

Magnus Thiago da Rocha Meira

Estudo experimental de ligações pilares-vigas de concretos de diferentes resistências

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Civil.

> Orientador: Prof. Giuseppe Barbosa Guimarães Co-orientador: Prof. Ronaldo Barros Gomes

> > Rio de Janeiro Setembro de 2009

Magnus Thiago da Rocha Meira

Estudo Experimental de Ligações Pilares-Vigas de Concretos de Diferentes Resistências

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Giuseppe Barbosa Guimarães Presidente/Orientador Departamento de Engenharia Civil – PUC-Rio

> Prof. Ronaldo Barros Gomes Co-Orientador UFG

Prof. Raul Rosas e Silva Departamento de Engenharia Civil – PUC-Rio

> Prof. Ricardo Leopoldo e Silva França EPUSP-USP

Prof. Ibrahim Abd El Malik Shehata COPPE/UFRJ

> Prof. Gilson Natal Guimarães UFG

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 04 de setembro de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Magnus Thiago da Rocha Meira

Graduou-se em Engenharia Civil na UFRN (Universidade Federal do Rio Grande do Norte) em 2003. Obteve o título de Mestre em Engenharia Civil na UFG (Universidade Federal de Goiás) em 2005.

Ficha Catalográfica

Meira, Magnus Thiago da Rocha

Estudo experimental de ligações pilares-vigas de concretos de diferentes resistências / Magnus Thiago da Rocha Meira ; orientador: Giuseppe Barbosa Guimarães ; co-orientador: Ronaldo Barros Gomes. – 2009.

267 f. : il. (color.) ; 30 cm

Tese (Doutorado em Engenharia Civil)– Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

 Engenharia civil – Teses. 2. Confinamento de pilares. 3. Nós de pórtico. 4. Resistência efetiva do concreto. I. Guimarães, Giuseppe Barbosa. II. Gomes, Ronaldo Barros. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

PUC-Rio - Certificação Digital Nº 0521521/CA

Aos meus pais, Castro Meira e Eunice

Agradecimentos

Ao Prof. Giuseppe Barbosa Guimarães, pela oportunidade de desenvolver esta tese sob sua orientação e pelo apoio e dedicação no decorrer do curso de doutorado.

Ao Prof. Ronaldo Barros Gomes por ter aceitado o convite para a coorientação desta tese e pela participação efetiva no desenvolvimento da mesma.

Aos professores do curso de pós-graduação da PUC-Rio, pelo convívio e ensinamentos.

Ao Rodrigo Menegaz Muller, HOLCIN (Brasil) SA, que disponibilizou parte dos materiais utilizados na pesquisa.

Aos alunos do curso de pós-graduação da PUC-Rio das turmas de 2005 a 2009, com quem eu tive a oportunidade de conviver no decorrer do curso, pela amizade e companheirismo.

Aos técnicos do laboratório que ajudaram na realização dos ensaios.

Ao CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico e ao PROCAD – Programa Nacional de Cooperação Acadêmica, pelo apoio financeiro e por viabilizar entre outros aspectos o intercâmbio científico com outras instituições.

Resumo

Meira, Magnus Thiago da Rocha; Guimarães, Giuseppe Barbosa; Gomes, Ronaldo Barros. **Estudo experimental de ligações pilaresvigas de concretos de diferentes resistências.** Rio de Janeiro, 2009. 267p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O emprego de concretos de diferentes resistências em pilares e nos demais elementos do edifício, sendo o concreto dos pilares o de maior resistência, tem sido uma opção adotada em algumas edificações. Nas construções em geral, o concreto do pavimento é colocado continuamente atravessando o nó pilar-pavimento. Como resultado, o concreto da parte do pilar na região de encontro entre o pavimento e o pilar tem uma resistência menor do que no resto do pilar. Como, em geral, esta região do pilar se encontra confinada pelo pavimento, surge então a dúvida sobre qual é a resistência à compressão que se deve utilizar no cálculo do pilar; se deve ser a do pilar, a do pavimento ou um valor intermediário. O objetivo do trabalho é estudar experimentalmente a influência do confinamento do nó em pilares interceptados por vigas. As variáveis adotadas foram a taxa de armadura e a deformação específica inicial na armadura longitudinal das vigas. Nesta tese foram estudados experimentalmente quatro espécimes com vigas nas duas direções e oito espécimes com vigas em uma direção. Também foram ensaiados dois pilares isolados e homogêneos, um com concreto de mesma resistência à compressão do concreto utilizado no pilar e outro com concreto com resistência igual à resistência do concreto das vigas. As resistências nominais dos concretos das vigas e dos pilares foram 30 MPa e 70 MPa respectivamente. Os resultados indicaram que o confinamento promovido por vigas nas duas direções resulta num aumento significativo na carga de ruptura. O aumento da taxa de armadura das vigas aumenta a capacidade final somente nos espécimes com vigas nas duas direções. A influência da deformação inicial na armadura das vigas é inexpressiva.

Palavras-chave

Confinamento de pilares; nós de pórtico; resistência efetiva do concreto.

Abstract

Meira, Magnus Thiago da Rocha; Guimarães, Giuseppe Barbosa; Gomes, Ronaldo Barros (Advisors). **Experimental study of beamcolumn joints with different concrete strengths.** Rio de Janeiro, 2009. 267p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The use of concretes with different strengths in columns and in the others elements of the floor, with the columns having the concrete with the highest strength, has been an option adopted in some buildings. In general, the concrete of the floor is poured continuously crossing the floor-column joint. As a result, the concrete strength in the joint region is lower than the concrete strength of the rest of the column. Since, in general, the joint region is confined by the floor, a doubt on the effective strength of the joint remains. The objective of the present work was to study experimentally the influence of the lateral confinement in the joint region of columns intercepted by beams. The variables were the reinforcement ratio and the initial strain in the tension reinforcement of the beams. In the present thesis, four specimens with beams in one direction and eight specimens with beams in two directions were studied experimentally. In addition, two isolated columns were also tested, one with concrete of same strength of the concrete of the columns and other with concrete of same strength of the concrete of the beams. The compressive concrete strength of the beams and columns were 30 MPa and 70 MPa respectively. The results indicated that the confinement provided by beams in two directions causes a significant increase of the failure load. The increase of the tension reinforcement ratio of the beams increases the failure load only in specimens with beams in two directions. The initial strain in the tension reinforcement of the beams has no effect on the ultimate capacity of the specimens.

Keywords

Confined columns; floor-column joint; effective concrete strength.

Sumário

1 – INTRODUÇÃO	26
1.1. Generalidades	26
1.2. Objetivo e justificativa	27
1.3. Estrutura do trabalho	27
2 – REVISÃO BIBLIOGRÁFICA	29
2.1. Nós de pórtico	29
2.1.1. Definição	29
2.1.2. Tipos de nós de pórtico	29
2.1.3. Comportamento de nós de pórtico	31
2.1.4. Pilares com concreto de elevada resistência atravessados por	
vigas e/ou lajes com concretos de resistência normal	31
2.1.5. Carga e modo de ruptura	33
2.2. Concreto confinado	34
2.3. Fatores que afetam a resistência efetiva	35
2.3.1. Presença de laje e/ou vigas com ou sem cargas aplicadas	36
2.3.2. Razão entre as resistências à compressão dos elementos	39
2.3.3. Razão <i>h/c</i> entre a altura da viga e/ou laje e a menor dimensão	
do pilar	40
2.3.4. Armadura longitudinal da viga e/ou laje	41
2.3.5. Razão entre dimensões do pilar	42
2.3.6. Excentricidade da carga aplicada no pilar	43
2.3.7. Uso de armadura espiral, tirante ou estribo no nó	43
2.3.8. Uso de concreto de elevada resistência no nó	44
2.4. Comportamento de pilares com concreto de maior resistência	
atravessados por viga e/ou laje com concreto de menor resistência	45
2.5. Normas e métodos de cálculo	49
2.6. Avaliação de normas e métodos de cálculo	53
2.7. Considerações finais	57
3 – PROGRAMA EXPERIMENTAL	60
3.1. Características dos modelos ensaiados	60

3.1.1. Parâmetros e variáveis	60
3.1.2. Programa experimental	61
3.2. Fôrmas	62
3.3. Materiais	63
3.3.1. Concreto	63
3.3.2. Aço	63
3.4. Detalhamento dos modelos	64
3.5. Instrumentação	65
3.6. Procedimento de preparação e realização dos ensaios	69
4 – APRESENTAÇÃO DOS RESULTADOS	73
4.1. Materiais	73
4.1.1. Concreto	73
4.1.2. Aço	74
4.2. Modo de ruptura	75
4.3. Carga de ruptura	80
4.4. Deformação	80
4.4.1. Concreto	80
4.4.2. Aço	86
4.5. Deslocamentos	97
4.5.1. Pilar	97
5 – ANÁLISE DOS RESULTADOS	102
5.1. Comportamento dos espécimes	102
5.2. Carga e modo de ruptura	106
5.2.1. Carga de ruptura	106
5.2.2. Modo de ruptura	111
5.3. Deformação	112
5.3.1. Concreto	112
5.3.2. Aço	114
5.4. Deslocamentos	125
5.5. Comparação entre as resistências efetivas experimentais e	
estimadas	127
5.6. Considerações quanto ao estado limite último teórico	131
6 – CONCLUSÕES E SUGESTÕES	134
6.1. Conclusões	134

6.2. Sugestões para trabalhos futuros	137
6.2.1. Variáveis	137
6.2.2. Aparato experimental	137
Referências Bibliográficas	139
Anexo A – Dados da literatura para avaliar as normas e os métodos	
de cálcul	143
Anexo B – Gráfico da avaliação das normas e dos métodos de cálculo	146
Anexo C – Detalhamento da armadura dos espécimes	154
Anexo D – Equipamentos para preparação e realização dos ensaios	160
Anexo E – Dados dos ensaios	165
Anexo F – Dados dos ensaios de caracterização do concreto e do aço	250
Anexo G – Cálculo das resistências efetivas dos espécimes na ruptura	253
Anexo H – Cálculo das resistências efetivas no estado limite último	261

Lista de figuras

Figura 2.1 – Delimitação do nó.	29
Figura 2.2 – Exemplos de tipos de ligações (as lajes não estão	
desenhadas para facilitar a visualização) (ACI 352-02, 2002).	30
Figura 2.3 – Exemplos de tipos de ligações de concreto armado	
em edifícios.	30
Figura 2.4 – Estado triaxial no nó (Ospina e Alexander, 1997).	31
Figura 2.5 – Conexões viga-laje-pilar: interior (a), borda (b),	
canto (c) e pilar sanduíche (d) (Portella <i>et al.</i> , 1999).	32
Figura 2.6 – Conexões laje-pilar: (a) concreto do nó é o mesmo	
do pilar, (b) concreto do nó é o mesmo da laje.	33
Figura 2.7 – Curvas tensão – deformação e coeficiente de Poisson	
– deformação (Guimarães, 2003).	34
Figura 2.8 – Efeito do tipo de espécime, onde f_{ce} foi calculado	
com α_1 =1,00 (Bianchini <i>et al.</i> , 1960).	36
Figura 2.9 – Nó pilar-laje interno sem carga aplicada na laje	
(Ali Shah, 2003a).	37
Figura 2.10 – Nó pilar-laje interno com carga aplicada na laje	
(Ali Shah, 2003a).	38
Figura 2.11 – Deformação dos espécimes sem e com carga na laje	
Ospina e Alexander (1998).	38
Figura 2.12 – Razão f_{ce}/f_{cs} vs. f_{cc}/f_{cs} , onde f_{ce} foi calculado com	
α ₁ =1,00.	39
Figura 2.13 – Razão f_{cc}/f_{cs} vs. f_{ce}/f_{cs} para diferentes valores de h/c ,	
onde f_{ce} foi calculado com α_1 =1,00 (Shu e Hawkins, 1992).	41
Figura 2.14 – Efeito da distribuição da armadura superior da laje na	
resistência do nó (McHarg <i>et al.</i> , 2000a).	42
Figura 2.15 – Razão f_{cc}/f_{cs} versus f_{ce}/f_{cs} para pilares sanduíche	
(Lee e Mendis, 2004) e internos (Ospina e Alexander, 1997) com	
seção quadrada e retangular, onde f_{ce} foi calculado com α_1 =1,00.	43
Figura 2.16 – Efeito do núcleo de concreto de alta resistência na	
resistência do nó (Ospina e Alexander, 1997).	44
Figura 2.17 – Cilindro de aço usado por Schenck e Schneider (2005).	45

Figura 2.18 – Modelo de fissuração apresentado por Ospina e	
Alexander (1997) para o espécime D-SC1 com relação <i>h/c</i> igual a 1,0.	46
Figura 2.19 – Modelo de fissuração apresentado por Ospina e	
Alexander (1997) para o espécime B-4 sem carregamento na laje.	47
Figura 2.20 – Modelo de fissuração apresentado por Ospina e	
Alexander (1997) para o espécime B-2 com carregamento na laje.	48
Figura 2.21 – Tensão de tração (parte escura) e de compressão	
(parte clara) obtida por Lee et al. (2008) nos estágios de carga:	
(a) início do carregamento; (b) carga de escoamento; (c) após o	
escoamento; (d) carga de pico.	49
Figura 2.22 – Exemplo de nó pilar-viga, onde a seção transversa	
l do pilar é retangular.	57
Figura 3.1 – Características geométricas dos espécimes.	60
Figura 3.2 – Significado da nomenclatura do espécime.	61
Figura 3.3 – Fotografias das fôrmas: (a) Pilar isolado, (b) Pilar com	
viga em uma direção e (c) Pilar com viga nas duas direções.	62
Figura 3.4 – Utilização de cantoneiras de aço na fôrma: (a) Pilar com	
viga em uma direção, (b) Pilar com viga nas duas direções.	63
Figura 3.5 – Seção transversal da viga: (a) 3∳8, (b) 6∳8, (c) 6∲10 e	
(d) 6φ12.5; distribuição da armadura transversal: (e) 3φ8, (f) 6φ8 e	
(g) 6φ10 e 6φ12.5 (medidas em mm).	64
Figura 3.6 – Armadura dos pilares: (a) cabeça do pilar, (b) região central	
do pilar e (c) distribuição da armadura transversal (medidas em mm).	65
Figura 3.7 – Distribuição dos extensômetros no concreto na posição	
de ensaio (medidas em mm): (a) pilar isolado, (b) pilar com viga em uma	
direção, (c) pilar com vigas nas duas direções.	66
Figura 3.8 – Posição dos extensômetros na armadura da viga dos	
pilares com vigas nas duas direções na posição de concretagem:	
(a) armadura negativa; (b) armadura positiva.	67
Figura 3.9 – Distribuição dos extensômetros nas armaduras dos	
espécimes na posição de concretagem: (a) Pilar isolado, (b) Pilar	
com viga em uma ou duas direções.	67
Figura 3.10 – Posicionamento dos transdutores de deslocamentos	
(medidas em mm): (a) Pilar isolado, (b) Pilar com viga em uma direção,	
(c) Pilar com viga nas duas direções.	68
Figura 3.11 – Posicionamento dos transdutores de deslocamentos	

nos espécimes da terceira série de ensaios (medidas em mm).	69
Figura 3.12 – Desenho da montagem do ensaio do espécime com	
viga em uma direção.	70
Figura 3.13 – Desenho da montagem do ensaio do espécime com	
viga nas duas direções.	71
Figura 3.14 – Seqüência de carregamento nos espécimes com	
viga em uma ou nas duas direções.	72
Figura 4.1 – Fotografia dos ensaios de: (a) resistência à tração,	
(b) módulo de elasticidade.	73
Figura 4.2 – Seqüência da concretagem: (a) PVxy; (b) PVx.	74
Figura 4.3 – Fotografias: (a) amostras das barras, (b) barra após o ensaio.	75
Figura 4.4 – Fotografias de frente e de perfil dos espécimes: (a) PI-30,	
(b) PI-70.	76
Figura 4.5 – Fotografias dos espécimes: (a) PVxy-1,0-1, (b) PVxy-1,0-2.	76
Figura 4.6 – Fotografia do espécime PVxy-0,5-1, após a retirada da viga	
do lado em que o concreto está esmagado.	77
Figura 4.7 – Fotografia do espécime PVxy-0,5-2 antes e depois da ruptura.	77
Figura 4.8 – Fotografia dos espécimes após a ruptura: (a) PVx-0,5-1,	
(b) PVx-1,0-1, (c) PVx-1,6-1, (d) PVx-2,5-1, (e) PVx-0,5-2, (f) PVx-1,0-2,	
(g) PVx-1,6-2, (h) PVx-2,5-2.	78
Figura 4.9 – Curvas força–deformação do concreto e distribuição	
dessas deformações em seções dos espécimes: (a) PI-30; (b) PI-70.	81
Figura 4.10 – Curvas força–deformação do concreto e distribuição	
dessas deformações em seções dos espécimes: (a) PVx-0,5-1;	
(b) PVx-0,5-2; (c) PVx-1,0-1; (d) PVx-1,0-2.	82
Figura 4.11 – Curvas força–deformação do concreto e distribuição	
dessas deformações em seções dos espécimes: (a) PVx-1,6-1;	
(b) PVx-1,6-2; (c) PVx-2,5-1; (d) PVx-2,5-2.	83
Figura 4.12 – Curvas força–deformação do concreto e distribuição dessas	
deformações em seções dos espécimes: (a) PVxy-0,5-1; (b) PVxy-0,5-2.	84
Figura 4.13 – Curvas força–deformação do concreto e distribuição dessas	
deformações em seções dos espécimes: (a) PVxy-1,0-1; (b) PVxy-1,0-2.	85
Figura 4.14 – Posição dos extensômetros na armadura da viga:	
(a) negativa; (b) positiva.	86
Figura 4.15 – Curvas força–deformação da armadura longitudinal negativa	
da viga dos espécimes: (a) PVx-0,5-1; (b) PVx-0,5-2; (c) PVx-1,0-1;	

(d) PVx-1,0-2; (e) PVx-1,6-1; (f) PVx-1,6-2; (g) PVx-2,5-1; (h) PVx-2,5-2.	87
Figura 4.16 – Curvas força–deformação da armadura longitudinal negativa	
da viga dos espécimes: (a) PVxy-0,5-1; (b) PVxy-0,5-2; (c) PVxy-1,0-1;	
(d) PVxy-1,0-2.	88
Figura 4.17 – Curvas força–deformação da armadura longitudinal positiva	
da viga dos espécimes: (a) PVx-0,5-1; (b) PVx0,5-2; (c) PVx-1,0-1;	
(d) PVx-1,0-2; (e) PVx-1,6-1; (f) PVx-1,6-2; (g) PVx-2,5-1; (h) PVx-2,5-2.	90
Figura 4.18 – Curvas força–deformação da armadura longitudinal	
positiva da viga dos espécimes: (a) PVxy-0,5-1; (b) PVxy-0,5-2;	
(c) PVxy-1,0-1; (d) PVxy-1,0-2.	91
Figura 4.19 – Curvas força–deformação da armadura longitudinal	
do pilar dos espécimes: (a) PI-30; (b) PI-70.	92
Figura 4.20 – Curvas força–deformação da armadura longitudinal	
do pilar dos espécimes: (a) PVx-0,5-1; (b) PVx-0,5-2; (c) PVx-1,0-1;	
(d) PVx-1,0-2; (e) PVx-1,6-1; (f) PVx-1,6-2; (g) PVx-2,5-1; (h) PVx-2,5-2.	93
Figura 4.21 – Curvas força–deformação da armadura longitudinal do pilar	
dos espécimes: (a) PVxy-0,5-1; (b) PVxy-0,5-2; (c) PVxy-1,0-1;	
(d) PVxy-1,0-2.	94
Figura 4.22 – Curvas força–deformação dos estribos do nó dos	
espécimes: (a) PI-30; (b) PI-70.	94
Figura 4.23 – Curvas força–deformação dos estribos do nó dos	
espécimes: (a) PVx-0,5-1; (b) PVx-0,5-2; (c) PVx-1,0-1; (d) PVx-1,0-2;	
(e) PVx-1,6-1; (f) PVx-1,6-2; (g) PVx-2,5-1; (h) PVx-2,5-2.	95
Figura 4.24 – Curvas força–deformação dos estribos do nó dos	
espécimes: (a) PVxy-0,5-1; (b) PVxy-0,5-2; (c) PVxy-1,0-1; (d) PVxy-1,0-2.	96
Figura 4.25 – Curvas força–deslocamento lateral e figura com o	
deslocamento lateral do espécime ao longo do ensaio: (a) PI-30; (b) PI-70.	97
Figura 4.26 – Curvas força–deslocamento lateral e figura com o	
deslocamento lateral do espécime ao longo do ensaio: (a) PVx-0,5-1;	
(b) PVx-0,5-2; (c) PVx-1,0-1; (b) PVx-1,0-2.	99
Figura 4.27 – Curvas força–deslocamento lateral e figura com o	
deslocamento lateral do espécime ao longo do ensaio: (a) PVx-1,6-1;	
(b) PVx-1,6-2; (c) PVx-2,5-1; (d) PVx-2,5-2.	100
Figura 4.28 – Curvas força–deslocamento lateral e figura com o	
deslocamento lateral do espécime ao longo do ensaio: (a) PVxy-0,5-1;	
(b) PVxy-0,5-2; (c) PVxy-1,0-1; (d) PVxy-1,0-2.	101

Figura 5.1 – Deformação da armadura longitudinal da viga dos	
espécimes: (a) PVx-0,5-1; (b) PVx-0,5-2; (c) PVx-1,0-1; (d) PVx-1,0-2.	104
Figura 5.2 – Deformação da armadura longitudinal da viga dos	
espécimes: (a) PVx-1,6-1; (b) PVx-1,6-2; (c) PVx-2,5-1; (d) PVx-2,5-2.	105
Figura 5.3 – Deformação da armadura longitudinal da viga dos	
espécimes: (a) PVxy-0,5-2; (b) PVxy-1,0-1; (c) PVxy-1,0-2.	106
Figura 5.4 – Posição dos extensômetros do concreto: (a) PVx;	
(b) PVxy (valores em mm).	112
Figura 5.5 – Curva força–deformação do concreto após a aplicação	
de carga na viga dos espécimes PVx: (a) SG-01; (b) SG-02.	113
Figura 5.6 – Curva força-deformação do concreto após a aplicação de carga	
na viga dos espécimes PVxy: (a) SG-01; (b) SG-02; (c) SG-03; (d) SG-04.	113
Figura 5.7 – Posição dos extensômetros na armadura da viga:	
(a) armadura negativa; (b) armadura positiva.	115
Figura 5.8 – Curvas força aplicada no pilar – força $F_{s,viga}$ da armadura negativ	'a
da viga nos espécimes PVx: (a) SG-05; (b) SG-09; (c) SG-06; (d) SG-10.	116
Figura 5.9 – Curvas força aplicada no pilar – força F _{s,viga} da armadura	
negativa da viga nos espécimes PVxy: (a) SG-05; (b) SG-09; (c) SG-06;	
(d) SG-10; (e) SG-22 e (f) SG-26.	117
Figura 5.10 – Curvas força–deformação da armadura longitudinal positiva	
da viga após a aplicação de carga na viga dos espécimes PVx:	
(a) SG-07; (b) SG-11; (c) SG-08; (d) SG-12.	119
Figura 5.11 – Curvas força–deformação da armadura longitudinal positiva	
da viga após a aplicação de carga na viga dos espécimes PVxy:	
(a) SG-07; (b) SG-11; (c) SG-08; (d) SG-12; (e) SG-24 e (f) SG-28.	120
Figura 5.12 – Posição dos extensômetros na armadura longitudinal do pilar.	121
Figura 5.13 – Curvas força–deformação da armadura longitudinal	
do pilar após a aplicação de carga na viga dos espécimes PVx:	
(a) SG-13; (b) SG-14.	122
Figura 5.14 – Curvas força–deformação da armadura longitudinal do	
pilar após a aplicação de carga na viga dos espécimes PVxy:	
(a) SG-13; (b) SG-14.	122
Figura 5.15 – Posição dos extensômetros dos estribos no nó.	123
Figura 5.16 – Curvas força–deformação dos estribos após a aplicação	
de carga na viga dos espécimes PVx: (a) SG-15; (b) SG-16; (c) SG-17;	
(d) SG-18.	124

Figura 5.17 – Curvas força–deformação dos estribos após a aplicação	
de carga na viga dos espécimes PVxy: (a) SG-15; (b) SG-16; (c) SG-17;	
(d) SG-18.	124
Figura 5.18 – Posicionamento dos transdutores de deslocamentos	
(medidas em mm): (a) Pilar com viga em uma direção, (b) Pilar com	
viga nas duas direções.	125
Figura 5.19 – Curvas força–deslocamento lateral das réguas lineares de	
deslocamento nos espécimes com vigas em uma direção: (a) TD 1;	
(b) TD 8.	126
Figura 5.20 – Curvas força–deslocamento lateral das réguas lineares	
de deslocamento nos espécimes com vigas nas duas direções: (a) TD 1;	
(b) TD 3.	126
Figura 5.21 – Gráfico dos valores de f _{ce,Teste} /f _{ce,mét.cálc} considerando a	
carga de ruptura igual a F _{u,pil.sup.} .	130
Figura 5.22 – Gráfico dos valores de f _{ce,Teste} /f _{ce,mét.cálc} considerando	
a carga de ruptura igual a F _{u,pil.inf.} .	131
Figura 5.23 – Gráfico comparativo entre as resistências efetivas no	
estado limite último e na ruptura dos espécimes PVx.	132
Figura 5.24 – Gráfico comparativo entre as resistências efetivas no	
estado limite último e na ruptura dos espécimes PVxy.	132
Figura 5.25 – Gráfico dos valores de f _{ce,ELU} /f _{ce,mét.calc} .	133
Figura B.1 – Métodos de cálculo para pilares de canto interceptados	
por laje.	146
Figura B.2 – Métodos de cálculo para pilares de canto interceptados	
por laje, cont	147
Figura B.3 – Métodos de cálculo para pilares de borda interceptados	
por viga e/ou laje.	148
Figura B.4 – Métodos de cálculo para pilares de borda interceptados	
por viga e/ou laje, continuação.	149
Figura B.5 – Métodos de cálculo para pilares de borda interceptados	
por laje.	150
Figura B.6 – Métodos de cálculo para pilares internos interceptados	
por viga e/ou laje.	151
Figura B.7 – Métodos de cálculo para pilares internos interceptados	
por laje.	152
Figura B.8 – Métodos de cálculo para pilares internos interceptados por laje.	153

Figura C.1 – Detalhamento das armaduras dos espécimes PVx-0,5-1	
e PVx-0,5-2.	154
Figura C.2 – Detalhamento das armaduras dos espécimes PVx-1,0-1	
e PVx-1,0-2.	155
Figura C.3 – Detalhamento das armaduras dos espécimes PVx-1,6-1	
e PVx-1,6-2.	156
Figura C.4 – Detalhamento das armaduras dos espécimes PVx-2,5-1	
e PVx-2,5-2.	157
Figura C.5 – Detalhamento das armaduras dos espécimes PVxy-0,5-1	
e PVxy-0,5-2.	158
Figura C.6 – Detalhamento das armaduras dos espécimes PVxy-1,0-1	
e PVxy-1,0-2.	159
Figura D.1 – Atuador hidráulico.	160
Figura D.2 – Bomba hidráulica de pressão controlada.	160
Figura D.3 – Transdutor de pressão.	160
Figura D.4 – Réguas lineares de deslocamentos.	161
Figura D.5 – Sistema de aquisição de dados (combo).	161
Figura D.6 – Pórtico de reação.	161
Figura D.7 – Viga metálica.	161
Figura D.8 – Perfil metálico fechado.	162
Figura D.9 – Barra rosqueada.	162
Figura D.10 – Vigas de madeira.	162
Figura D.11 – Perfil C metálico.	162
Figura D.12 – Chapas metálicas.	162
Figura D.13 – Detalhe da 1ª etapa de concretagem do espécime PVx.	163
Figura D.14 – Detalhe da 1ª etapa de concretagem do espécime PVxy.	163
Figura D.15 – Detalhe da ancoragem mecânica da armadura das vigas.	163
Figura D.16 – Exemplo do espécime PVx antes do ensaio.	164
Figura D.17 – Exemplo do espécime PVx durante o ensaio.	164
Figura D.18 – Exemplo do espécime PVxy durante o ensaio.	164
Figura F.1 – Curva tensão-deformação específica do concreto dos pilares	
no ensaio do módulo de elasticidade.	250
Figura F.2 – Curva tensão-deformação específica do concreto das vigas	
no ensaio do módulo de elasticidade.	251
Figura F.3 – Curva tensão-deformação específica do aço.	252

Lista de tabelas

Tabela 2.1 – Métodos de cálculo para pilares internos.	50
Tabela 2.2 – Métodos de cálculo para pilares de borda e/ou canto.	51
Tabela 2.3 – Valor crítico da razão f_{cc}/f_{cs} de acordo com o valor	
de <i>h/c</i> (Lee e Mendis, 2004).	52
Tabela 2.4 – Testes encontrados na literatura.	54
Tabela 2.5 – Valores médios de $f_{ce,exp.}/f_{ce,mét.cálc.}$ dos métodos de	
cálculo para pilares internos.	55
Tabela 2.6 – Valores médios de $f_{ce,exp.}/f_{ce,mét.cálc.}$ dos métodos de	
cálculo para pilares de borda e de canto.	56
Tabela 2.7 – Valores médios de $f_{ce,exp.}/f_{ce,mét.cálc.}$ dos métodos de	
cálculo para pilares internos, onde $f_{ce,exp.}$ é calculada com α_1 =1,00.	58
Tabela 2.8 – Valores médios de $f_{ce,exp.}/f_{ce,mét.cálc.}$ dos métodos de	
cálculo para pilares de borda e de canto, onde $f_{ce,exp.}$ é calculada com	
$\alpha_1 = 1,00.$	59
Tabela 3.1 – Características dos espécimes.	61
Tabela 3.2 – Traços dos concretos – Quantidade para 1m³.	63
Tabela 4.1 – Resultados dos ensaios de caracterização do concreto.	74
Tabela 4.2 – Resultados dos ensaios de caracterização das barras de aço.	75
Tabela 4.3 – Fissuras nos espécimes e suas respectivas cargas no	
pilar e na viga.	79
Tabela 4.4 – Carga e modo de ruptura.	80
Tabela 5.1 – Cargas de ruptura F_u igual à carga aplicada no pilar superior	
F _{u,pil.sup.} e de escoamento dos espécimes com viga em uma direção.	107
Tabela 5.2 – Cargas de ruptura F_u igual à carga aplicada no pilar superior	
F _{u,pil.sup.} e de escoamento dos espécimes com viga nas duas direções.	109
Tabela 5.3 – Cargas de ruptura F_u igual à carga aplicada no pilar superior	
F _{u,pil.inf.} e de escoamento dos espécimes com viga em uma direção.	110
Tabela 5.4 – Cargas de ruptura F_u igual à carga aplicada no pilar superior	
F _{u,pil.inf.} e de escoamento dos espécimes com viga nas duas direções.	111
Tabela 5.5 – Dados da resistência efetiva obtida nos testes.	128
Tabela 5.6 – Dados obtidos dos métodos de cálculo para pilar com viga	

em uma direção.	129
Tabela 5.7 – Dados da resistência efetiva obtida nos testes considerando	
a carga de ruptura igual a F _{u,pil.inf} .	130
Tabela A.1 – Pilares de canto interceptados por lajes.	143
Tabela A.2 – Pilares de borda interceptados por vigas e lajes.	143
Tabela A.3 – Pilares de borda interceptados por lajes.	144
Tabela A.4 – Pilares internos interceptados por vigas e lajes.	144
Tabela A.5 – Pilares internos interceptados por lajes.	145
Tabela E.1 – Espécime PI-30.	165
Tabela E.2 – Espécime PI-30, continuação.	166
Tabela E.3 – Espécime PI-70.	167
Tabela E.4 – Espécime PI-70, continuação.	168
Tabela E.13 – Espécime PVx-0,5-2 parte 1.	177
Tabela E.14 – Espécime PVx-0,5-2 parte 2.	178
Tabela E.15 – Espécime PVx-0,5-2 parte 3.	179
Tabela E.16 – Espécime PVx-0,5-2 parte 4.	180
Tabela E.17 – Espécime PVx-1,0-1 parte 1.	181
Tabela E.18 – Espécime PVx-1,0-1 parte 1, continuação.	182
Tabela E.19 – Espécime PVx-1,0-1 parte 2.	183
Tabela E.20 – Espécime PVx-1,0-1 parte 2, continuação.	184
Tabela E.21 – Espécime PVx-1,0-1 parte 3.	185
Tabela E.22 – Espécime PVx-1,0-1 parte 3, continuação.	186
Tabela E.23 – Espécime PVx-1,0-1 parte 4.	187
Tabela E.24 – Espécime PVx-1,0-1 parte 4, continuação.	188
Tabela E.25 – Espécime PVx-1,0-2 parte 1.	189
Tabela E.26 – Espécime PVx-1,0-2 parte 1, continuação.	190
Tabela E.27 – Espécime PVx-1,0-2 parte 2.	191
Tabela E.28 – Espécime PVx-1,0-2 parte 2, continuação.	192
Tabela E.29 – Espécime PVx-1,0-2 parte 3.	193
Tabela E.30 – Espécime PVx-1,0-2 parte 3, continuação.	194
Tabela E.31 – Espécime PVx-1,0-2 parte 4.	195
Tabela E.32 – Espécime PVx-1,0-2 parte 4, continuação.	196
Tabela E.33 – Espécime PVx-1,6-1 parte 1.	197
Tabela E.34 – Espécime PVx-1,6-1 parte 2.	198
Tabela E.35 – Espécime PVx-1,6-1 parte 3.	199
Tabela E.36 – Espécime PVx-1,6-1 parte 4.	200

Tabela E.37 – Espécime PVx-1,6-2 parte 1.	201
Tabela E.38 – Espécime PVx-1,6-2 parte 1, continuação.	202
Tabela E.39 – Espécime PVx-1,6-2 parte 2.	203
Tabela E.40 – Espécime PVx-1,6-2 parte 2, continuação.	204
Tabela E.41 – Espécime PVx-1,6-2 parte 3.	205
Tabela E.42 – Espécime PVx-1,6-2 parte 3, continuação.	206
Tabela E.43 – Espécime PVx-1,6-2 parte 4.	207
Tabela E.44 – Espécime PVx-1,6-2 parte 4, continuação.	208
Tabela E.45 – Espécime PVx-2,5-1 parte 1.	209
Tabela E.46 – Espécime PVx-2,5-1 parte 1, continuação.	210
Tabela E.47 – Espécime PVx-2,5-1 parte 2.	211
Tabela E.48 – Espécime PVx-2,5-1 parte 2, continuação.	212
Tabela E.49 – Espécime PVx-2,5-1 parte 3.	213
Tabela E.50 – Espécime PVx-2,5-1 parte 3, continuação.	214
Tabela E.51 – Espécime PVx-2,5-1 parte 4.	215
Tabela E.52 – Espécime PVx-2,5-1 parte 4, continuação.	216
Tabela E.53 – Espécime PVx-2,5-2 parte 1.	217
Tabela E.54 – Espécime PVx-2,5-2 parte 1, continuação.	218
Tabela E.55 – Espécime PVx-2,5-2 parte 2.	219
Tabela E.56 – Espécime PVx-2,5-2 parte 2, continuação.	220
Tabela E.57 – Espécime PVx-2,5-2 parte 3.	221
Tabela E.58 – Espécime PVx-2,5-2 parte 3, continuação.	222
Tabela E.59 – Espécime PVx-2,5-2 parte 4.	223
Tabela E.60 – Espécime PVx-2,5-2 parte 4, continuação.	224
Tabela E.61 – Espécime PVxy-0,5-1 parte 1.	225
Tabela E.62 – Espécime PVxy-0,5-1 parte 2.	226
Tabela E.63 – Espécime PVxy-0,5-1 parte 3.	227
Tabela E.64 – Espécime PVxy-0,5-1 parte 4.	228
Tabela E.65 – Espécime PVxy-0,5-2 parte 1.	229
Tabela E.66 – Espécime PVxy-0,5-2 parte 2.	230
Tabela E.67 – Espécime PVxy-0,5-2 parte 3.	231
Tabela E.68 – Espécime PVxy-0,5-2 parte 4.	232
Tabela E.69 – Espécime PVxy-0,5-2 parte 5.	233
Tabela E.70 – Espécime PVxy-1,0-1 parte 1.	234
Tabela E.71 – Espécime PVxy-1,0-1 parte 1, continuação.	235
Tabela E.72 – Espécime PVxy-1,0-1 parte 2.	236

Tabela E.73 – Espécime PVxy-1,0-1 parte 2, continuação.	237
Tabela E.74 – Espécime PVxy-1,0-1 parte 3.	238
Tabela E.75 – Espécime PVxy-1,0-1 parte 3, continuação.	239
Tabela E.76 – Espécime PVxy-1,0-1 parte 4.	240
Tabela E.77 – Espécime PVxy-1,0-1 parte 4, continuação.	241
Tabela E.78 – Espécime PVxy-1,0-2 parte 1.	242
Tabela E.79 – Espécime PVxy-1,0-2 parte 1, continuação.	243
Tabela E.80 – Espécime PVxy-1,0-2 parte 2.	244
Tabela E.81 – Espécime PVxy-1,0-2 parte 2, continuação.	245
Tabela E.82 – Espécime PVxy-1,0-2 parte 3.	246
Tabela E.83 – Espécime PVxy-1,0-2 parte 3, continuação.	247
Tabela E.84 – Espécime PVxy-1,0-2 parte 4.	248
Tabela E.85 – Espécime PVxy-1,0-2 parte 4, continuação.	249

Lista de símbolos

Símbolos Romanos

а	Coeficiente utilizado por Lee e Mendis (2004) na equação do	
	cálculo da resistência efetiva	
A _c	Área de concreto da seção transversal de um pilar	
A _s	Armadura da viga ou laje	
b	Base da viga	
с	Menor dimensão do pilar	
C _c	Força resistente do concreto em uma seção a flexo-compreessão	
C _{s1 ou 2}	Força resistente do aço em uma seção a flexo-compreessão	
е	Excentricidade da carga em relação ao eixo do pilar	
e _{total}	Excentricidade total da carga em relação ao eixo do pilar (incluído	
	efeito de 2ª)	
Es	Módulo de Elasticidade do aço	
f _c	Resistência à compressão do concreto	
f _{cc}	Resistência à compressão do concreto do pilar	
f _{cc(t)}	Resistência à tração do concreto do pilar	
f _{ce}	Resistência efetiva do nó	
$\mathbf{f}_{\text{ce,ELU}}$	Resistência efetiva do nó para uma seção no estado limite último	
	de deformação	
f _{ce,mét.cálc.}	Resistência efetiva do nó estimada por um método de cálculo	
f _{ce,teste}	Resistência efetiva do nó obtida no ensaio	
f _{ck}	Resistência à compressão característica do concreto	
f _{c,pil.sup.}	Resistência à compressão do concreto do pilar superior	
f _{c,pil.inf.}	Resistência à compressão do concreto do pilar inferior	
f _{cs}	Resistência à compressão do concreto da viga e/ou laje	
f _{c,viga}	Resistência à compressão do concreto da viga	
f _{equ}	Resistência à compressão do concreto equivalente utilizado por	
	Lee e Mendis (2004) na equação do cálculo da resistência efetiva	
f _y	Tensão de escoamento do aço	
f _{y1}	Tensão de escoamento do aço do estribo da viga	
f _{y2}	Tensão de escoamento do aço da armadura longitudinal da viga	
f ₁	Tensão de confinamento gerada pela armadura que atravessa o	
	nó	

F _{pilar}	Força aplicada no pilar
$F_{s,viga}$	Força na armadura longitudinal da viga
$F_{u,pilar}$	Força última no pilar
F _{u,pil.inf.}	Força última no pilar inferior
F _{u,pil.sup.}	Força última no pilar superior
$F_{u,viga}$	Força última na viga
F_{viga}	Força aplicada na viga
h	Altura da viga ou laje
Н	Altura do espécime
K_{mod}	Coeficiente proposto por Rüsch (1960) para estimar a redução no
	valor da resistência à compressão do concreto em espécimes
K _{mod,1}	Coeficiente que representa o acréscimo da resistência do
	concreto após os 28 dias de idade
k _{mod,2}	Coeficiente que representa a relação entre a resistência à
	compressão obtida na estrutura e a resistência medida em um
	corpo-de-prova cilíndrico de dimensões 150 mm x 300 mm
kmod 3	Coeficiente que representa o efeito de cargas de longa duração
· · · · · · · · · · · · · · · · · · ·	
l _p	Comprimento do pilar
l _p l _v	Comprimento do pilar Comprimento da viga
I _p I _v L ₁	Comprimento do pilar Comprimento da viga Comprimento do estribo da viga
I_p I_v L_1 L_2	Comprimento do pilar Comprimento da viga Comprimento do estribo da viga Comprimento da armadura da viga
I_p I_v L_1 L_2 M	Comprimento do pilar Comprimento da viga Comprimento do estribo da viga Comprimento da armadura da viga Momento fletor que atua na seção transversal de um pilar
I _p I _v L ₁ L ₂ M N	Comprimento do pilar Comprimento da viga Comprimento do estribo da viga Comprimento da armadura da viga Momento fletor que atua na seção transversal de um pilar Força normal que atua na seção transversal de um pilar
I _p I _v L ₁ L ₂ M N P _{yn}	Comprimento do pilar Comprimento da viga Comprimento da estribo da viga Comprimento da armadura da viga Momento fletor que atua na seção transversal de um pilar Força normal que atua na seção transversal de um pilar Carga no pilar superior quando um extensômetro n atinge a
I_{p} I_{v} L_{1} L_{2} M N P_{yn}	Comprimento do pilar Comprimento da viga Comprimento da estribo da viga Comprimento da armadura da viga Momento fletor que atua na seção transversal de um pilar Força normal que atua na seção transversal de um pilar Carga no pilar superior quando um extensômetro n atinge a deformação de escoamento
I _p I _v L ₁ L ₂ M N P _{yn}	Comprimento do pilar Comprimento da viga Comprimento da estribo da viga Comprimento da armadura da viga Momento fletor que atua na seção transversal de um pilar Força normal que atua na seção transversal de um pilar Carga no pilar superior quando um extensômetro n atinge a deformação de escoamento Capacidade última da seção transversal de um pilar sob carga
$P_{u}^{l_{nod,s}}$ $P_{u}^{l_{p}}$ $P_{u}^{l_{p}}$	Comprimento do pilar Comprimento da viga Comprimento da estribo da viga Comprimento da armadura da viga Momento fletor que atua na seção transversal de um pilar Força normal que atua na seção transversal de um pilar Carga no pilar superior quando um extensômetro n atinge a deformação de escoamento Capacidade última da seção transversal de um pilar sob carga centrada
Ip Ip Iv L1 L2 M N Pyn Pu Pu 20 ou u70	Comprimento do pilar Comprimento da viga Comprimento da estribo da viga Comprimento da armadura da viga Momento fletor que atua na seção transversal de um pilar Força normal que atua na seção transversal de um pilar Carga no pilar superior quando um extensômetro n atinge a deformação de escoamento Capacidade última da seção transversal de um pilar sob carga centrada
I _p I _v L ₁ L ₂ M N P _{yn} P _u P _{u30 ou u70}	Comprimento do pilar Comprimento da viga Comprimento do estribo da viga Comprimento do estribo da viga Comprimento da armadura da viga Momento fletor que atua na seção transversal de um pilar Força normal que atua na seção transversal de um pilar Carga no pilar superior quando um extensômetro n atinge a deformação de escoamento Capacidade última da seção transversal de um pilar sob carga centrada Capacidade última do espécime de pilar isolado com resistência à compressão de 30 MPa ou 70 MPa
I _p I _v L ₁ L ₂ M N P _{yn} P _u P _{u30 ou u70}	Comprimento do pilar Comprimento da viga Comprimento do estribo da viga Comprimento da armadura da viga Momento fletor que atua na seção transversal de um pilar Força normal que atua na seção transversal de um pilar Carga no pilar superior quando um extensômetro n atinge a deformação de escoamento Capacidade última da seção transversal de um pilar sob carga centrada Capacidade última do espécime de pilar isolado com resistência à compressão de 30 MPa ou 70 MPa Tempo decorrido de ensaio
Ip Ip Iv L1 L2 M N Pyn Pu Pu Uu	Comprimento do pilar Comprimento do estribo da viga Comprimento do estribo da viga Comprimento da armadura da viga Momento fletor que atua na seção transversal de um pilar Força normal que atua na seção transversal de um pilar Carga no pilar superior quando um extensômetro n atinge a deformação de escoamento Capacidade última da seção transversal de um pilar sob carga centrada Capacidade última do espécime de pilar isolado com resistência à compressão de 30 MPa ou 70 MPa Tempo decorrido de ensaio coeficiente de não uniformidade

Símbolos Gregos

α_1	Coeficiente utilizado para estimar a redução no valor da			
resistência à compressão do concreto em espécimes				
$\Delta\epsilon_{c}$	Acréscimo de deformação do concreto			
$\Delta \epsilon_{s}$	Acréscimo de deformação do aço			
ε _c	Deformação do concreto			
ε _{inc}	Deformação inicial na armadura longitudinal da viga			
ε _s	Deformação do aço			
ε _s	Deformação de escoamento do aço			
φ	Diâmetro de uma barra de aço			
ϕ_1	Diâmetro de uma barra de aço do estribo			
ϕ_2	Diâmetro de uma barra de aço da armadura longitudinal da viga			
	ou laje			
λ _G	Coeficiente utilizado por Kayani (1992) no método de cálculo para			
	estimar a resistência efetiva de concreto			
ρ	Taxa de armadura			
σ_{c}	Tensão de compressão em uma seção transversal do pilar			

σ_y Valor da tensão local máxima na ruptura em uma seção transversal do pilar

Lista de abreviaturas

ACI	American Concrete Institute
CAA	Concreto Auto-adensável
CAD	Concreto de Alto Desempenho
CAR	Concreto de Alta Resistência
CEB	Euro-International Committe for Concrete
CONAD	Concreto de Altíssimo Desempenho
COPPE-UFRJ	Instituto Luiz Coimbra de Pós-graduação e Pesquisa de
	Engenharia
CSA	Canadian Standards Association
FIP	International Federation for Prestressing
LEM-DEC	Laboratório de Estruturas e Materiais do Departamento de
	Engenharia Civil
M.R.	Modo de Ruptura
NBR	Norma Brasileira
PROCAD	Programa Nacional de Cooperação Acadêmica
PUC-RJ	Pontifícia Universidade Católica do Rio de Janeiro
PVdx	Pilar com viga na direção x
PVdxy	Pilar com vigas na direção x e y
SG	Strain Gage
TD	Transdutor de Deslocamento
UFG	Universidade Federal de Goiás
UnB	Universidade de Brasília