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coplásticos. 3. Escoamentos. 4. Reometria. 5. Expansões-
contrações. 6. Deslocamento. 7. Tubos Capilares. 8. Poços
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Abstract

Marchesini, Flávio Henrique; de Souza Mendes, Paulo Roberto;
Naccache, Mônica Feijó. Viscoplastic Materials in Engineering
Problems. Rio de Janeiro, 2008. 132p. Dissertação de Mestrado
— Departamento de Engenharia Mecânica, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Viscoplastic or yield stress materials are found in a lot of natural processes,

and in a wide variety of industries such as food, cosmetic, farmaceutical and

petroleum. In these industries, knowing the accurate rheological properties

of a viscoplastic material and its behavior in different flows are fundamental

for the success of many operations. Nevertheless, the rheometry of this kind

of material still presents some challenges, such as yield stress measurements,

apparent wall slip, thixotropy and the breakdown of structure on loading the

material into the rheometer geometry used. In addition to that, until now

some phenomena in different flows involving viscoplastic materials are not

well understood, and therefore more investigation is required. This thesis

deals with viscoplastic materials, their rheological properties measurements,

and their behavior in different kinds of flow. Moreover, a detailed analysis

of flows such as viscometric, expansions-contractions, the displacements in

capillary tubes, and the displacements inside oil wells was performed.

Keywords
Viscoplastic Materials. Flows. Rheometry. Expansions-

contractions. Displacement. Capillary Tubes. Oil Wells.
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Resumo

Marchesini, Flávio Henrique; de Souza Mendes, Paulo Roberto;
Naccache, Mônica Feijó. Materiais Viscoplásticos em Prob-
lemas de Engenharia. Rio de Janeiro, 2008. 132p. Dissertação
de Mestrado — Departamento de Engenharia Mecânica, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Materiais viscoplásticos, os quais apresentam tensão limite de escoa-

mento, podem ser encontrados em vários processos naturais e em diversas

indústrias, tais como: aliment́ıcia, de cosméticos, farmacêutica e do petróleo.

Nessas indústrias o conhecimento preciso das propriedades reológicas dos

materiais viscoplásticos e do comportamento desses materiais em diferentes

escoamentos é fundamental para o sucesso de várias operações. Todavia, a

reometria desse tipo de material ainda apresenta alguns desafios como as

medidas de tensão limite de escoamento, deslizamento aparente, tixotropia

e a quebra da microestrutura na colocação da amostra no reômetro. Além

disso, existe o fato de que até hoje alguns fenômenos em diferentes es-

coamentos envolvendo materiais viscoplásticos ainda permanecem não tão

bem compreendidos, o que requer uma investigação mais profunda. Nesse

trabalho, uma abordagem dos materiais que apresentam comportamento

viscoplástico, dos métodos utilizados para as medições de suas propriedades

reológicas e do comportamento desses materiais em diferentes tipos de es-

coamento é realizada. Além disso, é executada uma análise detalhada de

escoamentos, tais como: viscométricos, através de expansões-contrações, en-

volvendo deslocamentos em tubos capilares e de escoamentos envolvendo

deslocamentos em poços de petróleo.

Palavras-chave
Materiais Viscoplásticos. Escoamentos. Reometria. Expansões-

contrações. Deslocamento. Tubos Capilares. Poços de Petróleo.

DBD
PUC-Rio - Certificação Digital Nº 0621119/CB



Contents

I Introduction 13

I.1 Basic concepts 13

I.2 Viscoplastic materials 17

I.3 Viscoplastic materials models 19

I.4 Overview 22

I.5 Note 23

II Rheometry 24

II.1 Introduction 24

II.2 Analysis 26
Experimental measurements 26

Viscosity function and rheological parameters 27

Governing equations and boundary conditions 28

II.3 Experiments 29

II.4 Numerical Solution 30

II.5 Results and Discussion 31
Experimental Results 31

Numerical Results 36

Comparison between experimental and numerical results 40

II.6 Final Remarks 41

II.7 Note 42

III Expansions-contractions Flows 43

III.1 Introduction 43

III.2 Analysis 45
Viscosity function and rheological parameters 45

Governing equations and boundary conditions 46

Governing parameters 47

III.3 Numerical Solution 47

III.4 The Experiments 49
The visualization experiments 49

Rheology of the Carbopol dispersions 51

III.5 Results and Discussion 53
Flow visualization results 53

Numerical results 56

Comparison between experimental and numerical results 62

III.6 Final Remarks 64

III.7 Note 64

IV Displacements in Capillary Tubes 65

DBD
PUC-Rio - Certificação Digital Nº 0621119/CB



Contents 8

IV.1 Introduction 65

IV.2 Analysis 68
Viscosity function and rheological parameters 68

Governing equations and boundary conditions 69

Governing parameters 70

IV.3 The Experiments 71
The displacement experiments 71

Rheology of the Carbopol dispersions 73

IV.4 Results and Discussion 75
Results for the fully-developed flow 75

Fractional mass coverage results 79

IV.5 Final Remarks 83

IV.6 Note 84

V Displacements inside Oil Wells 85

V.1 Introduction 85

V.2 Analysis 87
Viscosity function and rheological parameters 87

Governing parameters 88

V.3 Experimental Investigation 90
Small scale experiments 90

Pilot scale experiments 91

Large scale experiments 94

Rheological measurements 96

V.4 Numerical Solution 97

V.5 Results and Discussion 97
Small scale 97

Pilot scale 99

Large scale 108

V.6 Final Remarks 119

V.7 Note 120

VI Conclusions 121

Bibliography 123

DBD
PUC-Rio - Certificação Digital Nº 0621119/CB



List of Figures

I.1 The dimensionless shear stress function. 21

II.1 Scheme of bob-in-cup geometry. 26
II.2 The geometries. 29
II.3 Flow Curve of Carbopol dispersion 0,17% – investigation of the

apparent slip region. 31
II.4 Viscosity of Carbopol dispersion 0,17% as a function of shear

stress – investigation of the apparent slip region. 32
II.5 Flow Curve of different Carbopol dispersions without apparent slip. 32
II.6 Thixotropic Curves of Carbopol dispersion 0,15%. 33
II.7 Creep test realized in a UDS 200 Paar-Physica with a grooved

Couette geometry of Carbopol dispersion 0,15%. 34
II.8 Inner and outer apparent wall slip velocities. 35
II.9 Velocity and strain rate for the smooth Couette geometry, and

γ̇exp/γ̇1 = 4.4× 10−3. 37
II.10 Velocity and strain rate for the smooth Couette geometry, and

γ̇exp/γ̇1 = 4.4. 37
II.11 Velocity and strain rate for the vane geometry, and γ̇exp/γ̇1 =

4.4× 10−3. 37
II.12 Velocity and strain rate for the vane geometry, and γ̇exp/γ̇1 = 4.4. 38
II.13 Velocity and strain rate for the grooved Couette geometry, and

γ̇exp/γ̇1 = 4.4× 10−3. 38
II.14 Velocity and strain rate for the grooved Couette geometry, and

γ̇exp/γ̇1 = 4.4. 38
II.15 Velocity profile for the three geometries and dimensionless exper-

imental outer wall shear rate equal to 4.4× 10−3 and 4.4. 39
II.16 Strain rate profile for the three geometries and dimensionless

experimental outer wall shear rate equal to 4.4× 10−3 and 4.4. 39
II.17 Inner and outer shear stress for the three geometries. 40
II.18 Comparison of inner wall shear stress between experimental and

numerical results. 41

III.1 The geometry. 46
III.2 Schematics of the apparatus. 50
III.3 The flow curves of the Carbopol dispersions. 51
III.4 The dimensionless viscosity of the Carbopol dispersions as a

function of the dimensionless shear stress. 52
III.5 Effect of τ ∗R on the yield surface location, for J = 2.8 × 106,

n = 4.8 (Carbopol 0.09%), Lo/Ro = 1.0, and Ro/R = 5.
From left to right, the pictures correspond respectively to τ ∗R =
3.0, 5.3, 8.4, 10.5, and 0.0. 53

III.6 Effect of Lo/Ro on the yield surface location, for J = 2.8× 106,
n = 4.8 (Carbopol 0.09%), τ ∗R = 5.3, and Ro/R = 5. From left
to right, the pictures correspond respectively to Lo/Ro = 1.0, 1.5,
and 2.0. 54

DBD
PUC-Rio - Certificação Digital Nº 0621119/CB



List of Figures 10

III.7 Effect of Ro/R on the yield surface location, for J = 2.8× 106,
n = 4.8 (Carbopol 0.09%), τ ∗R = 5.3, and Lo/Ro = 1.0. From
left to right, the pictures correspond respectively to Ro/R = 3
and 5. 54

III.8 Effect of rheology on the yield surface location, for τ ∗R = 4.0,
Ro/R = 3, and Lo/Ro = 1.5. From left to right, the pictures
correspond respectively to (J, n) = (1.8 × 106, 0.42) and (2.8 ×
106, 0.48). 55

III.9 Displacement efficiency as a function of τ ∗R. Carbopol 0.09%. 56
III.10 Displacement efficiency as a function of τ ∗R. Carbopol 0.11%. 56
III.11 Isobands of τ ∗. Ro/R = 6.3, Lo/Ro = 1, J = 18000, n = 0.4,

τ ∗R = 1.9 57
III.12 Isobands of τ ∗. Ro/R = 6.3, Lo/Ro = 1, J = 18000, n = 0.4,

τ ∗R = 3.6 58
III.13 Displacement efficiency as a function of Ro/R. τ ∗R = 3.6, J =

18000, n = 0.4. 58
III.14 Head loss and displacement efficiency as a function of Lo/Ro.

τ ∗R = 3.6, Ro/R = 6.3, n = 0.4, J = 18000. 59
III.15 Displacement efficiency as a function of τ ∗R. Ro/R = 6.3, J =

18000, n = 0.4. 60
III.16 Head loss and displacement efficiency as a function of the jump

number. τ ∗R = 3.6, Ro/R = 6.3, n = 0.4, J = 18000. 60
III.17 Head loss and displacement efficiency as a function of the power-

law index. τ ∗R = 3.6, Ro/R = 6.3, Lo/Ro = 1, J = 18000. 61
III.18 Head loss as a function of Ro/R. τ ∗R = 3.6, J = 18000, n = 0.4. 61
III.19 Head loss as a function of τ ∗R. Ro/R = 6.3, J = 18000, n = 0.4. 62
III.20 Comparison between the predicted and observed yield surface

locations. Ro/R = 5, and Lo/Ro = 1. Left: Carbopol 0.09%
and τ ∗R = 4.0; right: Carbopol 0.11% and τ ∗R = 2.6. 62

III.21 Predicted axial velocity and stress intensity radial distributions
at the symmetry plane. Ro/R = 5, Lo/Ro = 1, and τ ∗R = 4.0.
J = 4.0× 105 and n = 0.48. 63

IV.1 Displacement of a viscoplastic material in a capillary. 66
IV.2 The boundary conditions as described from a reference frame

attached to the bubble front. 70
IV.3 The experimental setup. 72
IV.4 The flow curves of the Carbopol dispersions. 73
IV.5 The dimensionless viscosity functions of the Carbopol dispersions. 74
IV.6 Dimensionless average velocity as a function of the dimensionless

wall shear stress. 76
IV.7 Dimensionless viscosity profiles. 77
IV.8 Dimensionless velocity profiles. 78
IV.9 Interface shapes. (a) Carbopol 0.09%; (b) Carbopol 0.11%; (c)

Carbopol 0.15%; (d) Carbopol 0.17%. The bubble speed increases
from left to right; see Table IV.1 for the corresponding Cap, ū∗,
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