

Julio César Bizarreta Ortega

Avaliação do potencial de uso de um resíduo da indústria de papel em sistemas de barreiras capilares

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientador: Prof. Tácio Mauro Pereira de Campos

PUC-Rio - Certificação Digital Nº 0721430/CA

Rio de Janeiro Agosto de 2009

Julio César Bizarreta Ortega

Avaliação do potencial de uso de um resíduo da indústria de papel em sistemas de barreiras capilares

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Tácio Mauro Pereira de Campos Presidente / Orientador Departamento de Engenharia Civil - PUC-Rio

> > Prof. Alexander Rodrigues Cabral Universite de Sherbrooke (Canadá)

Prof. Fernando Antônio Medeiros Marinho EP-USP

Prof. Eurípides do Amaral Vargas Júnior Departamento de Engenharia Civil - PUC-Rio

Dra. Monica Priscilla Hernandez Moncada Departamento de Engenharia Civil - PUC-Rio

> **Prof. José Eugênio Leal** Coordenador Setorial do Centro Técnico Científico– PUC-Rio

Rio de Janeiro, 14 de Agosto de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Julio César Bizarreta Ortega

Graduou-se em Engenharia Civil pela Universidad Nacional de Ingenieria (UNI) no Peru em 2002. Ingressou em 2007 no curso de mestrado em Engenharia Civil da PUC-Rio, na área de Geotecnia, e linha de pesquisa de geotecnia ambiental.

Ficha Catalográfica

Bizarreta Ortega, Julio César
Avaliação do potencial de uso de um resíduo da indústria de papel em sistemas de barreiras capilares / Julio César Bizarreta Ortega; orientador: Tácio Mauro Pereira de Campos – 2009.
108 f. : il ; (color) ;30 cm.
 Dissertação (Mestrado em Engenharia Civil) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.
Inclui bibliografia.
 Engenharia civil – Teses. 2. Resíduo da indústria de papel. Caracterização de resíduos. Sistemas de barreiras capilares. Cobertura final. Aterro sanitário I. Campos, Tácio Mauro Pereira de. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

PUC-Rio - Certificação Digital Nº 0721430/CA

A meus pais, Julio Bizarreta e Angélica Ortega.

Agradecimentos

A CAPES e PRONEX pelo financiamento desta dissertação.

Ao Prof. Tácio Mauro Pereira de Campos pela orientação e ensino durante a dissertação.

Ao Wagner Nahas, André Guedes, Jackeline Huertas, Gerson Alves e Julicene Sousa pelas correções feitas nesta dissertação.

Ao Eng. William, Josué e Amauri pelo apoio no laboratório de Geotecnia e Meio Ambiente da PUC.

Ao laboratório de MEV e Raios X do DEMa e ao laboratório de Catálise do Departamento de Química da PUC-Rio.

Aos Professores Franklin Antunes, Roberto de Avillez, Maria Isabel P. da Silva, Sidnei Paciornik, José D' Abreu, Claudia Teixeira, Alexander Cabral pelo apoio às consultas sobre a caracterização do material estudado.

Ao Ivan Benítez Hipólito pelo apoio na aprendizagem do programa VADOSE/W 2007.

Aos professores que participaram da Comissão Examinadora pelas sugestões feitas.

Resumo

Bizarreta, Julio César Ortega; de Campos, Tácio Mauro Pereira. Avaliação do potencial de uso de um resíduo da indústria de papel em sistemas de barreiras capilares. Rio de Janeiro, 2009. 86p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Esta pesquisa esta orientada a avaliar o potencial de uso de um resíduo da indústria da fabrica de papel, localizada no estado de Rio de Janeiro, em sistemas de barreiras capilares para aterros sanitários. A utilização do resíduo da indústria de papel (RIP) trace um beneficio ambiental e econômico, pois na atualidade os materiais comumente usados como cobertores têm elevados custos. Neste estudo se realizam uma caracterização do RIP e uma simulação numérica usando o programa VADOSE/W 2007. O RIP é constituído por uma parte mineral e outra de fibra orgânica. A parte mineral é aproximadamente 70%, composto principalmente de calcita e aragonita, atuando como cimento e cobrindo quase por completo as fibras. O RIP tem um elevado teor de umidade inicial e uma elevada contração sim apresentar trincas no processo de secagem. Ensaios de laboratório mostram valores de permeabilidade saturada na ordem de 10⁻⁸ m/s para amostras no lado úmido da curva de compactação. Ensaios de curva de retenção de umidade usando a técnica de papel de filtro mostram uma diferença substancial em relação a outros RIPs encontrados na literatura pelo elevado valor de entrada de ar da ordem de 1000kPa. Simulações numéricas baseadas nas propriedades não saturadas do RIP mostram que ele pode ser utilizado como material fino de uma barreira capilar; sendo o contraste de permeabilidades não saturadas e sucção inicial chaves na seleção do material grosso. O programa VADOSE/W 2007 constitui uma ferramenta útil para á avaliação do funcionamento de sistemas de barreiras capilares onde se incluem condições climáticas.

Palavras-chave

Resíduo da indústria de papel. Caracterização de resíduos. Sistemas de barreiras capilares. Cobertura final. Aterro sanitário.

Abstract

Bizarreta, Julio César Ortega; de Campos, Tácio Mauro Pereira. **Evaluation of the potential use of waste paper sludge in capillary barrier systems.** Rio de Janeiro, 2009. 86p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

This research is oriented to evaluate the potential use of a waste industry manufactures of paper, in the state of Rio de Janeiro for capillary barrier systems for sanitary landfills. The use of waste paper industry (WPI) brings an environmental and economic benefit, because in actuality the cover materials have high costs. In this study, is made a characterization and a numerical simulation of WPI using the program VADOSE/W 2007. WPI is composed of one part mineral and other organic fiber. The mineral part is about 70%, composed mainly of calcite and aragonite, acting as cement and covering almost completely the fibers. RIP has high initial moisture content and high contraction but does not have cracks in the drying process. Laboratory tests show values of saturated permeability in the order of 10^{-8} m/s for samples in the wet side of compaction curve. Testing curve moisture retention using the filter paper method shows a substantial difference compared to other WPIs in the literature by the high Air Entry Value (AEV) of the order of 1000kPa. Numerical simulations based on the properties of saturated RIP show that it can be used as fine material for a capillary barrier, and the contrast of unsaturated permeability and suction initial key in the material selection. Numerical simulations based on unsaturated properties of WPI showed that it can be used as material for a capillary barrier, and was verified that the contrast of unsaturated permeability and suction initial are key in the material selection, and was verified that the program VADOSE/W 2007 is a useful tool for evaluating the operation of capillary barrier systems which include climatic conditions.

Palavras-chave

Resíduo da indústria de papel. Caracterização de resíduos. Sistemas de barreiras capilares. Cobertura final. Aterro sanitário.

Sumário

1 Introdução	1
1.1. Relevância e justificativa da pesquisa	1
1.2. Objetivo	2
1.3. Limitações da pesquisa	2
1.4. Organização da pesquisa	2
2 Composição mineralógica, estrutura morfológica e características químicas	4
2.1. Introdução	4
2.2. Revisão bibliográfica	4
2.3. Materiais e métodos	5
2.3.1. Composição mineralógica	5
2.3.2. Caracterização química	6
2.3.3. Caracterização morfológica	6
2.4. Resultados e discussão	7
2.4.1. Composição mineralógica	7
2.4.2. Características químicas	10
2.4.3. Estrutura morfológica	11
3 Caracterização física, compactação e contração	20
3.1. Introdução	20
3.2. Revisão bibliográfica	20
3.3. Materiais e métodos	22
3.4. Resultados e discussão	23
3.4.1. Caracterização física	23
3.4.2. Compactação	25
3.4.3. Contração	28
4 Curva de retenção	32
	32
4.2 Revisão bibliográfica	32
4.3 Materiais e métodos	33 05
4.4. Resultados e discussão	25 25
	00

4.4.1. Verificação da curva de calibração	35
4.4.2. Observações durante o ensaio	36
4.4.3. Resultados da curva de retenção usando a técnica de papel de filtro	40
4.4.4. Modelagem da curva de retenção	41
4.4.5. Sucção, teor de umidade e índice de vazios	43
4.4.6. Comparação da curva de retenção com o RIP de Parent (2006)	45
5 Função de permeabilidade	46
5.1. Introdução	
5.2. Revisão bibliográfica	
5.3. Materiais e métodos	
5.4. Resultados e discussão	48
5.4.1. Permeabilidade Saturada	48
5.4.2. Estimativa da função de permeabilidade	52
6 Análise numérica de sistemas de barreiras capilares	54
6.1. Introdução	54
6.2. Revisão bibliográfica	54
6.3. Análise numérica	56
6.3.1. Geometria do modelo 5	
6.3.2. Condições ambientais	58
6.3.3. Materiais	59
6.3.4. Condições de contorno 6	
6.4. Resultados e discussão da análise numérica	62
6.4.1. Análise 1	63
6.4.1.1. Simulação 1: areia SP sem infiltração por 180 dias	63
6.4.1.2. Simulação 2: areia SP com infiltração constante por 180 dias	65
6.4.1.3. Simulação 3: areia SP com infiltração variável 1 por 180 dias	66
6.4.1.4. Simulação 4: areia SP com infiltração variável 2 por 180 dias	68
6.4.1.5. Simulação 5: material RDC com infiltração constante por 180 dias	69
6.4.2. Análise 2	71
6.4.2.1. Simulação 1: material SP sem infiltração na superfície em 90 dias	71
6.4.2.2. Simulação 2: material SP para taxas de infiltração (q)	
de 0,5 e 2,05 mm/dia em 90 dias	72
6.4.2.3. Simulação 3: material SP para condições ambientais em 180 dias	74
6.4.2.4. Simulação 4: material RDC para condições ambientais em 180 dias	77
6.4.3. Comparação das simulações	78

6.4.3.1. Simulações da análise 1	78
6.4.3.2. Simulações da análise 2	
7 Conclusões e sugestões	82
7.1. Conclusões	82
7.1.1. Composição mineralógica, estrutura morfológica e	
características químicas.	82
7.1.2. Caracterização física, compactação e contração	82
7.1.3. Curva de retenção	83
7.1.4. Permeabilidade saturada	83
7.1.5. Análise numérica de sistemas de barreiras capilares	84
7.2. Sugestões para trabalhos futuros	84
Referencias Bibliográficas	86

Lista de figuras

Figura 2.1 - Procedimento de preparação das amostras para o MEV.	7
Figura 2.2 - Espectro de difração de raios-X da amostra M3.	10
Figura 2.3 - Imagem de 50X de aumento em corte horizontal (a) e de corte	
vertical (b).	12
Figura 2.4 - Imagem com aumento de 200X de corte horizontal (a) e de corte	
vertical (b).	12
Figura 2.5 - Imagem com aumento de 500X de corte horizontal (a) e de corte	
vertical (b).	13
Figura 2.6 - Imagem com aumento de 2000X de corte horizontal (a) e	
vertical (b).	13
Figura 2.7 - Detalhe de uma fibra livre com um aumento de 3000X.	14
Figura 2.8 - Espectro médio de EDS tomada de modo geral da área da image	m
com um aumento de 2000X.	14
Figura 2.9 - Espectros de EDS tomados nos pontos específicos na imagem de	3
3000X.	15
Figura 2.10 - Detalhe da imagem com aumento de 500X com a técnica de BS	Е
em coloração de cinzas.	16
Figura 2.11 - Imagens, (a) 150X (Cabral et al. 2000), (b) 200X (Iberio 2007) e	(c)
200X (Neste trabalho).	18
Figura 2.12 - Imagens, (a) 450X (Teixeira 2001) e (b) 500X (Neste trabalho).	18
Figura 2.13 - Imagens, (a) 2000X (Teixeira 2001) e (b) 3000X (Neste trabalho)).19
Figura 3.1 Diferença do RIP retido e passante da peneira 200.	24
Figura 3.2 Curva granulométrica completa. Peneiramento via lavagem	25
Figura 3.3 Resultado da curva de compactação pelo método de Proctor Norma	al
do RIP	26
Figura 3.4 - Diferença das estruturas superficiais do RIP compactado a distinta	as
umidades.	26
Figura 3.5 - Diferença das estruturas do RIP compactado a distintas umidades	s.27
Figura 3.6 - Comparação da curva de Proctor Normal do RIP com a literatura.	27
Figura 3.7 - Curvas de secagem dos espécimes.	28
Figura 3.8 - Variação da deformação volumétrica unitária com o teor de umida	ıde
de compactação.	29
Figura 3.9 - Espécimes ensaiados, após a secagem na estufa.	30

Figura 3.10 - Contração da amostra compactado no mesmo molde do Proctor	
Normal.	30
Figura 3.11 - Variação de peso específico seco com o teor de umidade no	
processo de secagem.	31
Figura 3.12 - Variação de índice de vazios com o teor de umidade no processo	C
de secagem.	31
Figura 4.1 - Armazenagem das amostras de RIP na técnica de papel de filtro.	34
Figura 4.2 - Sucção do papel de filtro estimada pela umidade do papel no	
dessecador	35
Figura 4.3 - Redução da área de contato do papel de filtro devido à contração	do
resíduo.	36
Figura 4.4 - Arqueamento da superfície pela contração e o contato do papel de	е
filtro.	37
Figura 4.5 - Ruptura do espécime pelas forças de tração geradas nas bordas	
RIP/molde.	37
Figura 4.6 - Fungos após selagem por quatro dias da amostra compactada a	
125% de umidade.	38
Figura 4.7 - Após a secagem na estufa, apresentam-se alguns rasgos da colôn	nia
de fungos no papel filtro.	39
Figura 4.8 - Curva de retenção dos primeiros espécimes de 125% e 130% de	
umidade.	40
Figura 4.9 - Curvas de retenção de secagem (S) e umedecimento (U).	41
Figura 4.10 - Estimativa da curva de retenção pelo modelo de Fredlund e Xing	I
(1994).	42
Figura 4.11 - Estimativa da curva de retenção pelo modelo de van Genuchten	
(1980).	42
Figura 4.12 - Estimativa de curvas de retenção para diferentes umidades e	
índices de vazios iniciais	43
Figura 4.13 - Curvas de retenção de secagem, sucção por teor de umidade.	44
Figura 4.14 - Curva de secagem, teor de umidade por índice de vazios.	44
Figura 4.15 - Comparação da curva de retenção com a obtida	
por Parent (2006).	45
Figura 5.1 - Permeabilidade saturada para diferentes umidades de compactaç	ão
com Proctor Normal.	49
Figura 5.2 - Imagens de lupa binocular de amostras com diferente umidade de	9
compactação.	50

Figura 5.3 Morfologia de amostras moldadas a diferentes umidades (a:195% e	Э
b:72%)	51
Figura 5.4 - Variações de volume no ensaio de permeabilidade: a) recalque b)	
expansão	51
Figura 5.5 - Função de permeabilidade para a umidade de compactação	
de 76%	52
Figura 5.6 - Função de permeabilidade para a umidade de compactação de	
125%	53
Figura 5.7 - Função de permeabilidade para a umidade de compactação de	
162%.	53
Figura 6.1 Esquema da máxima largura de desvio (Ld) e o ponto DDL	55
Figura 6.2 Esquema do aterro, condições de contorno e malhas de elementos	
finitos.	57
Figura 6.3 Partes da cobertura estudada	58
Figura 6.4 Dados climáticos da estação do Galeão (Portocarrero, 2009)	58
Figura 6.5 Curvas de retenção dos materiais utilizados nas simulações.	60
Figura 6.6 Curvas de função de permeabilidade de materiais utilizados nas	
simulações.	61
Figura 6.8 Vetores de velocidade e saturação aos 80dias usando o SP	65
Figura 6.9 Resultados da modelagem para o material SP com infiltração	
constante de 10 ⁻⁹ m/s.	66
Figura 6.10 Resultados da modelagem para o material SP com infiltração	
variável 1 (análise 1).	67
Figura 6.11 Resultados da modelagem para o material SP com infiltração	
variável 2 (análise 1).	68
Figura 6.12 Vetores de velocidade e saturação aos 30dias usando o RDC.	69
Figura 6.13 Resultados da modelagem para o material RDC com infiltração	
constante de 10 ⁻⁸ m/s.	70
Figuras 6.14 Perfis de sucção. (a) Topo X=5m e (b) Base X=29m.	71
Figura 6.15 Sucção na interface RIP/SP sem infiltração na superfície.	72
Figura 6.16 Fluxo ascendente de água pela interface RIP/SP.	72
Figuras 6.17 Percolação da água pela interface RIP/SP. (a) 0,5mm/dia	
(b) 2,05 mm/dia	73
Figuras 6.18 Sucção na interfase do RIP/SP. (a) 0,5mm/dia (b) 2,205 mm/dia	73
Figuras 6.19 Barreira capilar com material SP no tempo de 30 dias (q = 0,5	
mm/dia).	74

Figuras 6.20 Percolação da água pela interface RIP/SP pela	
posição horizontal X.	75
Figuras 6.21 Sucção na interfase do RIP/SP pela posição horizontal X.	75
Figuras 6.22 Perfil de saturação da cobertura na posição	
X=29m (topo do talude).	76
Figuras 6.23 Perfil de saturação da cobertura na posição	
X=5m (base do talude).	76
Figuras 6.24 Percolação da água pela interface RIP/RDC.	77
Figuras 6.25 Sucção na interfase do RIP/RDC pela posição horizontal X.	77
Figuras 6.26 Comparação das simulações da análise 1.	79
Figura 6.27 Variação das sucções no topo da camada SP para infiltração	
constante de 10 ⁻⁹ m/s.	79
Figura 6.28 Variação das sucções no topo da camada RDC para infiltração	
constante de 10 ⁻⁹ m/s.	80
Figuras 6.29 Comparação das simulações variando a taxa de infiltração.	81

Lista de tabelas

Tabela 2.1 - Composição mineralógica de RIP segundo a literatura revisada	4
Tabela 2.2 - Resultados da análise de fluorescência de raios-X da amostra M1	I. 8
Tabela 2.3 - Resultados da análise de fluorescência de raios-X da amostra M2	2
(550 ℃ de queima).	8
Tabela 2.4 - Resultados de análise quantitativa de raios-X para diferentes	
preparações de amostras.	9
Tabela 2.5 - Composição da amostra de RIP.	10
Tabela 2.6 - Comparação de pH com valores da literatura.	11
Tabela 2.7 - Resultados das características químicas analisadas.	11
Tabela 2.8 - Comparação das características do conjunto mineral-fibra com	
outros RIPs.	17
Tabela 3.1 - Resultados da caracterização física do RIP	23
Tabela 4.1 - Determinação da curva de retenção do RIP segundo diferentes	
autores.	33
Tabela 4.2 - Teor de umidade para 800 kPa de sucção.	43
Tabela 4.3 - Comparação de VEA com a variação dos índices de vazios.	45
Tabela 5.1 - Características morfológicas de três amostras de diferente umida	de.5
Tabela 5.2 - Permeabilidade saturada e parâmetros da	
curva de retenção para diferentes umidades.	52
Tabela 6.1 Parâmetros e propriedades dos materiais da cobertura.	59

Lista de símbolos

е	Índice de vazios
e _o	Índice de vazios inicial
G_s	Densidade dos grãos
k _{sat}	Permeabilidade saturada
θ	Teor de umidade volumétrico
θ_{sat}	Teor de umidade volumétrico saturado
S	Grau de saturação
W	Teor de umidade gravimétrico
Wo	Teor de umidade gravimétrico inicial
w _{ot}	Teor de umidade ótima
\mathbf{W}_{L}	limite de liquidez
WP	limite de plasticidade
$\gamma_{\rm d}$	Peso específico seco
γ_{w}	Peso específico da água
МО	Teor de matéria orgânica
VEA	Valor de entrada de ar
L_{d}	Máxima largura de desvio
DDL	Ponto de começo da zona de transição
q	Taxa de infiltração