
7
Appendix

7.1 The Lagrangian Representation

We first prove that the function V (·) is strictly concave. This will

allow us to make use of Lagrangian methods. In order to do so, we start

by using a standard result from the Mechanism Design literature. Since the

agents’ preferences satisfy a single crossing condition, Incentive Compatibility

can be replaced by a first order condition for truthtelling and a monotonicity

condition.

Proof on Lemma 1: The proof is standard, and, therefore, omitted.

�

Lemma 3 The constraint set in program (P1) is convex.

Proof : The set R is clearly convex. Since all players’ payoffs are concave in

elements of R, and all the constraints are either equalities or weak inequalities,

the result follows.

�

Lemma 4 The constraint set of program (P1) is compact in the weak-

*topology.

Proof : The set of all distributions is compact in the weak-*topology. R is a

subset of the set of all distributions over elements in D. Moreover, since all the

constraints are either equalities or weak inequalities, the subset of elements of

R that satisfies the constraints is (weak-*) closed. Hence, it is compact.

�

Lemma 5 There exists a solution to the problem above.

Proof : This follows because the objective functional is continuous (note that

it is continuous in elements of R and is bounded) and the constraint set is

weak-* compact.
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�

Proof on Lemma 2:

First define recursively:

Vn (v) = sup
{{a(θ,x),w(θ,x)}θ,x}∈R

Eθ,x [(1 − δ) u (a (θ, x) , θn) + δVn−1 (w (θ, x))]

subject to

Eθ,x [(1 − δ) u (a (θ, x) , θ2) + δw (θ, x)] = v

Eθ2,x [(1 − δ) u (a (θ, x) , θ1) + δV (w (θ, x))] ≥

Eθ2,x

[

(1 − δ) u
(

a
(

θ̂1, θ2, x
)

, θ1

)

+ δV
(

w
(

θ̂1, θ2, x
))]

∀θ1, θ̂1 ∈ Θ

Eθ1,x [(1 − δ) u (a (θ, x) , θ2) + δw (θ, x)] ≥

Eθ1,x

[

(1 − δ) u
(

a
(

θ1, θ̂2, x
)

, θ2

)

+ δw
(

θ1, θ̂2, x
)]

∀θ2, θ̂2 ∈ Θ

w (θ, x) ∈ [w2, w2] ∀θ ∈ Θ2, x ∈ [0, 1]

Where w2 is just a number; that is, at this point we are simply interested

on the existence of an upper bound for w(·, ·) rather than in the exact value

of V −1(w1).

Taking V0 to be (strictly) concave, each Vn will be (strictly) concave;

because the choice set satisfying all the restrictions is convex and the objective

function is a convex combination of two concave functions: u(·, ·) and Vn−1(·).

Moreover, from the Theorem of the Maximum, we know that in the limit,

the sequence of functions Vn(·) converge to the desired function V (·) and

is (weakly) concave. However, from the definition of the function defined in

problem (P1), the limit value function has to be strictly concave.

�

A property of V (·) that we will be of use latter on is:

Lemma 6 V (·) is continuously differentiable over (v, v).

Proof : Since V (·) is concave, this follows from Corollary 2 in Milgrom and

Segal [10].

DBD
PUC-Rio - Certificação Digital Nº 0710381/CA



Chapter 7. Appendix 30

�

Assigning multipliers {λi (θi)}θi
, i = 1, 2, to, respectively, the first order

condition counterparts of (IC1), and (IC2), multiplier γ to (PK), and mul-

tipliers {ξ (θ, x)}θ and {ζ (θ, x)}θ to the participation constraints satisfying

w (θ, x) ∈ [w2, w2] for all θ, one can write V (v) as

V (v) = max
{{a(θ,x),w(θ,x)}θ,x}∈R

Eθ,x [(1 − δ) u (a (θ, x) , θ1) + δV (w (θ, x))]

+γ (Eθ,x [(1 − δ) u (a (θ, x) , θ2) + δw (θ, x)] − v)

+

1
∫

0

λ1 (θ1)

1
∫

0

Eθ2

[

(1 − δ)
∂u

∂a
(a (θ, x) , θ1)

∂a

∂θ1

(θ, x)

+δV ′(w(θ, x))
∂w

∂θ1

(θ, x)

]

dθ1dx

+

1
∫

0

λ2 (θ2)

1
∫

0

Eθ1

[

(1 − δ)
∂u

∂a
(a (θ, x) , θ2)

∂a

∂θ2

(θ, x) + δ
∂w

∂θ2

(θ, x)

]

dθ2dx

+

1
∫

0

1
∫

0

1
∫

0

(

ξ (θ, x) [w (θ, x) − w2] − ζ (θ, x) [w (θ, x) − w2]

)

dθ1dθ2dx

Notice that the symmetry of the problem and the single crossing property

guarantees the almost everywhere differentiability of the Lagrangian multi-

pliers associated to the incentive compatibility restrictions. That is, player

one’s best guess for player two’s type is 1
2
. Therefore, if player one has a

shock equal to 1
2

he will not have any incentive to report another type. Thus,

λ1(
1
2
) = 0. Now, assume that player one’s type is 1

2
− ǫ. Then this player

would like to under-report his type; because, from the expected monotonicity

condition, he knows that under-reporting his type will lead to an action that

will be closer to his type.1 Moreover, a higher ǫ, implies a higher incentive to

under-report his type. Therefore, for any type lower than 1
2
, λ1(·) is monotonic,

thus almost everywhere differentiable on (0, 1
2
). Analogously, the same happens

for types higher than 1
2
. Moreover, since types 0, 1

2
, 1 have measure zero, this

function is a.e. differentiable.

Some rounds of integration by parts allow us to re-write V (v) as

1The optimal action has to be some number between the two reports; otherwise there
would be a loose of efficiency.
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V (v) = max
{{a(θ,x),w(θ,x)}θ,x}∈R

Eθ,x [(1 − δ) u (a (θ, x) , θ1) + δV (w (θ, x))]

+γ (Eθ,x [(1 − δ) u (a (θ, x) , θ2) + δw (θ, x)] − v)

− (1 − δ)

1
∫

0

λ̇1(θ1) [Eθ2,x [u (a (θ, x) , θ1)]] dθ1

− (1 − δ)

1
∫

0

λ1 (θ1) Eθ2,x

[

∂u

∂θ
(a (θ, x) , θ1)

]

dθ1

−δ

1
∫

0

λ̇1(θ1)Eθ2,x [V (w (θ, x))] dθ1

+λ1 (θ1) (1 − δ) Eθ2,x [u (a (θ, x) , θ1)]
∣

∣

θ1=1

θ1=0
+ δEθ2,x [w (θ, x)]

∣

∣

θ1=1

θ1=0

− (1 − δ)

1
∫

0

λ̇2(θ2) (Eθ1,x [u (a (θ, x) , θ2)]) dθ2

− (1 − δ)

1
∫

0

λ2 (θ2) Eθ1,x

[

∂u

∂θ
(a (θ, x) , θ2)

]

dθ2

−δ

1
∫

0

λ̇2(θ2)Eθ1,x [w (θ, x)] dθ2

+λ2 (θ2) (1 − δ) Eθ1,x [u (a (θ, x) , θ2)]
∣

∣

θ2=1

θ2=0
+ δEθ1,x [w (θ, x)]

∣

∣

θ2=1

θ2=0

+

1
∫

0

1
∫

0

Ex [ξ (θ, x) (w (θ, x) − w2) − ζ (θ, x) (w (θ, x) − w2)] dθ1dθ2

As it is standard (see Theorems 1 and 2 in sections 8.3-8.4 of Luenberger

[9]), {a∗ (θ, x) , w∗ (θ, x)}θ,x – with a∗ (·, ·) satisfying strictly the expected mono-

tonicity property – is optimal if, and only if, there are multipliers {λi (θi)}i=1,2,

{ξ (θ, x) , ζ (θ, x)} and γ for which {a∗ (θ, x) , w∗ (θ, x)}θ,x maximizes the above

Lagrangian. It is easy to see that the First Order Conditions for such problem

are the ones in the text.

7.2 The Inefficiency Result

Proof of Theorem 1 : Define V̂ (w; δ) as the value function for the problem

without participation constrains when the discount factor is δ; call this

problem unrestricted. Let V (w; δ) be the value function for the problem

with participation constraints; call this problem restricted. From Carrasco and

Fuchs [3], we know that, for all w < v, there is strictly positive probability of
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next period’s continuation value for player two being both higher and lower

than the current value value w. Suppose that the current value for player two

is w2 < v. Consider the subset of [0, 1]2 for which (IR1) is binding. In the

unrestricted program, it would be optimal to make next period’s promised

value higher with positive probability. However, in the restricted problem this

is not possible. Thus, there exists ǫ′ > 0 such that V̂ (w2; δ)− ǫ′ > V (w2; δ) for

all δ ∈ [0, 1). Furthermore, as will be shown in the proof of Theorem 2, in the

restricted problem, starting from any value w, there is positive probability of

w2 being hit in a finite number of steps. Therefore, for any w, there exists ǫ > 0

– that may depend on w – such that V̂ (w; δ) − ǫ > V (w; δ) for all δ ∈ [0, 1).

Let w∗ be the value promised to agent two by the mechanism in Carrasco and

Fuchs [3] that approximates efficiency. It then follows that, for all δ,

w∗ + V (w∗, δ) < w∗ + V̂ (w∗; δ) − ǫ ≤ vFB − ǫ.

�

7.3 The Assymptotic Distribution

Lemma 7 There exists a measure Q such that

EQ [V ′ (w (θ, x))] = V ′ (w) − EQ

[

(ξ (θ, x) − ζ (θ, x))

f (θ1) f (θ2) −
˙̃
λ1(θ1)f (θ2)

]

(7.1)

Proof : From the Lagrangian representation, the First Order Condition with

respect to w (θ, x) is

[

f(θ1) − λ̇1(θ1)
]

V ′(w (θ, x))f(θ2)+
[

γf(θ2) − λ̇2(θ2)
]

f(θ1)+ξ (θ, x)−ζ (θ, x) = 0

In terms of the multipliers, defining

λ̃1 (θ1) = λ1(θ1), λ̃2 (θ2) =
λ2 (θ2)

γ
,

the First Order Condition reads

[

f(θ1) −
˙̃
λ1(θ1)

]

V ′(w (θ, x))f(θ2)+γ
[

f(θ2) −
˙̃
λ2(θ2)

]

f(θ1)+ξ (θ, x)−ζ (θ, x) = 0

Using the Envelope Theorem, one has γ = −V ′ (w). Plugging this in the

above equation, we have that
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V ′ (w (θ, x))
[

f (θ1) f (θ2) −
˙̃
λ1(θ1)f (θ2)

]

=

V ′ (w)
[

f (θ1) f (θ2) −
˙̃
λ2(θ2)f (θ1)

]

− [ξ (θ, x) − ζ (θ, x)]

If one divides both sides by

[

f (θ1) f (θ2) −
˙̃
λ2(θ2)f (θ1)

]

we have

V ′ (w (θ))

[

f (θ1) f (θ2) −
˙̃
λ1(θ1)f (θ2)

]

[

f (θ1) f (θ2) −
˙̃
λ2(θ2)f (θ1)

] = V ′ (w)−
[ξ (θ) − ζ (θ)]

[

f (θ1) f (θ2) −
˙̃
λ2(θ2)f (θ1)

]

Note that we can do this, because f (θ2) cannot be equal to ˙̃
λ2(θ2) in a

positive measure subset. This is so, because for a given w such that neither IR

constraint is active; it must be true that:

[

f(θ1) −
˙̃
λ1(θ1)

]

V ′(w (θ, x))f(θ2) = −γ
[

f(θ2) −
˙̃
λ2(θ2)

]

f(θ1)

Therefore, if we assume that f (θ2) = ˙̃
λ2(θ2), it would be true that

[

f(θ1) −
˙̃
λ1(θ1)

]

V ′(w (θ, x))f(θ2) = 0; implying f(θ1) = ˙̃
λ1(θ1) for every

θ1. This, however, says that the program is linear and contradicts the strict

concavity of V (·).

Moreover, if w were such that one of the IRs is active, we would have

that, for instance, ζ(w, θ) > 0. Thus, assuming again that f (θ2) = ˙̃
λ2(θ2):

[

f(θ1) −
˙̃
λ1(θ1)

]

V ′(w (θ, x))f(θ2) = ζ(θ, x)

However, this identity will not depend on the promised value w. There-

fore, this should hold also for different promised values such that neither IR is

active. This yields again to a contradiction.

Hence,
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Eθ



V ′ (w (θ))

[

f (θ1) f (θ2) −
˜̇
λ1(θ1)f (θ2)

]

[

f (θ1) f (θ2) −
˙̃
λ2(θ2)f (θ1)

]



 =

V ′ (w) − Eθ





[ξ (θ) − ζ (θ)]
[

f (θ1) f (θ2) −
˙̃
λ2(θ2)f (θ1)

]





or

EQ [V ′ (w (θ))] = V ′ (w) − EQ





[ξ (θ) − ζ (θ)]
[

f (θ1) f (θ2) −
˙̃
λ1(θ1)f (θ2)

]





where, as suggested by the notation, Q is the distribution associated with the

measure2
[

f (θ1) f (θ2) −
˙̃
λ1(θ1)f (θ2)

]

[

f (θ1) f (θ2) −
˙̃
λ2(θ2)f (θ1)

]f (θ1) f (θ2)

The result then follows.

�

Proof of Proposition 1 : Suppose, toward a contradiction, that w (θ, x) ≥

w > w2 for almost all θ and x. Since V (·) is strictly concave, it must be the

case that V ′ (w (θ)) ≤ V ′ (w). Moreover, if there is a positive probability set

for which w (θ, x) > w, it must be true that EQ [V ′ (w (θ, x))] < V ′ (w). Then,

from (7.1),

EQ





(ξ (θ, x) − ζ (θ, x))
[

f (θ1) f (θ2) −
˙̃
λ1(θ1)f (θ2)

]



 > 0,

implying that ξ (θ, x) > 0 for some θ, so that w (θ, x) = w2 for those θ;

which is a contradiction, because it was supposed that neither IR binds. Similar

arguments can be used to show that one cannot have w (θ, x) ≤ w < w2 for all

θ, with strict inequality with positive probability.

The only remaining possibility is that w (θ, x) = w ∈ (w2, w2) for almost

all θ. Plugging this into the first order condition for w (·, ·), we get:

V ′ (w) f (θ1) f (θ2) + γf (θ1) f (θ2) − λ̇2 (θ2) f (θ1) − λ̇1 (θ1) V ′ (w) f (θ2) = 0

2Dividing both sides by the constant
∫ ∫

[

f(θ1)f(θ2)−
˙̃
λ1(θ1)f(θ2)

]

[

f(θ1)f(θ2)−
˙̃
λ2(θ2)f(θ1)

] f (θ1) f (θ2) dθ1dθ2 can

make this a probability measure. This, however, is irrelevant since we are only interested

in the sign of EQ

[

(ξ(θ,x)−ζ(θ,x))

f(θ1)f(θ2)−
˙̃
λ1(θ1)f(θ2)

]

. And dividing this by a positive constant does not

affect the analysis.
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or using, by the Envelope Theorem, V ′ (w) = −γ:

λ̇2 (θ2) f (θ1) + λ̇1 (θ1) V ′ (w) f (θ2) = 0,

Dividing both sides by f (θ1) f (θ2) > 0,

V ′ (w) −
λ̇2(θ2)

f (θ2)
− V ′ (w)

λ̇1(θ1)

f (θ1)
= V ′ (w) for almost all (θ1, θ2)

Therefore, one must have

λ̇2(θ2)

f (θ2)
= −

λ̇1(θ1)

f (θ1)
V ′ (w) for almost all (θ1, θ2)

Since the left hand side depends only on θ2, and the right hand side on θ1,

the above equality can hold for almost all (θ1, θ2) only if λ̇1(θ1) = λ̇2(θ2) = 0

for almost all (θ1, θ2).

Furthermore, since for all s ∈
[

0, 1
2

]

, λi

(

1
2
− s

)

= −λi

(

1
2

+ s
)

3, one must

have λi (θi) = 0 for all i, and θi. Plugging this in the FOC for a (·, ·), one gets:

[

∂u

∂a
(a (θ, x) , θ1) + γ

∂u

∂a
(a (θ, x) , θ2)

]

= 0

It is easy to see that the policy a (·, ·) implicitly defined by the above

equation is not incentive compatible when continuation values are constant,

unless γ = 0, or γ = ∞ which cannot hold as γ ∈ [−V ′ (w2) ,−V ′ (w2)].

�

Proof of Proposition 2 : Assume, toward a contradiction, that, once w (θ, x)

hits w2, it stays there forever. The FOC for w (θ, x) evaluated at w2 is given

by

V ′ (w2) f (θ2)
[

f (θ1) − λ̇1(θ1)
]

+ f (θ1)
[

γf (θ2) − λ̇1(θ2)
]

= −ξ (θ, x)

where ξ (θ, x) ≥ 0 is the multiplier associated to the (IR2) constraint.

Using the Envelope Condition, γ = −V ′ (w2), we have

V ′ (w2)
((

f (θ2)
[

f (θ1) −
˙̃
λ1(θ1)

]

− f (θ1)
[

f (θ2) −
˙̃
λ2(θ2)

]))

= −ξ (θ, x)

Since ξ (θ, x) ≥ 0 and V ′ (w2) < 0

f (θ2)
[

f (θ1) −
˙̃
λ1(θ1)

]

− f (θ1)
[

f (θ2) −
˙̃
λ2(θ2)

]

≥ 0 for all θ

3this follows from the symmetry of the problem around 1
2

DBD
PUC-Rio - Certificação Digital Nº 0710381/CA



Chapter 7. Appendix 36

In particular this must hold for θ′ of the form (θ2, θ1), so

f (θ1)
[

f (θ2) −
˙̃
λ1(θ2)

]

− f (θ2)
[

f (θ1) −
˙̃
λ2(θ1)

]

≥ 0

Therefore,

f (θ2)
[

f (θ1) −
˙̃
λ1(θ1)

]

− f (θ1)
[

f (θ2) −
˙̃
λ2(θ2)

]

= 0, for all θ1, θ2

so that ξ (θ, x) = 0, for all θ. The proof now follows exactly the same

steps as in the previous one. Indeed, plugging ξ (θ, x) = 0 for all θ back in the

FOC for w(·) evaluated at w (θ, x) = w2 for all θ, we get

λ̇2(θ2)

f (θ2)
= −

λ̇1(θ1)

f (θ1)
V ′ (w) for almost all (θ1, θ2)

which calls for

λ̇1(θ1) = λ̇1(θ2) = 0

And we get the same contradiction of the proof in Proposition 1.

�

Proof of Theorem 2 : Proposition 2 implies that, if w = w2, there is a strictly

positive probability of w′ > w2. Moreover, Proposition 1 implies that, for all

w ∈ (w2, w2), there is a strictly positive probability of w′ > w.

For any w ∈ [w2, w2] and set A, define Qn(w,A) as the probability of,

starting at w, getting to the set A in n periods. Since [w2, w2] is compact, it

follows from Propositions 1 and 2 that there is a finite M > 0 and a γ (M) > 0

so that, for all w ∈ [w2, w2], Q
(

w,w′ ≥ w + 1
M

)

≥ γ (M) > 0. Define w1 = w2

and wn = wn−1 + 1
M

.

Define An = [wn, w2]. Note that Q(w1, A2) ≥ γ(M) > 0. Furthermore,

we have that

Q2(w1, A3) =

∫

z∈W

Q(z, A3)Q(w1, dz) ≥

∫

z∈A2

Q(z, A3)Q(w1, dz) ≥

∫

z∈A2

γ(M)Q(w1, dz) ≡ q2 > 0

The first equality is the definition of Q2(·, ·). The first inequality follows

because A2 ⊂ W . The second inequality follows because, for all z in A2,

Q(z, A3) ≥ γ(z,M). Finally, q2 being strictly positive follows because, since

Q(w1, A2) ≥ γ(M) > 0, for a positive probability subset B2 ⊂ A2, Q(w1, B2)

is positive and bounded away from zero.
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Proceeding inductively, assume that Qn−1(w1, An) > 0

Qn(w1, An+1) =

∫

z∈W

Q(z, An+1)Q
n−1(w1, dz) ≥

∫

z∈An

Q(z, An+1)Q
n−1(w1, dz)

>

∫

z∈An

γ(M)Qn−1(w1, dz) ≡ qn > 0

where, again, the equality is the definition of Qn(w1, An+1), the first

inequality follows because An ⊂ W , the second inequality because, for all

z ∈ An, Q(z, An+1) > γ(M). As before, qn is strictly positive because for a

positive probability subset Bn ⊂ An, Qn−1(w1, Bn) is positive and bounded

away from zero.

Pick N such that wN + 1
M

≥ w2. Clearly, this N is finite. Since N is

finite, QN(w2, {w2}) ≡ qN > 0. Setting ǫ = qN , condition M of Stokey et al.

([13], p. 348) holds. Theorem 11.12 of Stokey et al. [13] then applies, implying

that the operator T ∗, defined in the text, is a contraction in the total variation

norm. Hence, starting from any distribution ϕ0, the sequence ϕn converges to

a unique distribution ϕ∗, which is the unique fixed point of T ∗.

�

Proof of Theorem 3 : Immediately, since V (·) strictly concave implies that

V ′(·) is a one to one map from [w2, w2] onto some bounded subset of R.

�

7.4 Dictatorship Under a Single Participation

Constraint

Proof of Proposition 3 : Immediate from Lemma 7 and the fact that, when

only agent two has an outside option, ζ (θ, x) = 0 for all θ.

�

Proof of Proposition 4 : Immediate from Lemma 7 and the fact that, when

only agent one has an outside option, ξ (θ, x) = 0 for all θ. �

Proof of Theorem 4 : We prove the result for the case in which only agent two

has an outside option; the other case is analogous. From Proposition 3, when

only agent two has an outside option, V ′(w) is a supermartingale. By Doob’s

Convergence Theorem (Dobb, [5]), the stochastic process V ′(w) converges to a

random variable, R . Suppose there was a positive probability of finding a path

V ′(wt) with the property that limt→∞ V ′(wt) = C, where −∞ < C ≤ V ′ (w2) .

Since V ′(w) is continuous for any v ∈ (w2, v) , the sequence vt must converge.

Let limt→∞ vt = v′ ∈ [v2, v), be the limit of agent two’s continuation values.
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Let g (w, θ, x) denote the next period’s continuation value given the current

promised value w and reported state θ. For wt to converge to w′, it must be

that g (w′, θ, x) = w′ for all θ. This however contradicts Propositions 1 and 2.

�
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