
III
Expansions-contractions Flows

III.1 Introduction
Flows of viscoplastic materials through internal passages of abruptly

varying cross sections are found in a wide variety of industrial and natural

processes. A rather brief list of examples includes extrusion, mold filling, and

flows through porous media. In such complex flows of viscoplastic materials,

there are regions where the intensity of the stress tensor exceeds the yield

stress. These regions are usually called yielded regions. The regions where the

stress intensity falls below the material yield stress are called unyielded regions.

Below the yield stress, a viscoplastic material behaves as a very high-viscosity

liquid, and, at the yield stress, some kind of microstructure collapse occurs,

causing the viscosity to fall dramatically [24]. The surfaces delimiting yielded

and unyielded regions are called yield surfaces (e.g. [49]).

Some important issues related to complex flows of viscoplastic materials

are still far from being well understood. One of them is concerned with the

existence of yield surfaces when the Bingham equation is employed [50, 51, 52].

Another difficulty is related to the discontinuity of the Bingham equation,

which renders it unsuitable to numerical computations of complex flows.

To circumvent this problem, it is usual practice to employ some continuous

version of the Bingham equation carrying a regularization parameter (e.g.

[53, 54, 55]). The most commonly employed regularized equations are the

ones proposed by Bercovier and Engelman [28], Papanastasiou [29], and, to

a lesser extent, the bi-viscosity equation [56]. However, solutions obtained

with regularized equations are invariably dependent on the value of the

regularization parameter, especially regarding the determination of the yield

surfaces [54].

Different flows of viscoplastic materials have been studied in the past.

Al Khatib and Wilson [57] analyzed the development of Poiseuille flow of

viscoplastic materials, using the bi-viscosity model. These same authors de-

termined the yield surface in the orthogonal rheometer flow of a viscoplastic
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material, using again the bi-viscosity equation [58]. Results were obtained both

asymptotically and numerically, and they concluded that unyielded regions ex-

ist only for some combinations of the parameters.

Alexandrou et al. [59] studied numerically the flow of Herschel-Bulkley

materials in a three-dimensional expansion. In their computations, they em-

ployed a Papanastasiou regularized equation modified to account shear thin-

ning at high deformation rates. The ducts had square cross sections, and results

were obtained for both the 2:1 and the 4:1 expansion rates. The effects of the

Reynolds and Bingham numbers on the flow pattern and pressure distribu-

tion were investigated. A strong interplay between the effects of the Reynolds

and Bingham numbers was observed to occur, influencing the formation and

break up of unyielded zones in the corner of the expansion. Vradis and Ötügen

[60] analyzed numerically the flow of Bingham materials through a 1 × 2 ax-

isymmetric abrupt expansion. They concluded that the reattachment length

increases with the Reynolds number, decreases with yield number, and is es-

sentially independent of the expansion ratio. Jay et al. [61] analyzed the flow of

yield-stress materials through a 1:4 sudden axisymmetric expansion using bi-

viscosity regularizations of the Herschel-Bulkley and Bingham equations. The

influence of shear thinning, inertia and yield-stress values on the structure

of the flow and on pressure and head losses was studied. They observed two

toroidal unyielded regions, and concluded that inertia and yield stress act in

opposite ways and that shear thinning reduces the dimensions of both vortices

and dead zones.

The inertialess flow of Bingham materials past a sphere has been studied

recently by Liu et al. [54]. Most of their numerical solutions were obtained

with the aid of the regularized Bingham equation proposed by Bercovier

and Engelman [28]. They showed that the location of the yield surfaces is a

function of the regularization parameter such that the yielded regions increase

in size as it is increased. Although they investigated fairly large values of the

regularization parameter, no limiting behavior of the yield surface locations

could be inferred.

In this chapter, the axisymmetric flow of viscoplastic materials through

an abrupt expansion followed by an abrupt contraction is investigated. In the

numerical solutions, the assumption of that the materials obey generalized

Newtonian material constitutive model, with a viscosity function as proposed

by de Souza Mendes and Dutra [24], is adopted. The parameters of this

equation are all determined via least-squares fit to rheological data, and hence

no regularization parameter is involved. Visualization experiments illustrate

the dependence of the yield surface location on the rheological and flow

DBD
PUC-Rio - Certificação Digital Nº 0621119/CA



Chapter III. Expansions-contractions Flows 46

parameters.

III.2 Analysis

(a) Viscosity function and rheological parameters

The Carbopol dispersions present shear stress functions τ(γ̇) that are

well represented by the following equation [24]:

τ =

(
1− exp

[
−ηoγ̇

τo

])
(τo + Kγ̇n) (1)

in this equation, γ̇ is the shear rate, while ηo, τo, K, and n, are respectively

the low shear rate viscosity, the yield stress, the consistency index, and

the behavior or power-law index. The physical meaning of these material

parameters is discussed in detail by de Souza Mendes and Dutra [24].

According to Eq. (1), when the stress τ reaches the yield stress τo, there

is a sharp increase of the shear rate with no appreciable change in stress, i.e.

the shear stress remains roughly equal to τo while the shear rate value jumps

from a value around γ̇o to an often much larger value in the vicinity of γ̇1, where

γ̇o ≡
τo

ηo
; γ̇1 ≡

( τo

K

)1/n

(2)

The jump number J proposed by de Souza Mendes [25] gives a relative

measure of the shear rate jump that occurs at τ = τo [26]:

J ≡ γ̇1 − γ̇o

γ̇o
=

ηoτ
1−n

n
o

K1/n
− 1 =

γ̇1

γ̇o
− 1 =

1− γ̇∗o
γ̇∗o

(3)

The jump number is thus a dimensionless rheological property of vis-

coplastic materials. When n = 1, it becomes independent of the yield stress τo

and reduces to J = ηo/K − 1, i.e. for n = 1, J + 1 becomes the ratio between

ηo and the plastic viscosity.

Choosing γ̇1 as characteristic shear rate and τo as the characteristic

stress, so that τ ∗ ≡ τ/τo and γ̇∗ ≡ γ̇/γ̇1 are respectively the dimensionless

versions of the shear stress and shear rate, then it is possible to write the

following dimensionless form of Eq. (1) [27]:
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τ ∗ = (1− exp [−(J + 1)γ̇∗]) (1 + γ̇∗n) (4)

And the dimensionless viscosity function is given by

η∗ =
τ ∗

γ̇∗
=

η

ηo
(J + 1) = (1− exp [−(J + 1)γ̇∗])

(
1

γ̇∗
+ γ̇∗n−1

)
(5)

(b) Governing equations and boundary conditions

The geometry considered is shown in Fig. III.1. The governing equations

for this flow are made dimensionless by employing the following dimensionless

variables:

v∗ =
v

γ̇1R
; T ∗ =

T

τo
; p∗ =

p

τo
; ∇∗ = R∇ (6)

where R is the small tube radius, v is the velocity field, T is the stress

field, and p is the pressure field.

L

L
o

L

R

Ro

Figure III.1: The geometry.

The flow is isochoric, inertialess, laminar, steady, and axisymmetric.

All the properties are considered to be temperature-independent, and viscous

dissipation is assumed to be negligible. For this situation, the dimensionless

mass and momentum conservation equations are:
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∇∗ · v∗ = 0; ∇∗ · T ∗ = 0 (7)

In this analysis it is assumed that the material behaves like the general-

ized Newtonian material model [6], given by:

T ∗ = −p∗1 + τ ∗ = −p∗1 + η∗(γ̇∗)γ̇∗ (8)

where τ ∗ is the extra-stress tensor field, γ̇∗ = ∇∗v∗ + (∇∗v∗)T is the

rate-of-deformation tensor field, γ̇∗ ≡
√

tr γ̇∗2/2 is a measure of its intensity,

and η∗(γ̇∗) is given by Eq. (5).

Defining n and t as unit vectors locally normal and tangent to a boundary

surface, respectively, the boundary conditions are: no-slip and impermeability

conditions at all solid boundaries (v∗ = 0); symmetry condition at the

centerline (n · (∇∗v∗) · t = 0 and v∗ · n = 0); and fully developed flow at

the outlet (n · T ∗ = 0). At the inlet, the axial velocity is assumed uniform

(n · v∗ = ū∗ and t · v∗ = 0).

(c) Governing parameters

The foregoing analysis indicates that this flow is governed by five di-

mensionless parameters. Two of these parameters are just rheological mate-

rial properties, namely, the jump number, J , and the power-law exponent, n.

There are also two geometrical parameters, namely, the diameter or radius

ratio, Ro/R, and the length-to-radius ratio of the large tube, Lo/Ro. The last

parameter is a flow parameter, and there are a number of equivalent choices

for it. One possible choice is the dimensionless fully-developed wall shear stress

at the upstream (or downstream) tube, τ ∗R. Because the yield stress was taken

as the characteristic stress, this parameter can also be seen as the reciprocal

of a Bingham number. Another possible choice is the dimensionless average

velocity of the material at the upstream (or downstream) tube, ū∗. It is clear

that there is a one-to-one relationship between ū∗ and τ ∗R.

III.3 Numerical Solution
The conservation equations of mass and momentum are discretized by

the finite volume method described by Patankar [62] and solved with the aid of

the FLUENT software. Staggered velocity components are employed to avoid
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unrealistic pressure fields. The SIMPLE algorithm [62] is used, in order to

handle the pressure / velocity coupling. The resulting algebraic system is solved

by the TDMA line-by-line algorithm [62] with the block correction algorithm

[63] to improve the convergence rate.

The length of the upstream and downstream small-diameter tubes was

chosen to ensure the achievement of flow development both upstream the

entrance of the large-diameter duct, and upstream the exit of the downstream

tube (L/R = 10).

To define the computational mesh, the domain was divided into five

zones. Two zones (Zone 1 and Zone 2) correspond to the upstream and down-

stream tubes. The other three zones are in the central tube: the first (Zone

3) corresponds to the core region, up to a radius equal to the entrance tube

radius (i.e., from r = 0 to r = R); the second one (Zone 4) is an intermediate

zone that ranges from r = R to r = (Ro − R)/2; and the last one (Zone 5)

starts at r = (Ro − R)/2 and ends at the central tube wall (r = Ro). The

mesh employed was uniform per zone in the axial and radial directions, with

more refined meshes in the central tube zones.

Table III.1: Mesh test for τ ∗ = 3.7 , J = 18000 and n = 0.4.

Mesh N1 N2 N3 N4 N5 ∆p∗ Φ
1 60 30 38 68 68 1.448 0.23
2 80 40 50 90 90 1.637 0.265
3 100 50 65 110 110 1.626 0.246
4 120 60 75 135 135 1.506 0.214

To warrant mesh-independent solutions, extensive grid tests were per-

formed. Four meshes were generated for the case with R0/R = 6.3 and

L0/R0 = 1. The mesh details are given in Table III.1, together with corre-

sponding values of the head loss and displacement efficiency. The head loss is

defined as

∆p∗ =
∆p

4τR
(9)

where ∆p is the difference between the pressure that would occur at any

location in the fully-developed portion of the downstream small tube if there

were no loss in the cavity and the actual pressure at the same location. The

displacement efficiency is defined as
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Φ =
Vc,y

Vc
(10)

where Vc,y is the volume of yielded liquid in the large-tube cavity, and Vc

is the total volume of the cavity (Vc = πLo(R2
o − R2)). The parameters

Ni appearing in Tables III.1 and III.2 are the numbers of control volumes

employed in different flow zones. More specifically, the meshes in Zones 1 and

2 (the upstream and downstream tubes) have both N1 control volumes in the

axial direction and N3 control volumes in the radial direction. The three zones

in the large-diameter tube have N2 control volumes in the axial direction; in

the radial directions, Zone 3 has N3 control volumes, Zone 4 has N4 control

volumes, and Zone 5 has N5 control volumes.

Table III.2: Meshes employed.

R0/R L0/R0 N1 N2 N3 N4 N5

3.3 1 80 30 50 50 50
3.3 1.8 80 45 50 50 50
6.3 1 80 40 50 90 90
6.3 1.8 80 60 50 90 90
10 1 80 40 30 100 110
10 1.8 80 40 60 100 110

It can be observed in Table III.1 that the differences between the results

obtained with the three finest meshes are very low. Velocity profiles in the

center of the cavity (x = L + L0/2) and the mean pressure profiles were

also compared, and no difference was observed. Therefore, the mesh with 200

control volumes in the axial direction, and 230 in the radial direction was

chosen. For the other geometries, the meshes were chosen using the same

procedure. Details of the meshes used for the other cases are given in Table

III.2.

III.4 The Experiments

(a) The visualization experiments

Fig. III.2 depicts the flow visualization apparatus. The materials em-

ployed in the visualization experiments are Carbopol aqueous dispersions con-

taining micron-size spheres to promote light reflection. The test section was

built in transparent plexiglas, and consists of two identical small-diameter

tubes attached, one at each end, to a larger-diameter tube. The couplings
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are made with the aid of two plexiglas disks previously machined to provide

the appropriate fitting and sealing. The inner diameter of the small tubes is

2R = 8 mm, and their length is L = 20 mm. Different lengths Lo and diameters

2Ro of the large-diameter tube were employed, to allow the study of the effects

of the ratios Ro/R and Lo/Ro within a representative range.

The other main components of the test rig are a tank, a metering pump,

and a glass box. The pump sucks the Carbopol dispersion from the tank and

pushes it into the test section. After leaving the test section, the material

flows back into the tank. The tank is large enough (about 4 L) and the flow

rates are low enough (of the order of one liter per hour) to ensure that

the material traverses the flow circuit only once. A laser sheet is employed

to produce a sheet of light containing the channel axis. After the steady

state is attained for a given flow rate, a CCD camera records the particle

paths. During the visualization tests, the glass box that surrounds the tube

is kept full with glycerol, to help eliminating image distortion due to refraction.

Figure III.2: Schematics of the apparatus.

The yield surface is made visible by choosing large enough exposure times

that allow sufficient particle displacement in the yielded region. Thus, while

the particle paths in the yielded region are recorded as white lines, the stagnant

particles in the unyielded region appear as white dots in the pictures. Because

of the sharp velocity change across the yield surface, its location appears
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quite clearly. In many of the pictures obtained, a mild increase in particle

concentration seems to occur near the yield surface, probably due to shear-

induced dispersion, facilitating further the visualization of the yield surface

location.

The shear stress at the wall of the small tubes, τR, appearing in the

flow parameter τ ∗R = τR/τo was evaluated by obtaining, for each flow rate,

the numerical solution of the momentum equation for the fully developed flow

through the upstream or downstream tube.

(b) Rheology of the Carbopol dispersions
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Figure III.3: The flow curves of the Carbopol dispersions.

Aqueous dispersions of Carbopol 676 at different concentrations were

employed in the flow experiments. The dispersions were NaOH-neutralized to

achieve a pH of about 7. The viscosity function of these materials was obtained

with an ARES rotational rheometer at controlled strain mode and a modified

Couette geometry designed to circumvent possible apparent-slip problems (e.g.

[21, 22]). The modification consists of the introduction of longitudinal grooves

on both the bob and the cup surfaces. The grooves are 1-mm deep, 2-mm wide,

and roughly 2-mm spaced. This geometry was successfully tested with standard
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Newtonian mineral oils. The results obtained essentially coincided with the

corresponding ones obtained with smooth surfaces. Each data point was taken

only after achievement of steady state. The data-points corresponding to

the lowest shear rate were obtained from creep experiments performed in a

UDS 200 Paar-Phisica rheometer, because the rate-sweep tests of the ARES

rheometer employed could not handle such low shear rates. In these creep

tests, a constant stress below the yield stress is imposed, and, once steady

flow is attained, typically after up to 48 hours, the corresponding shear rate

is obtained. Flow curves were obtained both with fresh samples and with

samples collected after the experiments, and no significant degradation signs

were observed.

The results obtained are shown in Fig. III.3. The curve fittings employing

Eq. (1) are shown to reproduce well the data obtained. It is seen that the

Carbopol dispersions present a highly viscoplastic behavior, characterized by

the sharp viscosity change at the yield stress. In Fig. III.4, the dimensionless

viscosity is plotted as a function of the dimensionless shear stress.
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Figure III.4: The dimensionless viscosity of the Carbopol dispersions as a
function of the dimensionless shear stress.
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III.5 Results and Discussion

(a) Flow visualization results

In all the pictures of this section only the flow in the large tube is shown,

and the flow direction is from left to right. The Reynolds number based on the

small tube diameter is always kept below 0.1, to ensure negligible inertia.

The yielded region is seen to have a peculiar apple-like shape. At the

large tube inlet, the yield surface intersects the expansion plane at some radial

distance from the rim. In the region close to the large tube exit, the yield

surface presents a milder curvature, and intersects the contraction plane close

to the exit rim.

Due to space limitations, only a few photo sequences are now presented

to illustrate the main trends observed experimentally for a wider range of

parameters. Fig. III.5 shows the dependence of the yield surface location on

τ ∗R. It is clear from this figure that the size of the yielded region increases

as τ ∗R is increased, as expected, because as τ ∗R is increased the stress level in

the large tube increases, attaining values above unity in a larger portion of

this region. The last picture on the right of Fig. III.5 was taken at zero flow

rate after the highest flow rate experiment is finished. A mild concentration

of the spherical particles at the yield surface can be observed in this picture,

probably due to shear-induced dispersion.

Figure III.5: Effect of τ ∗R on the yield surface location, for J = 2.8 × 106,
n = 4.8 (Carbopol 0.09%), Lo/Ro = 1.0, and Ro/R = 5. From left to right,
the pictures correspond respectively to τ ∗R = 3.0, 5.3, 8.4, 10.5, and 0.0.
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Figure III.6: Effect of Lo/Ro on the yield surface location, for J = 2.8 × 106,
n = 4.8 (Carbopol 0.09%), τ ∗R = 5.3, and Ro/R = 5. From left to right, the
pictures correspond respectively to Lo/Ro = 1.0, 1.5, and 2.0.

Concerning Lo/Ro, Fig. III.6 shows that the size of the yielded region

increases as this geometrical parameter is increased. Thus, the displacement

efficiency decreases as the depth of the cavity is increased, as expected.

The influence of the radius ratio Ro/R on the yield surface location can

be observed in Fig. III.7. In this figure it is observed that the yielded region

decreases significantly as Ro/R is increased.

Figure III.7: Effect of Ro/R on the yield surface location, for J = 2.8 × 106,
n = 4.8 (Carbopol 0.09%), τ ∗R = 5.3, and Lo/Ro = 1.0. From left to right, the
pictures correspond respectively to Ro/R = 3 and 5.
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Fig. III.8 illustrates the effect of the material rheology on the location

of the yield surface. It is clear from this figures that the size of the yielded

region is larger for the more concentrated dispersion. It is not clear wether

this trend is due to the change in J or in n, and a definitive assessment would

only possible with additional data for other concentrations. However, it seems

more likely that it is the increase in the power-law index n the responsible

for the reduction in size of the yielded region, due to the following reasons.

Firstly, the jump number values for the two concentrations are rather close

to each other (Fig. III.4), while the numerical studies to be presented below

(Fig. III.16) indicate that the yielded region size increases quite mildly with

J . Secondly, these same studies show that it decreases with n (Fig. III.17) as

observed in Fig. III.8.

Figure III.8: Effect of rheology on the yield surface location, for τ ∗R = 4.0,
Ro/R = 3, and Lo/Ro = 1.5. From left to right, the pictures correspond
respectively to (J, n) = (1.8× 106, 0.42) and (2.8× 106, 0.48).

The experimental observations of the size of the yielded region are

summarized in Figs. III.9 and III.10. The displacement efficiencies shown in

these figures have been estimated from the photographs. The trends observed

in these figures have already been discussed above.

Finally for this section, it is important to mention an interesting instabil-

ity that was sometimes observed, especially at lower flow rates, just before the

establishment of steady state. More specifically, a typical experiment starts

by turning on the pump at a fixed flow rate. In the cases where the instability

was observed, a pseudo-steady state was firstly attained with a given yielded

region size. After a few minutes, however, the yielded region undergoes a
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significant and abrupt reduction to its final steady-state size.
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Figure III.9: Displacement efficiency as a function of τ ∗R. Carbopol 0.09%.
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Figure III.10: Displacement efficiency as a function of τ ∗R. Carbopol 0.11%.

(b) Numerical results

The results presented in this section pertain to jump number values below

the ones measured for the Carbopol dispersions, due to convergence problems

experienced for high values of J .

Figs. III.11 and III.12 illustrate the distribution of the intensity of the

dimensionless extra-stress field τ ∗ =
√

tr τ ∗2/2 for two different values of
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τ ∗R, namely, 1.9 and 3.6, respectively. As expected, these figures show that the

highest stress levels are found at the walls of the small tubes and in the vicinity

of the rims. In the large tube, the stress decreases toward the wall.

The isoband corresponding to τ ∗ = 1, within which is situated the

yield surface, intersects the expansion and contraction planes at some radial

distance from the rims, and, as τ ∗R is increased, this isoband is pushed into

the large-tube cavity. A small closed unyielded region is found in the axis and

at mid-length of the large tube (Fig. III.12). This unyielded region occurs

due to the transition, along the large-tube axis, from expansion flow (bi-axial

extension) to contraction flow (uni-axial extension).

Figure III.11: Isobands of τ ∗. Ro/R = 6.3, Lo/Ro = 1, J = 18000, n = 0.4,
τ ∗R = 1.9

Plug-flow regions are expected around the axis in the fully-developed

regions of the flow in the small tubes. These are not shown in Figs. III.11

and III.12. In the short lengths of the upstream and downstream small tubes

shown, the flow is under the influence of the presence of the large tube.

The stress fields shown in Figs. III.11 and III.12 are symmetric with

respect to a mid-plane orthogonal to the axis, consistently with the equations

of motion that originated them, which neglect inertia and assume a purely

viscous material. This symmetry is not observed in the visualization experi-

ments, as discussed earlier. This qualitative difference between the numerical

results and the flow visualization results are attributed to the elastic behavior
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of the Carbopol dispersions at stress levels below the yield stress.

Figure III.12: Isobands of τ ∗. Ro/R = 6.3, Lo/Ro = 1, J = 18000, n = 0.4,
τ ∗R = 3.6
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Figure III.13: Displacement efficiency as a function of Ro/R. τ ∗R = 3.6,
J = 18000, n = 0.4.

In order to assess the effects of the various parameters, there are pre-

sented the numerical results in terms of two global quantities, namely, the
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displacement efficiency, Φ, and the head loss, ∆p∗. Both quantities are defined

in Sec. ??.

In Fig. III.13 it is possible to see that the displacement efficiency is a

decreasing function of the radius ratio Ro/R, because larger values of Ro/R

imply deeper cavities, where the yielded region tends to occupy a relatively

smaller volume. For very large values of Ro/R, the size of the yielded region

should become insensitive to this parameter, and Φ is expected to approach

zero asymptotically. However, this range of Ro/R was not investigated here.

In Fig. III.14 it is seen that the displacement efficiency increases as

Lo/Ro is increased, because larger values of Lo/Ro imply shallower cavities,

where the yielded region tends to occupy a relatively larger volume.
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Figure III.14: Head loss and displacement efficiency as a function of Lo/Ro.
τ ∗R = 3.6, Ro/R = 6.3, n = 0.4, J = 18000.

The displacement efficiency increases as the flow parameter τ ∗R is in-

creased, as illustrated in Fig. III.15. This trend is also in agreement with

the flow visualization results. Fig. III.16 illustrates the dependency of the

displacement efficiency on the jump number. It is observed that Φ increases

as J is increased, as also observed in the visualization experiments. This trend

is in agreement with the results of Liu et al. [54] in their study of the effect

of the regularization parameter on the yielded region size. The dependency of

Φ on the power-law exponent is illustrated in Fig. III.17. As n is increased, Φ

decreases, indicating that shear-thinning viscoplastic materials are displaced

more easily than Bingham-like viscoplastic materials, because shear thinning
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Figure III.15: Displacement efficiency as a function of τ ∗R. Ro/R = 6.3,
J = 18000, n = 0.4.

tends to cause larger deformation rates and hence larger yielded regions.
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Figure III.16: Head loss and displacement efficiency as a function of the jump
number. τ ∗R = 3.6, Ro/R = 6.3, n = 0.4, J = 18000.

Now, the results pertaining to the head loss ∆p∗, shown in Figs. III.14-

III.19 are examined. In Fig. III.14 it is seen that ∆p∗ is quite insensitive

to Lo/Ro in the range 1 < Lo/Ro < 1.5, but as this parameter is further

increased the head loss increases considerably. Regarding the dependency on

the radius ratio Ro/R, Fig. III.18 illustrates that the head loss increases as the

cavity depth is increased, and for each set of values of the other parameters
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Figure III.17: Head loss and displacement efficiency as a function of the power-
law index. τ ∗R = 3.6, Ro/R = 6.3, Lo/Ro = 1, J = 18000.

it is expected to reach an asymptotic value at sufficiently large values of Ro/R.
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Figure III.18: Head loss as a function of Ro/R. τ ∗R = 3.6, J = 18000, n = 0.4.

Fig. III.19 shows that ∆p∗ decreases as the flow parameter τ ∗ is increased,

indicating that the dimensional head loss in the large tube increases more

slowly with τ ∗ than the dimensional wall shear stress at the small tubes. This

is because the relative contribution of the large tube to the total head loss

decreases as the flow rate is increased. Regarding the rheological parameters,

∆p∗ is quite insensitive to the jump number (Fig. III.16), while it decreases as

the power-law exponent n is increased (Fig. III.17), because larger values of n
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Figure III.19: Head loss as a function of τ ∗R. Ro/R = 6.3, J = 18000, n = 0.4.

imply higher viscosities, causing the relative contribution of the large tube to

the total head loss to decrease.

(c) Comparison between experimental and numerical results

!*= 1

!*= 1.5

!*= 1

!*= 1.5

Figure III.20: Comparison between the predicted and observed yield surface
locations. Ro/R = 5, and Lo/Ro = 1. Left: Carbopol 0.09% and τ ∗R = 4.0;
right: Carbopol 0.11% and τ ∗R = 2.6.

Fig. III.20 shows a comparison between the yield surface locations pre-

dicted and observed experimentally, for two sets of the governing parame-

ters. At the bottom, the picture on the right pertains to Carbopol 0.09%

(J = 2.8 × 106, n = 0.48), whereas the one on the left is for Carbopol

0.11% (J = 1.8 × 106, n = 0.42). At the top, the corresponding isobands
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of stress intensity are given. These isobands were both obtained numerically

for J = 4.0 × 105, the highest jump number value for which convergence was

achieved. These numerical results do not differ from the ones obtained for

J = 1.0 × 105, which indicates that the results shown are also representative

of the jump number values of the experiments.

In the numerical results, the isoband corresponding to τ ∗ = 1, within

which is situated the yield surface, delimits much larger yielded regions than

the corresponding ones observed experimentally, especially for the 0.11%

concentration.

Fig. III.21 gives the numerically obtained radial distributions of the

axial velocity and stress intensity at the symmetry plane, for the same case of

the isobands shown on the top left of Fig. III.20. This figure shows that for

Carbopol 0.09% the predicted yield surface (τ ∗ = 1) intersects the symmetry

plane at the radial position r∗ ≡ r/R % 3, while non-negligible (u∗ > 0.05)

axial velocity values are only found where r∗ < 2, or where τ ∗ > 1.5. Thus,

if we chose τ ∗ = 1.5 (rather than τ ∗ = 1) to define the yield surface, then

the numerical predictions and experimental results in Fig. III.20 would be in

reasonable agreement for this case, because the experimentally observed yield

surface intersects the symmetry plane at r∗ % 2.
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Figure III.21: Predicted axial velocity and stress intensity radial distributions
at the symmetry plane. Ro/R = 5, Lo/Ro = 1, and τ ∗R = 4.0. J = 4.0 × 105

and n = 0.48.
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III.6 Final Remarks
In this chapter, the flow of viscoplastic materials through axisymmetric

internal passages composed by an abrupt expansion followed by an abrupt

contraction was studied. Numerical solutions of the mass and (inertialess)

momentum conservation equations were obtained, in conjunction with the

generalized Newtonian material constitutive model and a viscosity function

proposed by de Souza Mendes and Dutra [24]. Visualization experiments with

aqueous Carbopol dispersions at different concentrations were also performed.

The scaling of the equations of motion showed that this flow is governed

by five dimensionless parameters, two of these being just rheological material

properties, namely, the jump number, J , and the power-law exponent, n. Two

other are geometrical parameters, namely, the diameter or radius ratio, Ro/R,

and the length-to-radius ratio of the large tube, Lo/Ro. The last parameter

is a flow parameter, chosen to be the dimensionless fully-developed wall shear

stress at the upstream (or downstream) tube, τ ∗R.

The displacement efficiency (volume of yielded material in the large-

tube cavity / total volume of the cavity) is observed to increase with τ ∗R.

Regarding rheological parameters, the displacement efficiency increases mildly

with the jump number and decreases as the power-law exponent is increased.

The dependence with the geometrical parameters is such that the displacement

efficiency decreases with Ro/R and increases with Lo/Ro. A comparison

between experimental observations and numerical predictions suggests that

the stress intensity on the yield surface is actually higher than the yield stress

(τ ∗ % 1.5), because at stresses below this value the viscosity value is still too

high (Fig. III.4), and hence the velocity remains negligibly low.

III.7 Note
In this chapter it was realized an analysis of expansions-contractions

flows. Sec. III.1 is a bibliography review about the subject performed by

prof. de Souza Mendes. In Sec. III.2 the governing equations found in the

bibliography review are shown. Sec. III.3 deals with the numerical solution

of expansions-contractions flows permormed by profs. Naccache and de Souza

Mendes. In Sec. III.4 the experiments realized by myself in partnership with

Priscilla Varges are described. The results of this research are shown and

discussed in Sec. III.5, and some final remarks can be found in Sec. III.6.

This research in which I collaborated was led by prof. de Souza Mendes.
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