3 Controle Visual

Este capítulo irá apresentar de forma geral o problema do controle visual de robôs (manipuladores). Serão apresentadas na seção 3.1 diferentes arquiteturas de controles correlacionando as duas técnicas abordadas neste trabalho, com diferentes variáveis de controle. O sistema apresentado na Figura 10 indica como se relacionam os sistemas mecânicos, eletrônicos e computacionais em um projeto de controle.

Figura 10 - Esquema de um sistema genérico

O exemplo de controle visual mais comum na literatura é o de um manipulador robótico de N graus de liberdade onde se deseja alcançar um objeto no espaço com o auxílio de uma câmera acoplada à sua extremidade. Conforme apresentado no capítulo anterior, uma vez extraída uma imagem do objeto, o processamento da imagem feito em um *software* de controle, se encarrega de determinar as coordenadas a serem atingidas pelo robô. Conhecidas estas coordenadas, cabe à cinemática inversa indicar quais deslocamentos deverão ser aplicados a cada junta do robô (apresentado na seção 3.2). Estes são enviados a um sistema eletrônico capaz de acionar os motores acoplados às juntas, de forma a atingir a posição desejada.

Para determinar as tensões necessárias a ser enviada aos motores do robô para que este atinja uma pose desejada, será utilizado o controle PID (Proporcional-Integral-Derivativo), descrito na terceira seção.

Por fim é descrita a integração entre o processamento da imagem e o software de controle, com o sistema eletrônico e mecânico do robô.

3.1. Arquiteturas de Controle

Esta seção irá apresentar as diversas técnicas propostas na literatura para controlar sistemas robóticos com processamento de imagens. As principais diferenças entre elas dizem respeito à realimentação e às variáveis desejadas do sistema.

Sanderson e Weiss (1980) introduziram dois conceitos, utilizados até hoje, para classificar sistemas servo-visuais. O sistema *look-and-move* utiliza visão computacional para gerar posições desejadas (*set-points*) para as juntas utilizando apenas uma imagem, capturada no início do movimento, sem realimentação visual. Por outro lado, se o sistema utiliza sucessivas imagens para corrigir em tempo real erros nas juntas, este sistema pode ser referenciado como servo-visual.

Cada uma destas técnicas pode ser implementada seguindo duas diferentes escolhas para variáveis de estado: variáveis baseadas em poses (posições e orientações do robô), ou variáveis baseadas em características da imagem. No controle baseado em poses, é escolhida uma pose relativa desejada entre uma câmera presa à extremidade do robô (sistema *eye-in-hand*) e o objeto de interesse, a ser controlada. Já no controle baseado em características de imagem, o sistema apenas recebe uma imagem associada à posição final desejada, enquanto que o controle se encarrega de mover o robô até que a câmera em sua extremidade visualize uma imagem com mesmas características.

Um dos exemplos mais comuns de controle servo-visual consiste em levar a extremidade de um manipulador até um alvo desejado. Uma câmera acoplada na extremidade do manipulador permite que a posição final (desejada), seja calculada em relação à posição atual (real) do manipulador (Hutchinson, Hager, & Corke, 1996).

Sabendo que o controle pode ser classificado não só pelo uso de uma ou múltiplas imagens, mas também pela variável controlada (poses ou características de imagem), formam-se quatro tipos diferentes de controle, conforme apresentado nos itens a seguir.

3.1.1. Controle *look-and-move* baseado em pose

Conforme descrito anteriormente, a presença de sensores de posição no controle do tipo *look-and-move* faz com que a realimentação do sistema seja feita apenas nas juntas, cabendo aos sensores de posição a confirmação e realimentação do sistema.

O controle se inicia quando o robô captura uma imagem do ambiente, e a partir desta são extraídas características capazes de determinar a posição real do robô em relação ao alvo (Figura 11). O usuário por sua vez define uma posição desejada em relação ao alvo. A diferença entre a posição desejada e a real inicia o controle, onde sensores de posição acoplados ao robô são capazes de verificar a posição alcançada. A realimentação entre os sensores e o controle garante que a posição final será atingida.

Neste caso, admite-se que o processamento da imagem inicial determinará a posição relativa entre a câmera e o objeto, e que qualquer problema neste processamento irá resultar numa posição final com erros.

Figura 11 - Controle look-and-move baseado em pose

3.1.2. Controle *look-and-move* baseado em imagem

Esta técnica se difere da mencionada acima em relação aos alvos a serem estabelecidos. No controle baseado em imagens, é necessário determinar as características da imagem a serem alcançadas. Uma vez recebida uma imagem de referência, o robô deverá se posicionar de forma que a imagem extraída naquela posição seja igual à desejada pelo usuário. Para tal, características são extraídas da imagem real e da desejada, e comparadas.

Pela Figura 12, pode-se perceber a presença das matrizes Jacobianas da imagem, que são responsáveis por converter a diferença entre as características desejadas e as reais em parâmetros de entrada do controlador.

Figura 12 - Controle look-and-move baseado em imagem

3.1.3. Controle servo-visual baseado em pose

O controle servo-visual não precisa utilizar informações dos sensores das juntas do robô. A realimentação do sistema é feita através de imagens obtidas em tempo real, onde a cada instante de tempo um novo *frame* é capturado pela câmera, e é determinada uma nova diferença entre a posição desejada e a real. Este ciclo se repete até o momento em que o alvo é atingido (Figura 13).

Figura 13 - Controle servo-visual baseado em pose

3.1.4. Controle servo-visual baseado em imagem

Por último, o controle servo-visual baseado em imagem se difere do baseado em pose em relação à variável de estado utilizada. Neste caso o controle se baseia em características da imagem e não mais em ângulos estimados das juntas. O objetivo do robô é atingir uma posição de onde a imagem extraída seja igual à imagem de referência. Novamente, a presença das matrizes Jacobianas de imagem são as responsáveis pela conversão entre as características da imagem e os parâmetros de entrada do robô (Figura 14).

Figura 14 - Controle servo-visual baseado em imagem

3.2. Cinemática Inversa

Uma vez conhecida a transformação entre a posição da câmera e o objeto alvo, se faz necessário determinar as movimentações das juntas do manipulador, capaz de levar a sua extremidade a uma posição (x, y, z) no espaço. Estes valores podem ser obtidos utilizando a cinemática inversa do manipulador. Muitos manipuladores não possuem uma expressão algébrica para as equações da cinemática inversa. Desse modo, é comum utilizar métodos numéricos para a obtenção da cinemática inversa, com o auxílio de matrizes Jacobianas. Para uma melhor compreensão, serão apresentados a seguir o cálculo da matriz Jacobiana em dois casos: o primeiro para um caso particular de um manipulador de 2 graus de liberdade, e em seguida um caso genérico de um manipulador de N graus de liberdade.

3.2.1. Jacobiano de um manipulador plano de 2 graus de liberdade

Para o caso de um manipulador de 2 graus de liberdade com juntas rotativas, as movimentações são restritas a um plano $x_0 - y_0$. Segundo Asada e Slotine (1986), as equações que relacionam a posição de sua extremidade (x, y) e os deslocamentos das juntas (θ_1, θ_2) , são

$$x(\theta_1, \theta_2) = l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2)$$

$$y(\theta_1, \theta_2) = l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2)$$
(28)

onde l_1 , l_2 , θ_1 e θ_2 são definidos na Figura 15.

Figura 15 - Manipulador planar de 2 graus de liberdade

No caso do manipulador apresentado na Figura 15, os movimentos infinitesimais das juntas podem ser obtidos simplesmente derivando as equações (28). Sendo assim:

$$dx = \frac{\partial x(\theta_1, \theta_2)}{\partial \theta_1} d\theta_1 + \frac{\partial x(\theta_1, \theta_2)}{\partial \theta_2} d\theta_2$$

$$dy = \frac{\partial y(\theta_1, \theta_2)}{\partial \theta_1} d\theta_1 + \frac{\partial y(\theta_1, \theta_2)}{\partial \theta_2} d\theta_2$$
(29)

Em forma vetorial a equação acima pode ser escrita da seguinte forma:

$$dx = J \ d\theta \tag{30}$$

onde $dx \in d\theta$ representam os vetores das movimentações infinitesimais, definidos como:

$$dx = \begin{bmatrix} dx & dy \end{bmatrix}^T \qquad \qquad d\theta = \begin{bmatrix} d\theta_1 & d\theta_2 \end{bmatrix}^T$$
(31)

A partir da equação (30), é possível calcular numericamente valores de (θ_1, θ_2) associados a uma posição desejada (x, y) utilizando o algoritmo de Newton-Raphson.

A matriz Jacobiana J contém as derivadas parciais das funções $x(\theta_1, \theta_2)$ e $y(\theta_1, \theta_2)$ em relação às juntas de movimento θ_1 e θ_2 , e pode ser descrita como:

Controle Visual

$$J = \begin{bmatrix} \frac{\partial x}{\partial \theta_1} & \frac{\partial x}{\partial \theta_2} \\ \frac{\partial y}{\partial \theta_1} & \frac{\partial y}{\partial \theta_2} \end{bmatrix}.$$
 (32)

Das equações (28) e (32), a matriz Jacobiana do manipulador planar de dois graus de liberdade é

$$J = \begin{bmatrix} -l_1 \sin(\theta_1) - l_2 \sin(\theta_1 + \theta_2) & -l_2 \sin(\theta_1 + \theta_2) \\ l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2) & l_2 \cos(\theta_1 + \theta_2) \end{bmatrix}$$
(33)

Considerando que as juntas do manipulador se movem com velocidades $\dot{\theta} = [\dot{\theta}_1, \dot{\theta}_2]^T$, e que a velocidade resultante na extremidade do manipulador seja igual a $v = [\dot{x}, \dot{y}]^T$, o Jacobiano representa a relação entre as velocidades nas juntas e na extremidade. Dividindo ambos os lados da equação (30) por dt, obtêm-se finalmente:

$$v = J \cdot \theta \tag{34}$$

3.2.2. Jacobiana de um manipulador genérico

Nesta seção será apresentado o cálculo da matriz Jacobiana para o caso de um manipulador genérico de N graus de liberdade. Neste caso, a matriz Jacobiana estará associada à rotação e translação infinitesimal da extremidade. Na Figura 16 representam-se as translações infinitesimais da extremidade como sendo o vetor tri-dimensional dx_e , assim como as rotações infinitesimais são representadas pelo vetor tri-dimensional $d\phi_e$. Ambos os vetores são representados em relação ao sistema de coordenadas $O_0(x_0, y_0, z_0)$. Para simplificar as equações, os dois vetores serão combinados e definidos como o vetor dp de 6 dimensões:

$$dp = \begin{bmatrix} dx_e \\ d\phi_e \end{bmatrix}_{6x1}$$
(35)

Figura 16 - Movimentações infinitesimais de um manipulador genérico

Dividindo ambos os lados por dt, obtêm-se as velocidades linear e angular da extremidade do manipulador:

$$\dot{p} = \begin{bmatrix} v_e \\ \omega_e \end{bmatrix}_{6x1}.$$
(36)

Assim como no primeiro caso (item 3.2.1), a velocidade na extremidade pode ser obtida em função das velocidades nas juntas:

$$\dot{p} = J \cdot \dot{q} \tag{37}$$

onde $\dot{q} = [\dot{q}_1, \dot{q}_2, ..., \dot{q}_n]^T$ é o vetor nx1 de velocidade nas juntas, e J é a matriz Jacobiana geométrica do manipulador. A dimensão da matriz Jacobiana agora é 6xn; as primeiras três linhas são compostas por vetores associados à velocidade linear v_e , já as três últimas linhas são os vetores associados à velocidade angular ω_e .

3.3. Controle PID

Uma vez que a posição/característica desejada é comparada com a real, um controlador deve ser empregado de forma que a informação desejada chegue aos motores responsáveis pelo funcionamento do robô. Diversas técnicas de controle podem ser encontradas na literatura, porém neste trabalho optou-se por

implementar um controle PID (Proporcional-Integral-Derivativo), uma das técnicas mais utilizadas na área de robótica (Astrom & Hagglund, 1995).

O controle PID é conhecido por sua facilidade de implementação, uma vez que este controla individualmente cada junta de um robô. A principal desvantagem desta técnica é o fato de não levar em consideração os efeitos nãolineares da dinâmica do robô, que no entanto não são significativos na maioria dos sistemas *eye-in-hand*, cujas velocidades são limitadas pelo tempo de processamento das imagens. Dependendo da configuração e velocidade do robô, é comum se observar a influência dinâmica de um elo em outro.

Conforme o nome, o controle PID pode ser entendido como a composição de três diferentes técnicas: proporcional, integral e derivativa. A seguir é apresentado seu equacionamento:

$$u_{i} = K_{Pi} e + K_{Ii} \int_{0}^{t} e \, dT + K_{Di} \, \dot{e}$$
(38)

onde:

- *i* representa o elo em questão do robô,
- *u* é o torque de saída do controle,
- e é o erro entre a posição desejada e a real, ou entre as características de imagem
- $K_p \acute{e}$ o ganho proporcional,
- K_1 é o ganho integral,
- K_D é o ganho derivativo.

O primeiro termo, proporcional, controla a rigidez das juntas. Atua basicamente como um amplificador, proporcional ao erro entre a posição desejada e a real.

O controle integral pode ser entendido como um acumulador. Durante todo o processo, o termo cresce com a curva erro *versus* tempo. Este só começa a influenciar significativamente o controle quando o termo proporcional não conseguir mais compensar os pequenos erros (também chamados de erros residuais).

Por último, o controle derivativo representa a taxa (ou velocidade) de variação do erro em relação ao tempo. Este controle pode ser entendido como um amortecedor do sistema, e por isso evita oscilações em torno da posição desejada.

Cada termo mencionado acima possui uma constante de controle (K_p , K_I , K_D). Ziegler e Nichols (1942) propuseram regras para a calibração destes parâmetros, utilizadas especialmente em casos onde não é conhecido o modelo matemático do sistema. Para os demais casos, a sintonia do controle pode ser obtida fazendo uso de técnicas experimentais (Ogata, 1997).

No presente trabalho, as constantes K_p , $K_1 e K_D$ foram determinadas através de procedimentos experimentais. A calibração é feita individualmente para cada elo, determinando por vez cada constante. Inicialmente todas as constantes são forçadas em zero, variando apenas o valor de K_p . Quando finalmente é escolhido o valor da constante baseado na rigidez desejada para a junta, varia-se o valor de K_1 (mantendo a constante proporcional com o valor já escolhido). Por fim, quando determinado o valor desejado para a constante integral, varia-se o valor da constante derivativa até que este também atinja a calibração desejada. Este procedimento para sintonizar controles PID é bastante comum em procedimentos experimentais onde a movimentação de um elo não influencia em outro. Além disso é utilizado em casos onde não é necessária alta precisão nos valores das constantes.

3.4. Integração da Visão Computacional no Controle

Uma vez estabelecida a posição desejada para cada junta do manipulador, o controle PID (descrito na seção 3.3) é encarregado de levar as juntas a uma posição desejada. Uma vez que o controle PID fornece um valor de atuação, este deve ser processado por um sistema eletrônico capaz de transformar a informação vinda do computador em tensão elétrica para os atuadores. Para isso, essa eletrônica deve possuir um sistema de baixa potência, responsável pela interpretação da informação recebida, e um sistema de alta potência, que será responsável por fornecer a energia requerida pelos atuadores.

Uma vez enviada uma tensão aos atuadores, os sistemas de controle podem ser diferenciados pela forma de realimentação do sistema, ou seja, a maneira como fazem a verificação da posição final. Conforme visto na seção 3.1, as realimentações do sistema podem ser feitas através de sensores de posição acoplados aos motores (controle *look-and-move*), como também utilizando novas

imagens adquiridas ao longo da movimentação do manipulador (controle servovisual).

Optando-se pelo controle *look-and-move*, uma imagem é extraída da câmera e processada. As posições relativas entre o objeto e a imagem são enviadas ao controle PID, que recebe também as informações vindas dos sensores de posição. O erro entre a posição desejada e a atual é realimentado a cada instante de tempo até que a posição desejada seja atingida.

Pelo controle servo-visual, várias imagens são sucessivamente extraídas da câmera. A cada instante de tempo uma imagem é processada e são determinadas as posições relativas entre o objeto e a imagem. O controle PID é processado utilizando como erro a distância relativa até o alvo. Uma tensão de saída é gerada e encaminhada aos motores. Feito isso, uma nova imagem é capturada pela câmera, e o ciclo se repete. São extraídas diversas imagens da câmera, até que o manipulador atinja a posição desejada.