify and remove or encapsulate the causes

of the failure, i.e. it is necessary to perform corrective maintenance. This will

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

15

reduce the risk of the same cause provoking a failure in the future. However, a

failure might have a number of causes, such as coding or design mistakes,

software misuse or transient hardware malfunction. Failures can also be caused by

accidental situations, without a specific location; for example, magnetic fields or

radiation may induce hardware malfunction. This shows the importance of

creating mechanisms to quickly detect and assure that the damage will remain

below acceptable limits as is usual in defect tolerant systems [Avizienis et al,

2004] [Pullum, 2001]. Different from these, however, is the need to quickly

identify and remove the defect, and redeploy the corrected system.

Recovery oriented software must focus on the following issues [Fox, 2002;

Brown et al, 2002]:

1. Minimize the risk of the software containing defects, i.e. endogenous error

sources;

2. Minimize the impact of exogenous error events;

3. Reduce the mean time to repair and redeploy (MTRP);

4. Reduce the mean time to recover (MTTR);

5. Minimize the consequences of failures.

By MTRP we mean the time elapsed since identifying the failure until its

complete removal from the software, with a new deployed version. By MTTR we

mean the time elapsed since the moment when the failure occurred until the

moment the service is restored (completely or partially) in a dependable way.

Another important consideration is the mean time to fail of an application

(MTTF). However, [Fox and Patterson, 2002] show that, from a user’s point of

view, it is better to reduce the MTTR than to enhance the MTTF.

1.1.

Main Goals

This work focuses on preventing defects in a system, controlling external

defects, reducing the MTTR and enabling fault tolerance in a system. The existing

proposed solutions are quite complex and have a high cost of implementation. We

look for a simpler alternative that would be easier and cheaper to implement.

We have two major goals in mind:

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

16

• Goal 1: should the software fail, it should be possible to put it back into

dependable operation in a very short amount of time, even if the

functionality has to be slightly reduced (graceful degradation).

• Goal 2: should the software fail, it should take a short time to diagnose the

cause and it should also be possible to correctly remove or encapsulate the

defect and redeploy the software in an acceptable short amount of time.

• Goal 3: use existing software development techniques. We wish to show

enough evidence that there are sufficient available technologies to build

software that meet goals one and two.

We propose the systematic and combined use of well-known software

development techniques and tools, like software components, formal methods,

mock components and existing design patterns. By doing this, we are

complementing the problem of developing defect tolerant systems with the

requirement of generating recovery oriented software. However, it is important to

bear in mind that we do not intend to propose a new, or the modification of an

existing, software development process.

The key idea is to show that development of recovery oriented software

does not impose a prohibitive effort overhead, with the benefit of generating

software that can co-exist with a set of failures, i.e., software that is more reliable.

By co-existing, we mean reducing the damage and consequences of a failure

below acceptable levels, in such a way that a user can continue to use the software

with little effort after a failure has been identified and the system recovered.

The first step towards recovering from a set of failures is to create means to

properly:

• Identify a failure that displays specific characteristics;

• Isolate the failure within a limited set of components of the system so that, if

possible, they can be recovered;

• Identify potential damages due to the failure;

• Generate useful debugging information (that will be used to locate and fix

the defect(s) that originated the failure).

Only then it is possible to run recovery code. Recovery code must:

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

17

• Tell the user the nature of the failure (this may not happen synchronously,

for example, a log may be generated to be examined later);

• Take the system to a valid state of execution (termination of the software

can be considered a valid state of execution and may be considered a

recovery code, depending on the system).

Recovery code may:

• Terminate the set of components found defective (in order to continue

system execution in a degraded way);

• Restore the set of components found defective (in order to continue system

execution smoothly);

• Restore as much as possible damages caused by the failure;

• Isolate the damages caused by the failure, so that the system does not use

such pieces of information.

Our work intends to study and develop techniques to achieve all these

mentioned requirements.

1.2.

Evaluation Methods

We shall apply the ideas and concepts presented in this work to the

development process of five different real world systems from various domains,

and by measuring the overall performance of the development teams, the total

effort spent, and the results for the generated software, we will be able to infer the

effectiveness of the proposed techniques. All of the systems must have at least the

following characteristics:

• Cannot be a simple information system; we are interested in active systems

that control, monitor or interact directly with other systems or hardware.

This does not mean that an observed system cannot have some part purely

dedicated to storing and organizing information, but this part cannot be the

main purpose of it;

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

18

• Teams must have different programmers; However, this restriction shall

now be applied to software engineers to whom we expect to spread the

culture of using the techniques;

Every system will be developed using a subset of tools, processes and

techniques explained in previous sections of this document. The languages used

for the system must be C, C++ or Java. The development of each system will be

monitored, and the following metrics must be measured:

• Time spent for modeling the whole system; this includes the architectural

and project phases, but does not include the requirements definition phase;

• Time spent for coding the whole system;

• Number of lines of code; number of lines of code dedicated to failure

detection (assertions); number of lines of code dedicated to failure recovery:

for these metrics to be reliable, every project will use the same code

conventions;

• Number of failures detected by assertions in simulated production

environment during the test phase; time spent to fix these failures; time

spent for the software to recover from the failure, from a user’s point of

view, if applicable;

• Number of failures not detected by assertions in simulated production

environment during the test phase; time spent to fix these failures; time

spent for the software to recover from the failure, from a user’s point of

view, if applicable;

• Number of failures detected by assertions in the acceptance test phase

(controlled production environment); time spent to fix these failures; time

spent for the software to recover from the failure, from a user’s point of

view, if applicable;

• Number of failures not detected by assertions in the acceptance test phase

(controlled production environment); time spent to fix these failures; time

spent for the software to recover from the failure, from a user’s point of

view, if applicable;

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

19

• Number of failures reported while in production considered light (i.e., no

loss of work, recovery limited just to running the system again); time spent

to fix these failures; time spent for the software to recover from the failure,

from a user’s point of view, if applicable;

• Number of failures reported while in production considered serious (i.e.,

loss of work, recovery not limited just to running the system again); time

spent to fix these failures; time spent for the software to recover from the

failure, from a user’s point of view, if applicable;

• Time for “system stabilization” (i.e., time for the number of failures

reported coming to acceptable levels);

• Total development time;

These metrics shall be measured with the help of tools, like time trackers

and issue trackers. The obtained results will be compared to those present in the

literature, as there are no available resources to adopt different development

strategies for the same system.

We intend to collect enough evidence to show that our approach

successfully generates software that can recover from a previously defined set of

failures, with the drawback of a controlled development overhead, what makes a

feasible adoption for the industry, which means keeping development costs,

diagnosis costs, correction costs, restarting after failure costs, restarting after

correction costs, damages etc. all under control. One interesting consequence of

such an approach is kind of a “risk based development technique”, in which the

risks of a given set of failures to be observed can be estimated and controlled.

1.3.

Document Structure

The next chapters are the following:

2) Concepts and Technologies: details the concepts and technologies used in

the work.

3) Combining Technologies to Develop Reliable Software: presents the key

ideas of the thesis proposal.

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

20

4) Recovery Techniques: discusses some ideas and techniques used to recover

from failures detected during runtime.

5) Experiments and results: presents results from the application of the ideas

to real world software.

6) Discussion: comparison with some related work found in the state-of-the-

art literature and the work presented in this document.

7) Conclusions, contributions and future work: discusses the conclusions and

some contributions for this work, and proposes some possible future work

derived from the thesis results.

8) References: presents the references used in this work.

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

