

Roberto da Fonseca Junior

Medição do Campo Instantâneo de Velocidade do Líquido no Escoamento Bifásico Intermitente em Tubos Horizontais e Inclinados

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Luis Fernando Alzuguir Azevedo

Rio de Janeiro Setembro de 2009

Roberto da Fonseca Junior

Medição do Campo Instantâneo de Velocidade do Líquido no Escoamento Bifásico Intermitente em Tubos Horizontais e Inclinados.

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Luis Fernando Alzuguir Azevedo
Orientador
Pontifícia Universidade Católica do Rio de Janeiro

Prof. Geraldo Afonso Spinelli Martins Ribeiro
PETROBRAS

Prof. Sidney StuckenbruckOlympus Software Científico e Engenharia

Dr. José Roberto Fagundes Netto PETROBRAS

Prof. José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 03 de setembro de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Roberto da Fonseca Junior

Graduou-se em Engenharia Química na Universidade Federal do Rio de Janeiro e especializou-se em Engenharia de Petróleo na Petrobras, onde trabalha com Garantia de Escoamento e Escoamento Multifásico.

Ficha Catalográfica

Fonseca Junior, Roberto da

Medição do campo instantâneo de velocidade do líquido no escoamento bifásico intermitente em tubos horizontais e inclinados / Roberto da Fonseca Junior; orientador: Luis Fernando Alzuguir Azevedo. – 2009.

206 f.: il. (color.); 30 cm

Dissertação (Mestrado em Engenharia Mecânica)—Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

Engenharia mecânica – Teses. 2. Escoamento intermitente. 3. Velocimetria por imagem de partículas. 4.
 Escoamento bifásico. I. Azevedo, Luis Fernando Alzuguir.
 II. Pontifícia Universidade Católica do Rio de Janeiro.
 Departamento de Engenharia Mecânica. III. Título.

CDD: 621

Agradecimentos

Ao Professor Luis Fernando A. Azevedo pela orientação e dedicação que contribuíram para o sucesso no desenvolvimento deste trabalho.

Aos meus pais, os quais exerceram papel fundamental na minha educação e na formação do meu caráter.

À minha esposa Renata pelo amor, compreensão e solidariedade que me deram força para superar todas as dificuldades ao longo deste período.

À Petrobras pelo patrocínio e à PUC-Rio pela infra-estrutura, sem os quais este trabalho não poderia ter sido realizado.

Aos amigos que conquistei no laboratório de Engenharia Mecânica, pela disposição em ajudar em todos os momentos.

Aos meus colegas da Petrobras pelo companheirismo e ajuda diária.

Resumo

Fonseca Jr, Roberto; Azevedo, Luis Fernando A. Medição do Campo Instantâneo de Velocidade do Líquido no Escoamento Bifásico Intermitente em Tubos Horizontais e Inclinados. Rio de Janeiro, 2009. 206p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

No presente trabalho foi realizado um estudo experimental sobre escoamento bifásico em regime intermitente através de tubos horizontais e de pequena inclinação, com o objetivo de determinação dos campos de velocidade instantâneos nas regiões a montante do nariz, a jusante da cauda das bolhas de gás, assim como na região do filme de líquido sob as bolhas. Foi implementada uma combinação de três técnicas ópticas não invasivas. Velocimetria por Imagem de Partículas bi-dimensional (Particle Image Velocimetry - PIV) foi utilizada para determinar os campos de velocidade instantâneos nas regiões de interesse, enquanto luz de fundo pulsada e sincronizada proveniente de uma matriz de LED's vermelhos iluminava os contornos das bolhas aumentando o contraste das interfaces líquido-gás (Pulsed Shadow Technique - PST). Uma técnica baseada na fluorescência induzida por laser foi utilizada (Laser Induced Fluorescence - LIF) para separar a luz verde intensa proveniente do laser associado à técnica PIV. Os testes foram conduzidos em seção transparente tendo água e ar como fluidos de trabalho. Os resultados obtidos revelaram informações detalhadas sobre o escoamento de líquido no escoamento intermitente. Foram produzidos também resultados estatísticos de algumas variáveis globais do escoamento como, a velocidade e os comprimentos das bolhas e pistões de líquido, além da frequência de passagem desta estruturas do escoamento.

Palavras-chave

Escoamento Intermitente; Análise Estatística; Velocimetria por Imagem de Partículas; Escoamento Bifásico; Campo de Velocidade.

Abstract

Fonseca Jr, Roberto; Azevedo, Luis Fernando A. Instantaneous liquid velocity field measurements in two-phase intermittent flow through horizontal and inclined pipes. Rio de Janeiro, 2009. 206p. Msc Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The present work was aimed at providing detailed information on the instantaneous liquid velocity fields at the film, nose and tail regions of slugs in horizontal and inclined two phase flow. To this end, a combination of three nonintrusive optical techniques was employed. Two-dimensional particle image velocimetry (PIV) was used to measure the instantaneous liquid velocity field at a meridional plane of the horizontal pipe test section, while a synchronized pulsed back lighting, provided by a matrix of red LED's, illuminated the bubble contours thereby enhancing contrast of the interfaces (Pulsed Shadow Technique - PST). A laser-induced fluorescence technique (LIF) was employed to separate the strong reflections coming from the gas-liquid interfaces produced by the green PIV laser, The tests were conducted on a specially built transparent pipe test section, using air and water as the working fluids. The velocity fields were obtained for flow regimes where the slugs were lightly aerated. The velocity field results in the nose, tail and film regions revealed valuable detailed information that helped to better understand the physics of the flow, besides contributing to the formation of a data bank for supporting the development of two-phase, horizontal slug flow simulations. The work conducted also provided statistical information on the main global variables that characterize the flow, such as, speed and length of gas bubbles and liquid slugs, and the frequency of passage of these structures.

Keywords

Slug flow; PIV; Two-phase flow; Velocity Field.

Sumário

1 Introdução	26
1.1. Classificação dos padrões de escoamento	27
1.2. Mapas dos padrões de escoamento	31
1.3. Determinação experimental dos padrões de escoamento	34
1.4. Técnicas de medição específicas aplicadas em escoamento	
multifásico	37
1.5. Objetivo	39
1.6. Organização do trabalho	40
2 Revisão da Literatura	41
2.1. Descrição Teórica	41
2.1.1. Definição de variáveis	41
2.1.2. Estimativa da perda de carga	44
2.1.3. Velocidade de propagação da bolha	45
2.1.4. Hold up de líquido	46
2.1.5. Comprimento do pistão de líquido.	46
2.1.6. Frequência dos slugs.	47
2.2. Modelagem do Escoamento	48
2.3. Trabalhos Experimentais	51
2.3.1. Velocidade de propagação das bolhas	52
2.3.2. Distribuição de comprimento das bolhas e pistões	58
2.3.3. Visualizações e medições experimentais do perfil de velocidade	
da fase líquida	61

3 Técnica de Medição	73
3.1. Velocimetria por imagem de partícula (PIV)	74
3.1.1. Subsistema de iluminação	77
3.1.2. Plano de luz laser	78
3.1.3. Partículas traçadoras	79
3.1.4. Subsistema de aquisição de imagens	80
3.1.5. Sincronizador	82
3.1.6. Análise das imagens	83
3.1.7. Detecção dos picos de correlação	85
3.1.8. Pós-Processamento	87
3.2. Fluorescência induzida por laser (LIF)	88
3.3. Iluminação pulsada de fundo (PST)	90
3.4. Aquisição de parâmetros globais do escoamento	
através de sistema de interruptores de feixe.	91
4 Montagem Experimental	93
4.1. Sistema de escoamento da água	94
4.2. Sistema de escoamento de ar	96
4.3. Seção de testes	96
4.3.1. Tanque de separação	98
4.3.2. Medição de temperatura	99
4.3.3. Sistema PIV	99
4.3.3.1. Laser	100
4.3.3.2. Câmera digital	100
4.3.3. Sincronizador	100
4.3.3.4. Conjunto de lentes	101
4.3.3.5. Caixa de visualização	101
4.3.3.6. Partículas	102
4.3.3.7. Painel de LED's e placa difusora	102

4.3.3.8. Filtro	103
4.3.3.9. Sistema de interruptores de feixe	104
5 Procedimento Experimental	105
5.1. Princípio de funcionamento conjunto das técnicas	
LIF, PST e PIV	105
5.2. Procedimento para aquisição sincronizada das imagens	106
5.3. Processamento das imagens	107
5.4. Processamento dos vetores instantâneos de velocidade	113
5.5. Cálculo do perfil médio de velocidade e velocidade	
de propagação da bolha	113
5.6. Aquisição dos parâmetros globais do escoamento	
intermitente utilizando o sistema de interruptores de feixe.	114
5.6.1. Cálculo das velocidades	118
5.6.2. Cálculo dos comprimentos	119
5.6.3. Período e freqüência dos slugs	119
5.6.4. Critério de Chauvenet e fator de corte para velocidade	
de propagação das bolhas	120
5.6.5. Cálculo dos valores médios e desvio padrão dos resultados	121
6 Resultados	122
6.1. Matriz de testes	122
6.2. Velocidade de propagação das bolhas	123
6.3. Análise estatística das variáveis globais do escoamento	
intermitente	126
6.3.1. Velocidade das bolhas	126
6.3.2. Comprimento das bolhas	131
6.3.3. Velocidade da cauda da bolha (Velocidade do pistão de líquido)	134
6.3.4. Comprimento do pistão de líquido.	139

6.3.5. Frequência dos slugs.	145
6.4. Resultados de campos de velocidade na fase líquida	147
6.4.1. Velocidades instantâneas no referencial do laboratório	148
6.4.1.1. Região do nariz da bolha	148
6.4.1.2. Região da esteira da bolha	152
6.4.2. Campo instantâneo de velocidade no referencial da	
bolha em movimento	156
6.4.3. Perfis de velocidade média	167
6.4.3.1. Comparação dos perfis médios com perfil teórico	168
6.4.3.2. Perfis transversais da velocidade média no filme na	
direção axial	171
6.4.3.3. Perfis transversais da velocidade transversal média no filme	177
6.4.4. Extração das velocidades e grandezas turbulentas	188
7 Conclusão	194
8 Referências Bibliográficas	197
Apêndice	202
A. Avaliação das incertezas de medição	202
A.1. Incerteza da vazão medida pelo rotâmetro.	202
A.2. Incerteza da medição da velocidade de deslocamento	
da bolha e do pistão.	203
A.3. Incerteza na medição do comprimento da bolha e do pistão.	205

Lista de Figuras

Figura 1.1 - Padrões do escoamento para tubulações na posiçãovertical	28
Figura 1.2 - Padrões do escoamento para tubulações na horizontal	
ou pouco inclinado	29
Figura 1.3 – Mapa de padrões de escoamento horizontal proposto	
por Spedding & Nguyen (1980).	31
Figura 1.4 – Mapa de padrões de escoamento horizontal proposto	
por Baker (1954).	32
Figura 1.5 - Mapa de padrão de escoamento para escoamento	
horizontal (Mandhane et al 1974).	33
Figura 1.6 – Distribuição da voltagem ao longo do tempo para os	
diferentes padrões de escoamento no escoamento horizontal bifásico.	35
Figura 1.7 – Esboço do sensor wire-mesh (Prasser et al 1998).	36
Figura 1.8 – Variação temporal da fração de vazios a partir da técnica	
de wire mesh na seção transversal do duto.	37
Figura 2.1 – Representação do escoamento intermitente com	
algumas das suas variáveis a serem estudadas.	43
Figura 2.2 – Perfis de velocidade no pistão de líquido	
(Taitel & Barnea, 1990)	47
Figura 2.3 – Modelo de célula unitária para modelagem do padrão	
de escoamento intermitente horizontal e pouco inclinado.	49
Figura 2.4 – Região de medição feita por Kvernvold et al (1984).	62
Figura 2.5 – Variação da velocidade na porção inferior da tubulação	
(Kvernvold et al 1984).	63
Figura 2.6 – Perfil de velocidade no filme a 180 mm distante	
do início da bolha (Kvernvold et al 1984).	63
Figura 2.7 – Estrutura do escoamento da fase líquida durante	
escoamento intermitente horizontal (Kawaji 1998)	64
Figura 2.8 – Desenvolvimento do perfil de velocidade do pistão antes	
da chegada da bolha (Sharma et al 1998).	65
Figura 2.9 – Desenvolvimento do perfil de velocidade do pistão	
após a passagem da bolha (Sharma et al 1998).	66

Figura 2.10 – Fração de vazios ("void fraction"), velocidade media (u _{ave})	
e intensidade turbulenta segundo Lewis et al 2002. (a) ULS=1.65m/s e	
UGS =0.55m/s; (b) ULS=1.65m/s e UGS =1.1m/s; (c) ULS=1.65m/s	
e UGS =2.2m/s	68
Figura 2.11 – Perfis de velocidade axial e radial à uma distância de 2,2D	
à frente da bolha de gás (Gomez 2003)	68
Figura 2.12 – Perfis de velocidade na direção axial no filme de líquido	
(Gomez 2003).	69
Figura 2.13 – Perfis de velocidade na direção radial na região do filme	
(Gomez 2003).	69
Figura 2.14 – Desenvolvimento da velocidade no pistão na direção axial	
(Gomez 2003).	70
Figura 2.15 – Desenvolvimento da velocidade no pistão na direção radial	
(Gomez 2003).	70
Figura 3.1 - Princípio de funcionamento da técnica PIV.	
(Fonte: <u>www.dantecdynamics.com</u>)	75
Figura 3.2 – Exemplo de para de imagens obtidas para utilização da	
técnica PIV (a) Instante t=to. (b) Instante t=to+Δt (Aniceto P.H. 2007).	76
Figura 3.3 – Esquema de laser Nd:YAG e seus componentes	
(Barros J.M. 2007)	77
Figura 3.4 – Diagrama de lentes para formação do plano de luz	
com um laser (Aniceto P.H. 2007).	79
Figura 3.5 - Luz espalhada por uma partícula esférica de vidro	
diâmetro de (a) 1 µm e (b) 10 µm, comprimento de onda da luz	
incidente $\lambda = 532$ nm (<u>http://www.philiplaven.com/mieplot.htm</u>).	80
Figura 3.6 – Sensor de CCD utilizados nas câmeras de PIV	
(Barros J.M. 2007)	81
Figura 3.7 – Diagrama temporal de sincronismo entre o laser e	
a câmera (Aniceto, P.H. 2007).	82
Figura 3.8 – Diagrama temporal de sincronismo entre o laser e	
a câmera operando no modo frame straddling (Aniceto, P.H. 2007)	82
Figura 3.9 – Resumo ilustrativo da técnica de correlação cruzada	
(Raffel et al 2007).	84
Figura 3.10 – Utilização da FFT para agilizar o processo de correlação	
cruzada (Raffel et al 2007).	84
Figura 3.11 – Deslocamento da partícula.	85

Figura 3.12 – Mapa tipico do coeficiente de correlação, R,	
para correlação cruzada. (fonte: Almeida 1997).	86
Figura 3.13 – Diagrama de Jablonski.	89
Figura 3.14– Espectro de absorção e fluorescência	
(Fonte: Thermo Scientific).	90
Figura 3.15 – Desenho esquemático da técnica PST	
(Aniceto P.H 2007).	91
Figura 3.16 – Princípio de funcionamento do interruptor de feixe	92
Figura 4.1 – Visão geral do aparato experimental	93
Figura 4.2 – Visão do aparato experimental inclinado.	94
Figura 4.3 – Curva de operação da bomba utilizada	
nos experimentos. Fonte: (<u>www.weatherford.com</u>)	95
Figura 4.4 – Fluxo de entrada e saída no misturador.	96
Figura 4.5 – Perfil Bosch 45 X 45 utilizado para apoio do tubo.	97
Figura 4.6 – Estrutura de metalon para apoio do perfil Bosch	
onde a tubulação foi montada.	97
Figura 4.7 – Desenho esquemático da base central e um dos	
suportes situados nas extremidades.	98
Figura 4.8 – Tanque de separação	99
Figura 4.9 – Elementos constituintes da metodologia de	
medição do PIV.	100
Figura 4.10 – Caixa de visualização. Dimensões em milímetros.	101
Figura 4.11 – LED vermelho de 5 mm (Fonte: Site Farnell) e	
painel com LED's .	102
Figura 4.12 – Placa difusora do painel de LED's	103
Figura 4.13 – (a) Filtro OG 570 (Fonte: site <u>www.mellesgriot.com)</u> .;	
(b) Curva de Transmissividade do filtro Óptico (Fonte: site	
www.mellesgriot.com)	103
Figura 4.14 – Destaque ao sistema de interruptores de feixe.	104
Figura 4.15 – Equipamento interruptor de feixe e seu cabo de	
alimentação (Fonte: www.pasco.com)	104
Figura 5. 1 - Princípio de funcionamento do sistema combinado	
PIV/PST/LIF (esquema adaptado de Carpintero et al 2006).	106
Figura 5.2 – Imagem referência original (a) e após utilização do filtro	
mediana (b).	108
Figura 5.3 – Apresentação das imagens A e B antes do processamento.	108

Figura 5.4 – Imagem original B antes (a) e apos passagem do	
filtro mediana (b).	109
Figura 5.5 – resultado da subtração entre a imagem com a bolha e	
a imagem de referência.	109
Figura 5.6 – Resultado após binarização, delimitação da região de	
presença de líquido, antes (a) e depois da inversão dos valores da	
região da bolha e do líquido (b).	110
Figura 5.7 – Resultado após subtração (a) e realce nas partículas (b).	110
Figura 5.8 – Imagem B final após processamento completo.	111
Figura 5.9 – Resultado da multiplicação das imagens	112
Figura 5.10 – (a) Imagem binarizada; (b) Imagem final para	
processamento do PIV.	112
Figura 5.11 – Par de imagens final após o procedimento de	
processamento das imagens.	113
Figura 5.12 – (a) Sensor de interruptor de feixe; (b) Localização dos	
sensores na seção de teste.	115
Figura 5.13 – Representação gráfica da resposta dos sensores de	
infravermelho à passagem das bolhas e pistões de líquido.	115
Figura 5.14 – Representação gráfica da resposta dos sensores de	
infravermelho à passagem das bolhas, em um escoamento com	
pistão aerado.	116
Figura 5.15 – Sinais originais enviados pelo sistema de interruptores	
de feixe, antes da utilização do filtro.	117
Figura 5.16 - Resultado após passagem de filtro	117
Figura 5.17 – Definição da nomenclatura para o cálculo dos	
parâmetros globais do escoamento.	118
Figura 6.1 – Identificação dos pontos de teste no mapa de	
padrões de escoamento água e ar em tubos com diâmetro de	
1 polegada, segundo Mandhane et al 1974.	123
Figura 6.2 – Comparação entre resultados de medição de velocidade	
de bolhas para escoamento horizontal (Frm < 2).	124
Figura 6.3 – Comparação entre resultados de medição de velocidade	
de bolhas para escoamento inclinado (+5 graus em todos os casos)	
para (Frm < 2).	124
Figura 6.4 – Comparação da velocidade média de propagação	
das bolhas para os casos horizontal e inclinado a 5°.	128

Figura 6.5 – Comparação do desvio padrão da velocidade de	
propagação das bolhas para os casos horizontal e inclinado a 5°.	128
Figura 6.6 – Distribuição de probabilidade das velocidades das	
bolhas para o escoamento horizontal.	129
Figura 6.7 – Distribuição de probabilidade das velocidades das	
bolhas para o escoamento inclinado a 5°.	130
Figura 6.8 – Distribuição de probabilidade dos comprimentos das	
bolhas no escoamento horizontal.	132
Figura 6.9 – Distribuição de probabilidade dos comprimentos das	
bolhas para o escoamento inclinado a 5°.	133
Figura 6.10 – Distribuição de probabilidade da velocidade dos	
pistões de líquido para escoamento horizontal.	137
Figura 6.11 – Distribuição de probabilidade da velocidade dos pistões	
de líquido para escoamento inclinado a 5°.	138
Figura 6.12 – Comportamento do comprimento do pistão de	
íquido para o escoamento horizontal e inclinado.	141
Figura 6.13 – Distribuição de probabilidade de comprimentos do	
pistão para escoamento horizontal.	142
Figura 6.14 – Distribuição de probabilidade para comprimentos do	
pistão para escoamento inclinado a 5o.	143
Figura 6.15 – Comparação entre a frequência de passagem e	
a velocidade superficial de líquido.	145
Figura 6.16 – Comparação dos resultados para frequência de	
passagem de slugs com os resultados de Duarte (2007)	
para tubo horizontal.	146
Figura 6.17 – Campo instantâneo de velocidade de líquido na região	
do nariz da bolha para escoamento horizontal. Escala de cores	
representa o módulo da velocidade.	149
Figura 6.18 – Campo instantâneo de velocidade de líquido na região	
do nariz da bolha para escoamento inclinado. Escala de cores	
representa o módulo da velocidade.	150
Figura 6.19 – Campo instantâneo de velocidade de líquido na região	
da cauda da bolha para escoamento horizontal. Escala de cores	
representa o módulo da velocidade.	154
Figura 6.20 – Campo instantâneo de velocidade de líquido na região	
da cauda da bolha para escoamento inclinado. Escala de cores	
representa o módulo da velocidade.	155

Figura 6.21 – Teste 5, escoamento inclinado. Ampliação da região	
inferior do tubo mostrando zona de recirculação do escoamento.	156
Figura 6.22 – Resultados para os campos instantâneos de velocidade	
do líquido na região do nariz da bolha, medidos em relação ao	
referencial da bolha para tubo horizontal. Escala de cores	
representa a velocidade na direção axial subtraída da velocidade	
da bolha.	158
Figura 6.23 – Resultados para os campos instantâneos de velocidade	
do líquido na região do nariz da bolha, medidos em relação ao	
referencial da bolha para tubo inclinado. Escala de	
cores representa a velocidade na direção axial subtraída davelocidade	
da bolha.	159
Figura 6.24 – Campo instantâneo de velocidade de líquido na região	
da cauda da bolha - esc. horizontal referencial em movimento. Escala	
de cores representa a velocidade na direção axial subtraída da	
velocidade da bolha.	161
Figura 6.25 – Campo instantâneo de velocidade de líquido na região	
da cauda da bolha - esc. inclinado referencial em movimento. Escala	
de cores representa a velocidade na direção axial subtraída da	
velocidade da bolha.	162
Figura 6.26 – Resultados para os campos instantâneos de velocidade	
do líquido na região do nariz da bolha, medidos em relação ao	
referencial da bolha para tubo horizontal. Escala de cores	
representa a velocidade na direção axial subtraída da velocidade	
da bolha.	163
Figura 6.27 – Resultados para os campos instantâneos de velocidade	
do líquido na região do nariz da bolha, medidos em relação ao	
referencial da bolha para tubo inclinado. Escala de cores	
representa a velocidade na direção axial subtraída da velocidade	
da bolha.	164
Figura 6.28 – Campo instantâneo de velocidade de líquido na região	
da cauda da bolha - esc. horizontal referencial em movimento. Escala	
de cores representa a velocidade na direção axial subtraída da	
velocidade da bolha.	165

Figura 6.29 – Campo instantâneo de velocidade de líquido na região	
da cauda da bolha - esc. inclinado referencial em movimento. Escala	
de cores representa a velocidade na direção axial subtraída da	
velocidade da bolha.	166
Figura 6.30 – Ilustração da posição axial onde foram	
computados perfis de velocidade média.	168
Figura 6.31 - Comparação do perfil analítico de velocidade para	
escoamento turbulento hidrodinamicamente desenvolvido e os	
perfis medidos experimentalmente no presente, trabalho para tubo	
horizontal e inclinado.	170
Figura 6.32 - Perfis de velocidade axial médio no filme de	
líquido para escoamento horizontal.	172
Figura 6.33– Perfis de velocidade axial médio no filme de	
líquido para escoamento inclinado.	173
Figura 6.34 – Perfil de velocidade axial na região do pistão	
para os testes realizados no escoamento horizontal.	175
Figura 6.35 - Perfis de velocidade axial na região do pistão para	
os testes realizados no escoamento inclinado.	176
Figura 6.36 – Perfis de velocidade transversal na região do filme de	
líquido para escoamento horizontal.	178
Figura 6.37 – Perfis de velocidade transversal na região do filme	
de líquido para escoamento inclinado.	179
Figura 6.38 – Perfis de velocidade transversal média na região	
do pistão de líquido para escoamento horizontal.	181
Figura 6.39- Perfis de velocidade transversal média na região	
do pistão de líquido para escoamento inclinado.	182
Figura 6.40 – Estrutura do escoamento horizontal intermitente	
analisando sob o ponto de vista do referencial estático	
(figura baseada em Kawaji 1998).	184
Figura 6.41 – Estrutura do escoamento inclinado intermitente	
analisando sob o ponto de vista do referencial estático	
(figura baseada em Kawaji 1998).	185
Figura 6.42 – Estrutura do escoamento horizontal intermitente	
analisando sob o ponto de vista do referencial em movimento	
(baseado em Kawaji 1998).	186

Figura 6.43 – Estrutura do escoamento inclinado intermitente	
analisando sob o ponto de vista do referencial em movimento	
(baseado em Kawaji 1998).	187
Figura 6.44 – Flutuação da velocidade na região do filme de	
líquido para escoamento horizontal.	190
Figura 6.45 – Flutuação da velocidade na região do pistão de	
líquido para escoamento horizontal.	191
Figura 6.46 – Intensidade Turbulenta na região do filme de	
líquido para escoamento horizontal.	192
Figura 6.47 – Intensidade Turbulenta na região do pistão de	
líquido para escoamento horizontal.	193

Lista de Tabelas

Tabela 2.1 - Resultados observados por Bendiksen (1984) para as	
constantes C_0 e u_d em escoamento horizontal e inclinado a 5 graus.	54
Tabela 2.2- Resultados observados por Cook & Behnia (2001).	56
Tabela 2.3 – Constante C ₀ para viscosidades diferentes, segundo	
Duarte 2007.	57
Tabela 2.4 – Resumo dos trabalhos experimentais de medição de	
velocidade de propagação da bolha citados.	58
Tabela 2.5 – Resumo dos trabalhos experimentais de análise	
estatística das variáveis globais do escoamento intermitente	
citados anteriormente.	61
Tabela 2.6 – Regiões do escoamento de líquido verificadas após	
a passagem do pistão.	70
Tabela 2.7 – Resumo dos trabalhos experimentais de medição	
do perfil de velocidade.	72
Tabela 4.1 - – Incerteza do rotâmetro de líquido OMEL	
modelo 182932 utilizado nos experimentos.	95
Tabela 6.1- Matriz dos testes realizados	123
Tabela 6.2 – Velocidade de propagação das bolhas para escoamento	
horizontal e inclinado a 5 graus.	124
Tabela 6.3 – Constantes C0 e ud para escoamento horizontal e	
inclinado após medição do presente trabalho.	125
Tabela 6.4 – Resumo dos resultados experimentais para C ₀ e u _d da	
literatura.	125
Tabela 6.5 – Resultados de medição da velocidade média de	
propagação das bolhas para escoamento horizontal.	126
Tabela 6.6 – Resultados de medição da velocidade média de	
propagação das bolhas para escoamento inclinado a 5°.	127
Tabela 6.7 – Resultados de medição do comprimento médio das	
bolhas para escoamento horizontal.	131
Tabela 6.8 – Resultados de medição do comprimento médio das	
bolhas para escoamento inclinado a 5o.	131
Tabela 6.9 – Velocidade média e desvio padrão dos pistões para	
escoamento horizontal.	135

Tabela 6.10 – Velocidade média e desvio padrão dos pistões para	
escoamento inclinado.	135
Tabela 6.11 – Relação entre a velocidade medida do nariz	
da bolha e a velocidade medida de sua cauda.	136
Tabela 6.12 – Comprimento médio e desvio padrão do comprimento	
do pistão de líquido para escoamento horizontal	140
Tabela 6.13 – Comprimento médio e desvio padrão do comprimento	
do pistão de líquido para escoamento inclinado a 5°.	140
Tabela 6.14 – Resultados para comprimento médio do pistão	
de líquido encontrados na literatura.	141
Tabela 6.15 – Coeficiente de correlação entre o comprimento do pistão	
e líquido e a velocidade da bolha.	144
Tabela 6.16 - Comparação com valores de correlações da	
literatura para escoamento horizontal.	147

Lista de Variáveis

Letras Latinas

- A Área da seção transversal do tubo
- c Velocidade da luz
- C₀ Constante da equação para o cálculo de u_t
- D Diâmetro interno da tubulação
- E Energia
- E_o Número de Eötvös
- f Distância focal
- f_s Frequência dos slugs
- Fr_m Número de Froude da mistura
- g Aceleração gravitacional
- h Constante de *Planck*
- I Intensidade Turbulenta
- L Distância entre as sondas
- L_{crit} Comprimento crítico do pistão
- L_f Comprimento do filme de líquido
- L_S Comprimento do pistão de líquido
- L_{II} Comprimento da "célula unitária" ou unidade slug
- M Fator de Magnificação
- N número de bolhas
- Q Vazão volumétrica
- Re Número de Reynolds
- R_{II} Função de correlação cruzada
- R(x,y) Coeficiente de correlação
- R_S Fração de líquido na região do pistão
- S Escorregamento
- SI Sistema Internacional de Unidades
- t Tempo
- T Tempo indicativo de chegada de bolha ou pistão nos interruptores de feixe.
- t₀ Tempo inicial
- T_{n1, n} Tempo de chegada do nariz da bolha **n** no canal **1**;
- T_{n2, n} Tempo de chegada do nariz da bolha **n** no canal **2**;
- T_{c1, n} Tempo de chegada da cauda da bolha **n** no canal **1**;

 $T_{c2, n}$ - Tempo de chegada da cauda da bolha $\bf n$ no canal $\bf 2$;

 $T_{n1,n+1}$ - Tempo de chegada do nariz da bolha **n+1** no canal **1**;

 $T_{n2,n+1}$ -Tempo de chegada do nariz da bolha **n+1** no canal **2**;

 $T_{c1,n+1}$ -Tempo de chegada da cauda da bolha **n+1** no canal **1**;

 $T_{c2, n+1}$ -Tempo de chegada da cauda da bolha **n+1** no canal **2.**

U - Velocidade das fases (líquida ou gasosa)

u_b - Velocidade das bolhas dispersas

u_d - Velocidade de deslizamento da bolha

u_{qf} - Velocidade da fase gasosa

U_{GS} - Velocidade superficial da fase gasosa

u_{Lf} – Velocidade do líquido na região do filme

u_{LS} - Velocidade média da fase líquida no pistão

U_{LS} - Velocidade superficial da fase líquida

U_m - Velocidade da mistura ou velocidade sem escorregamento

ut - Velocidade de propagação da bolha de gás

u'- Flutuação da velocidade na direção axial

u_x - Componente axial da velocidade

u_v - Componente transversal da velocidade

u (x,y) – Magnitude da velocidade (resultante da velocidade axial e transversal)

 $\dot{u_x}(x,y)$ – Velocidade resultante do escoamento obtida a partir da subtração da velocidade na direção axial pela velocidade do nariz da bolha

V_b - Velocidade da região traseira da bolha, segundo Cook & Behnia 2000

V_p – Velocidade do pistão.

V_t – Velocidade da frente da bolha, definida segundo *Cook & Behnia 2000*

v'- Flutuação da velocidade na direção transversal

Letras gregas

- α Concentração volumétrica da fase líquida ou gasosa
- α_L − Hold-up da fase líquida
- α_G Fração de vazios
- ΔP Perda de carga local
- Δt Intervalo de tempo
- v_s Freqüência de passagem dos *slugs*
- λ Comprimento de onda
- λ_L Hold up sem escorregamento
- θ Inclinação do tubo
- σ Tensão superficial
- Σ Parâmetro adimensional da tensão superficial
- ρ Massa específica
- κ Energia Cinética turbulenta

Superescritos

- v Vertical
- h Horizontal

Subscritos

- b Bolha
- c Canal
- f Filme
- G Gás
- i individual
- L Líquido
- n n-ésima bolha utilizada determinação dos parâmetros do escoamento
- n+1 n-ésima primeira bolha utilizada determinação dos parâmetros do escoamento
- p Pistão
- s Pistão
- u Célula unitária
- 1 canal 1
- 2 canal 2

Siglas

CCD - Charge Coupled Device

FFT – Transformada Rápida de Fourrier

LDV - Laser Doppler Velocimetry

LED - Light Emitting Diode

LIF - Laser Induced Fluorescence

PDF - Função Densidade de Probabilidade

PDA - Photochromic Dye Activation

PIV – Particle Image Velocimetry

PST - Pulsed Shadows Technique

RMS - Root Mean Square