Patrick Paquelet Pereira

Estudo experimental da redução de atrito em escoamentos em dutos por adição de polímero

DISSERTAÇÃO DE MESTRADO

DEPARTAMENTO DE ENGENHARIA MECÂNICA

Programa de Pós Graduação em Engenharia Mecânica

Patrick Paquelet Pereira

Estudo experimental da redução de atrito em escoamentos em dutos por adição de polímero

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC - Rio.

Orientador: Prof. Luis Fernando A. Azevedo

Patrick Paquelet Pereira

Estudo experimental da redução de atrito em escoamentos em dutos por adição de polímero

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Luis Fernando A. Azevedo

Orientador

Departamento de Engenharia Mecânica – PUC-Rio

Prof. Mônica Feijó Naccache

Departamento de Engenharia Mecânica – PUC-Rio

Prof. Márcio da Silveira Carvalho

Departamento de Engenharia Mecânica – PUC-Rio

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 14 de setembro de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador

Patrick Paquelet Pereira

Graduou-se em Engenharia Mecânica na Universidade Federal do Rio de Janeiro – UFRJ em 2004

Ficha Cartográfica

Pereira, Patrick Paquelet

Estudo experimental da redução de atrito em escoamentos em dutos por adição de polímero / Patrick Paquelet Pereira ; orientador: Luis Fernando A. Azevedo. – 2009.

83 f.: il.; 30 cm

Dissertação (Mestrado em Engenharia Mecânica)—Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Redução de atrito. 3. Atrito. 4. Perda de carga. 5. PIV estereoscópico. 6. SPIV. 7. Escoamento em duto. I. Azevedo, Luis Fernando A. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

Agradecimentos

Ao meu orientador Luis Fernando Azevedo, pela grande ajuda, confiança, paciência e incentivos no decorrer da elaboração deste trabalho.

Aos amigos do Laboratório. Em especial ao Léo e ao Júlio, pelo apoio durante a realização dos experimentos.

À minha mulher, Cris, que conheci pouco antes do início das aulas e acompanhou toda a jornada sempre me dando força para prosseguir.

Ao meu pai e minha mãe, que ao longo destes anos, não me deixaram esquecer nem mesmo por uma semana das minhas obrigações em relação ao mestrado.

À minha querida irmã, que ainda está concluindo sua monografía e perdeu nossa aposta!

E finalmente à minha filha... que nasceu no meio deste processo, ainda não anda, não fala e, apesar do trabalho e das noites mal dormidas, me deu força e me faz querer ser melhor.

Resumo

Pereira, Patrick Paquelet; Azevedo, Luis Fernando Alzeguir. **Estudo experimental da redução de atrito em escoamentos em dutos por adição de polímero.** Rio de Janeiro, 2009. 83p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O presente trabalho descreve os experimentos realizados para estudar os efeitos da adição de polímeros sobre os perfis de velocidade de um escoamento turbulento desenvolvido. O objetivo é estudar os mecanismos de redução de arraste observando os efeitos causados nos perfis de velocidade e intensidade de turbulência utilizando a velocimetria por imagem de partículas (PIV) na sua forma estereoscópica como técnica experimental para medição do campo completo de velocidade tri-dimensional. Para a realização dos experimentos foi especialmente projetada e construída uma seção de testes que permitisse a realização de medidas de queda de pressão, além da medição de velocidades utilizando a técnica óptica SPIV. Conseguiu-se uma redução no atrito da ordem de 50% antes da degradação do polímero. Foi possível mostrar que o efeito da redução de arraste pela adição de polímeros depende diretamente do número de Reynolds do escoamento. Para Reynolds baixo ($< 10^3$) não foi observada redução na perda de carga. No campo médio de velocidades foi observado um alargamento da camada de transição para o escoamento com a adição de polímeros, gerando um deslocamento do perfil de velocidades na região logarítmica.

Palavras-chave

Redução de atrito; atrito; perda de carga; PIV estereoscópico; SPIV; escoamento em duto.

Abstract

Pereira, Patrick Paquelet; Azevedo, Luis Fernando Alzeguir. **Experimental study of drag reduction in pipe flow with polymer additive.** Rio de Janeiro, 2009. 83p. MSc. Dissertation — Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

The present work is an experimental study of the characteristics of a drag reduced turbulent pipe flow. The main goal of the study is to measure the differences in the mean velocity and turbulence profiles between the Newtonian flow and the drag reduced flow using the stereoscopic particle image velocimetry (SPIV). It has been designed and built a loop test to perform the experiments. The loop test should allow the measurement of the pressure drop and the velocity field with the SPIV. It has been achieved a drag reduction of 50% before the polymer degradation. It was shown that drag reduction strongly depends on the Reynolds number. For low Reynolds number ($<10^3$) there was no drag reduction. In the mean velocity field it has been seen that the buffer layer is thickened, with causes an upward shift of the logarithmic profile for the drag reduced flow.

Keywords

Drag reduction; stereo PIV; SPIV; pipe flow.

Sumário

1 Introdução	14
1.1 Motivação	14
1.2 Objetivo	15
	4-
2 Histórico e revisão da literatura	17
2.1 Histórico	17
2.2 Revisão conceitual	18
2.3 Revisão bibliográfica	21
3 Técnicas de medição do escoamento	28
3.1 Velocimetria por Imagem de Partículas – PIV	29
3.1.1 Técnica PIV Estereoscópica	31
4 Descrição dos experimentos	34
4.1 Seção de testes	34
4.1.1 Seção de visualização	36
4.1.2 Caixa de entrada	37
4.1.3 Estrutura de fixação	38
4.1.4 Medida de pressão	39
4.1.5 Bomba	42
4.1.6 Controle de vazão	42
4.1.7 Medida de vazão	43
4.1.8 Medida de campo de velocidade	43
4.2 Polímero redutor de atrito	44
4.2.1 Degradação do polímero	44
5 Procedimento experimental	46
5.1 Procedimentos preliminares	46
5.2 Preparação do polímero	47

5.2.1 Medição da viscosidade	48
5.3 Partida da bomba	48
5.4 Procedimento para calibração das imagens.	49
6 Resultados	52
6.1 Validação da seção de testes	52
6.1.1 Fator de atrito	52
6.1.2 Perfis de velocidade média	55
6.1.3 Perfis de grandezas turbulentas	61
6.2 Efeito da adição do polímero na queda de pressão	65
6.3 Perfis de velocidade do escoamento com a adição de polímeros	68
6.4 Perfis de turbulência com a adição de polímeros	71
7 Conclusão	79
8 Referências bibliográficas	82

Lista de figuras

Figura 2.1 – Redução no fator de atrito em função do Reynolds	
apresentada por den Toonder [5].	19
Figura 2.2 – Comparação entre a estrutura do escoamento	
turbulento próxima à parede para escoamento sobre placa plana	
para água sem a adição de polímero (a) e água com a adição de	
polímero (b). Medições realizadas com a técnica PIV e obtidas do	
trabalho de White [4] .	23
Figura 2.3 – Esquema da estrutura básica de uma molécula de	
polímero sujeita a deformação (retirada de White [4])	24
Figura 2.4 – Representação largamente aceita como o provável	
mecanismo de formação dos streaks. (retirada de Hoyt [9])	24
Figura 2.5 – Perfis médios de velocidade experimentais e teóricos	
(retirada de Procaccia [11]).	26
Figura 3.1 – Ilustração da técnica de Velocimetria por Imagem de	
Partículas. (fonte:http://www.dantecdynamics.com)	30
Figura 3.2– SPIV – Cálculo do deslocamento da partícula	32
Figura 3.3 – Alvo de calibração utilizado.	32
Figura 3.4 – Imagem do alvo de calibração. (a) imagem original. (b)	
imagem após o processo de distorção	33
Figura 4.1 – Esquema da seção de testes construída para a	
realização dos experimentos.	35
Figura 4.2 – Seção de visualização octogonal em acrílico.	37
Figura 4.3 – Caixa de entrada	38
Figura 4.4 – Esquema da estrutura da seção de testes	39
Figura 4.5 – Tomadas de pressão e vaso seletor	40
Figura 4.6 – Ilustração do manômetro tipo "U" invertido	41
Figura 4.7 – Ilustração do sistema de controle de vazão	42
Figura 4.8 – Posicionamento das câmeras, laser e seção de	
visualização na bancada de testes	43

Figura 4.9 – Esquema da cadeia do polímero Superfloc A110.	44
Figura 4.10– Queda na eficiência da redução do atrito do polímero	
poliacrilamida para uma vazão constante.	45
Figura 5.1 – Curva de viscosidade x temperatura para o solvente	
puro e para a solução do polímero superfloc A110 a 20ppm.	48
Figura 6.1 – Distribuição de pressões ao longo da seção de testes	
para Re = 4,38 x 104.	53
Figura 6.2 – Comparação dos fatores de atrito previstos pela	
equação de Blasius com as medições realizadas para a faixa de	
Reynolds investigada. O fluido de trabalho é a água sem polímero.	55
Figura 6.3 – Campo tri-dimensional, instantâneo de velocidade para	
Re = 4,2 x 104. A região azul em torno se localiza fora da seção de	
escoamento do tubo, devendo, portanto ser desconsiderada.	56
Figura 6.4 – Campo tridimensional médio de velocidade para Re =	
4,2 x 104.	57
Figura 6.5 – Perfis adimensionais de velocidade axial, \overline{W} / \overline{W} máx,	
em função de r/D para diversos valores do número de Reynolds. A	
coordenada radial, associada ao eixo Y, representa a distância do	
ponto até o centro do tubo.	58
Figura 6.6 – Perfil médio adimensional de velocidades medido com	
PIV para Reynolds igual a 5,5 x 103 e 1,1 x 104.	60
Figura 6.7 – Campo instantâneo de velocidade medido em regime	
turbulento em uma seção da tubulação para Re = 4,2 x 104.	62
Figura 6.8 – Perfil de tensões para Reynolds de 1,10 x 104. A reta	
cheia representa a regressão linear da tensão total enquanto que as	
retas tracejadas apresentam os limites da inclinação da tensão total.	64
Figura 6.9 – Perfis de velocidade turbulenta para Reynolds de 1,10 x	
104. O Fluido de trabalho é água sem polímero.	65
Figura 6.10 – Gráfico de f contra Re com resultados experimentais	
para água, solução (superfloc A110 a 20ppm) e teóricos para água	
pura (Blasius).	68
Figura 6.11 – Perfis médios adimensionais de velocidade axial,	
\overline{W} / \overline{W} máx, em função de r/D para água pura e solução com	

69
70
71
72
73
74
75
76
78

Lista de Símbolos

- Diâmetro interno do tubo da seção de testes [mm]
- A Área da seção circular da tubulação [mm²]
- L Distância entre as tomadas de pressão [m]
- Número de campos de velocidade instantânea utilizados nas estatísticas
- Q Vazão volumétrica [l/min]
- ΔP Diferença de pressão [kPa]
- r Coordenada radial a partir do centro da tubulação [mm]
- Re Número de Reynolds
- f Fator de Atrito
- DR_O Redução de atrito à vazão constante
- *DR*_P Redução de atrito à pressão constante
- *DR_{Re}* Redução de atrito à Reynolds constante
- U Velocidade instantânea na direção X [m/s]
- \overline{U} Velocidade média na direção X [m/s]
- u' Flutuação de velocidade instantânea na direção X [m/s]
- u'_{RMS} Velocidade turbulenta na direção X [m/s]
- V Velocidade instantânea na direção Y [m/s]
- \overline{V} Velocidade média na direção Y [m/s]
- ν' Flutuação de velocidade instantânea na direção Y [m/s]
- v'_{RMS} Velocidade turbulenta na direção Y [m/s]
- W Velocidade axial instantânea [m/s]
- \overline{W} Velocidade axial média [m/s]
- w' Flutuação de velocidade axial instantânea [m/s]
- w'_{RMS} Velocidade turbulenta axial [m/s]
- $W_{m\acute{e}d}$ Velocidade axial média na seção [m/s]
- W^{+} Velocidade axial em coordenadas de parede
- $\overline{v'w'}$ Tensão de Reynolds

- u_{τ} Velocidade de atrito
- y^+ Coordenada y em unidades de parede

Símbolos Gregos

- θ Coordenada circunferencial
- α Ângulo de inclinação do manômetro
- μ Viscosidade dinâmica do fluido [Pa.s]
- v Viscosidade cinemática do fluido [m²/s]
- ρ Massa específica [kg/m3]
- $\tau_{\scriptscriptstyle W}$ Tensão na parede [Pa]
- τ_{Re} Tensão de Reynolds [Pa]
- τ_v Tensão viscosa [Pa]