

Claumir Sarzeda da Silva

Divisores de Freqüência por dois Paramétricos Balanceados a PHEMT para Receptores de Defesa Eletrônica.

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Elétrica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Elétrica.

> Orientadores: Marbey Manhães Mosso Abelardo Podcameni (*in memoriam*)

> > Rio de Janeiro, março de 2009

Claumir Sarzeda da Silva

Divisores de Freqüência por dois Paramétricos Balanceados a PHEMT para Receptores de Defesa Eletrônica.

Tese apresentada ao Programa de Pós-graduação em Engenharia Elétrica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Elétrica.

Prof. Marbey Manhães Mosso Orientador Centro de Estudos em Telecomunicações / PUC-Rio

Profa. Maria Cristina Ribeiro Carvalho

Centro de Estudos em Telecomunicações / PUC-Rio

Prof. Marco Antonio Grivet Mattoso Maia

Centro de Estudos em Telecomunicações / PUC-Rio

Prof. José Edimar Barbosa Oliveira

Instituto Tecnológico de Aeronáutica

Prof. Antonio Dias de Macedo Filho

Marinha do Brasil

Prof. Luiz Alberto de Andrade Instituto Aeronáutica e Espaço / CTA

> **Prof. José Eugênio Leal** Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 26 de março de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Claumir Sarzeda da Silva

Graduou-se em Engenharia Elétrica – ênfase em Eletrônica pela UFRJ (Universidade Federal do Rio de Janeiro) em 1984. Recebeu o título de Mestre em Engenharia Elétrica pelo IME (Instituto Militar de Engenharia) em 1990. Trabalha a 24 anos como pesquisador e engenheiro de desenvolvimento no Grupo de Guerra Eletrônica do IPqM (Instituto de Pesquisas da Marinha). Desenvolveu o receptor de acompanhamento do equipamento de MAE (Medidas de Ataque Eletrônico) ET/SLQ-1, foi gerente técnico do desenvolvimento do equipamento de MAGE (Medidas de Apoio a Guerra Eletrônica) ET/SLR-1 (MAGE-Defensor).

Ficha Catalográfica

Silva, Claumir Sarzeda da

Divisores de freqüência por dois paramétricos balanceados a PHEMT para receptores de defesa eletrônica / Claumir Sarzeda da Silva ; orientadores: Marbey Manhães Mosso, Abelardo Podcameni. – 2009. 199 f. : il. (color.) ; 30 cm

Tese (Doutorado em Engenharia Elétrica)– Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Divisor de freqüência. 3. Divisor de freqüência paramétrico balanceado a PHEMT. 4. Receptor de defesa eletrônica. 5. Geração não-linear subharmônica. 6. Ressoador de linhas acopladas. 7. Ressoador série e simulação transiente de circuitos não-lineares de microondas. I. Mosso, Marbey Manhães. II. Podcameni, Abelardo. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

Para meus familiares, em especial a minha esposa Marcy, meus pais Criméa e Laudelino e meus sogros Nancy e Vilmar. E para o inesquecível amigo e orientador Prof. Abelardo Podcameni, quanta saudade....

Agradecimentos

Aos meus orientadores, Prof. Abelardo Podcameni (*in memoriam*) e Prof. Marbey Manhães Mosso, pela orientação na realização deste trabalho, pelo suporte, amparo, compreensão, amizade e pela sabedoria com que sempre se dedicaram a tudo.

À Marinha do Brasil, na figura do diretor do Instituto de Pesquisa da Marinha, por me permitir e custear a maior parte deste trabalho.

À PUC-Rio, pelos auxílios concedidos, que viabilizaram a finalização deste trabalho.

Aos amigos e colegas do Laboratório GSOM, em especial a Rodolfo Azevedo de Araújo Lima, a Vanessa P. R. Magri e a Cláudia Barucke M. P. Leme, pela amizade, companheirismo e auxílios.

Aos amigos do Instituto de Pesquisas da Marinha, em especial aos colegas do Grupo de Guerra Eletrônica, pelo suporte, compreensão e atenção.

Aos amigos do Grupo Espírita Legionários da Luz, pela amizade sincera, pela compreensão de minhas carências e pela presença indispensáveis.

Aos amigos, familiares e todas as pessoas que de forma direta ou indireta colaboraram, incentivaram ou me auxiliaram durante a realização deste trabalho.

A Jesus cuja presença é constante em minha vida.

A Deus, por conceder-me a vida, a saúde e os meios para que mais este degrau fosse alcançado.

Aos meus irmãos, sobrinhos e cunhadas pela atenção, amizade e carinho sempre.

Aos meus sogros, pela presença, incentivo, e auxílio incondicionais.

Aos meus pais, pela educação, a coragem e o amor de todos os momentos.

E, de forma muito especial a minha esposa Marcy de Souza Sepúlveda da Silva, por compartilhar com o amor de sempre, com a presença e o amparo que me deram as forças para terminar esta tarefa.

Resumo

Silva, Claumir Sarzeda; Mosso, Marbey Manhães. **Divisores de freqüência por dois paramétricos balanceados a PHEMT para receptores de Defesa Eletrônica.** Rio de Janeiro, 2009. 199 p. Tese de Doutorado-Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho aborda o desenvolvimento de divisores de freqüência por dois paramétricos balanceados a PHEMT, tendo, como motivação, seu emprego como conversores de freqüência em receptores digitais de Defesa Eletrônica. Estes dispositivos têm como características importantes a simplicidade de projeto, um número reduzido de componentes, a possibilidade de integração em circuitos monolíticos de microondas (MMIC), coerência de fase, banda de operação larga, resposta a sinal pulsado muito boa, supressão de harmônicos boa, insensibilidade a variações térmicas e ruído de fase baixo. Uma metodologia de projeto passo a passo é proposta, norteada pela obtenção de dispositivos com ganho máximo (ou perdas mínimas) e banda de operação maximizada. Duas configurações de circuito são consideradas: com ressoadores em paralelo (linhas acopladas) e em série. A caracterização dos divisores é realizada por meio de simulação e experimentalmente. Por fim, uma análise comparativa com a literatura disponível é apresentada, mostrando que alguns dos circuitos desenvolvidos e realizados alcançaram melhor desempenho.

Palavras-chave

Divisor de freqüência, divisor de freqüência paramétrico balanceado a PHEMT, receptor de Defesa Eletrônica, geração não-linear subharmônica, ressoador de linhas acopladas, ressoador série e simulação transiente de circuitos não-lineares de microondas.

Abstract

Silva, Claumir Sarzeda; Mosso, Marbey Manhães (Advisor). **PHEMT** balanced parametric frequency divider by two for Electronic Defense receivers. Rio de Janeiro, 2009. 199 p. D.Sc Thesis – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

This work assesses the development of PHEMT balanced parametric frequency dividers by two, intended for application as frequency converters on Electronic Defense digital receivers. The main characteristics of these devices are design simplicity, reduced number of components, possibility of integration in MMIC, phase coherence, wide bandwidth, very good pulse response, good harmonic suppression, insensitivity to thermal variations and low phase noise. A step-by-step design methodology is proposed, guide by maximum gain (or minimum loss) and maximized band device requirements. Two circuit topologies are considered: with either parallel (coupled lines) or series resonators. The characterization of the dividers is performed both through simulation and experimentally. Finally, a comparative analysis against literature results is presented, evidencing that some of the developed circuits achieve better performance.

Keywords

Frequency divider, PHEMT balanced parametric frequency divider, Electronic Defense receiver, non-linear subharmonic generation, coupled lines resonator, series resonator, and microwave non-linear circuits transient simulation.

Sumário

1 Introdução	24
2 Receptores de microondas com aplicações em DE	27
2.1. Introdução	27
2.2. Revisão histórica	27
2.3. Unidades básicas de um sistema de recepção de DE	29
2.4. Classificação dos receptores de DE devido à sua aplicação	29
2.4.1. Receptores RWR	30
2.4.2. Receptores RHWR	30
2.4.3. Receptor CME ou MAE	30
2.4.4. Receptor MAGE	31
2.4.5. Receptor ELINT	31
2.5. Classificação dos receptores analógicos de DE devido à sua	
estrutura	32
2.5.1 O receptor a cristal vídeo.	33
2.5.2. Receptor super-heteródino	34
2.5.3. Receptor de medida de freqüência instantânea	36
2.5.3.1. Princípio de operação	38
2.5.4. Receptores canalizados	40
2.5.5. Receptor compressivo ou de microvarredura	42
2.5.6. Receptor à célula de Bragg (processadores ópticos)	44
2.6. Receptor digital	46
2.6.1. Conversor de freqüência	48
2.7. Comentários e conclusões parciais	49
3 Divisão de freqüência	50
3.1. Introdução	50
3.2. Lipos de divisores de freqüência	51
3.3. Divisores Digitais de Freqüência	52
3.4. Divisores de freqüência regenerativos	59

3.5. Divisores paramétricos de freqüência	64
3.5.1. Teoria dos divisores paramétricos de freqüência	64
3.5.2. Divisores paramétricos de freqüência práticos	72
3.5.3. Vantagens e desvantagens dos divisores paramétricos a	
varactores	79
3.5.4. Divisores paramétricos de freqüência por dois a transistores	80
3.6. Comentários e conclusões parciais	83
4 Projeto do divisor paramétrico balanceado de freqüência por dois a	
PHEMT	84
4.1. Introdução	84
4.2. Metodologia de projeto	85
4.2. Projeto do circuito ressoador	93
4.2.1. Projeto do ressoador com linhas acopladas	99
4.2.1.1. Cálculo das dimensões das linhas do ressoador	103
4.2.2. Projeto do ressoador série com linhas microstrip	111
4.3. Comentários e conclusões parciais	115
5 Simulação não-linear de divisores de freqüência	117
5.1. Introdução	117
5.2. Simulação transiente	117
5.3. Simulação de balanço harmônico	118
5.3.1. Resumo do método de balanço harmônico	119
5.4. Simulação de divisores de freqüência	121
5.4.1. Exemplos de simulação transiente	122
5.5. Comentários e conclusões parciais	128
6 Resultados de simulação e práticos	129
6.1. Introdução	129
6.2. Caracterização do PHEMT FPD1500SOT80	129
6.3. Simulação transiente dos circuitos divisores de freqüência	135
6.3.1. Resultados obtidos para o divisor#1	135
6.3.2. Resultados obtidos para o divisor#2	138
6.3.3. Resultados obtidos para o divisor#3	140

6.3.4. Resultados obtidos para o divisor#4	142
6.3.5. Resultados obtidos para o divisor#5	143
6.3.6. Resultados obtidos para o divisor#6	145
6.3.7. Resultados obtidos para o divisor#7	147
6.3.8. Resultados obtidos para o divisor#8	149
6.3.9. Resultados obtidos para o divisor#9	151
6.3.10. Resultados obtidos para o divisor#10	153
6.3.11. Resultados obtidos para o divisor#11	155
6.3.12. Resultados obtidos para o divisor#12	157
6.3.13. Resultados obtidos para o divisor#13	159
6.3.14. Resultados obtidos para o divisor#14	160
6.3.15. Resultados obtidos para o divisor#15	162
6.3.16. Resultados obtidos para o divisor#16	164
6.4. Realização experimental dos circuitos divisores de freqüência	166
6.4.1. Resultados obtidos para o divisor#17	168
6.4.2. Resultados obtidos para o divisor#18	170
6.4.3. Resultados obtidos para o divisor#7	172
6.4.4. Resultados obtidos para o divisor#19	173
6.4.5. Resultados obtidos para o divisor#20	175
6.4.5. Resultados obtidos para o divisor#21	176
6.4.6. Resultados obtidos para o divisor#22	178
6.4.7. Resultados obtidos para o divisor#23	180
6.5. Análise dos resultados práticos	183
7 Comentários finais e conclusões	185
7.1. Observações finais	185
7.2. Análise comparativa dos resultados obtidos	186
7.3. Principais resultados obtidos nesta tese	187
7.4. Principais dificuldades na realização desta tese	188
7.5. Desenvolvimento futuros	188
9 Deferôncias Piblicaróficos	100
o neierencias divilogranicas	190

Lista de Figuras

Figura 1: Representação de um cenário com um receptor radar e um	
receptor de interceptação.	28
Figura 2: Representação esquemática de um sistema de recepção	
básico de DE.	29
Figura 3: Representação esquemática de um receptor básico de	
cristal vídeo.	33
Figura 4: Representação esquemática de um receptor super-	
heteródino básico	35
Figura 5: Representação esquemática de um receptor homódino	
básico.	36
Figura 6: Representação esquemática de um receptor IFM Básico	37
Figura 7: Relação de fase de ondas senoidais com retardo de tempo	
constante; a): caminho do sinal; b): freqüência mais elevada; c):	
freqüência mais baixa.	38
Figura 8: Representação esquemática de um receptor canalizado; a:	
Entrada do receptor (banco de filtros e amplificação); b: Detectores,	
amplificadores de vídeo, comparadores e decodificação de	
freqüência.	41
Figura 9: Representação esquemática de um receptor Compressivo	
Básico	43
Figura 10: Esquemático de um receptor óptico integrado à célula de	
Bragg.	45
Figura 11: Diagrama em blocos de um receptor digital de DE	48
Figura 12: Diagrama em blocos de um conversor de freqüência	
aplicável a um receptor digital de DE.	49
Figura 13: a: Compressão de banda realizada por um divisor de	
freqüência por dois; b: Conversão (translação) de banda realizada	
por um conversor (misturador) de descida.	51
Figura 14: Esquemático de um divisor de freqüência por dois SCL.	53
Figura 15: Diagrama Lógico do <i>Flip-Flop</i> .	53

Figura 16: Representação esquemática de um DFF em nível de porta	
lógica.	54
Figura 17: Representação esquemática de um DFF em nível de	
transistor.	55
Figura 18: Representação esquemática de uma realização dinâmica	
de um DFF.	56
Figura 19: Representação esquemática de um divisor de freqüência	
TSPC.	57
Figura 20: Diagrama em blocos de um divisor de freqüência	
regenerativo genérico.	59
Figura 21: Diagrama em blocos de um divisor de freqüência	
regenerativo a FET de duas portas.	62
Figura 22: Esquemático de um divisor regenerativo conjugado de	
freqüência por quatro.	63
Figura 23: Esquemático do circuito equivalente não-linear de um	
varactor.	65
Figura 24: a: Gráfico da carga da camada de depleção versus a	
tensão de junção v para um varactor de junção pn abrupta ou de	
barreira – Schottky com $\gamma = \frac{1}{2}$, b: Gráfico da capacitância da	
camada de depleção $C_j(v) = \frac{\partial q_j}{\partial v}$.	67
Figura 25: Circuito equivalente de um divisor de freqüência por dois	
paramétrico balanceado.	68
Figura 26: Gráfico da região teórica resultante de uma divisão-por-2	
para o caso $\xi_s = 0,1$; $\xi_p = 0$, parametrizado para várias tensões de	
polarização normalizadas $X_{0} = V_{0}/\phi_{0}$.	70
Figura 27: A resposta da freqüência-metade V_s como uma função	
do nível de bombeamento V_p e freqüência de saída w , para	
$\xi_s = 0,1; e \xi_p = 0.$	71
Figura 28: Superfície da resposta de freqüência-metade como uma	
função da freqüência e da amplitude de bombeamento, assumindo	
polarização de zero volt $(X_0 = 1); \xi_s = 0,1; e \xi_p \cong 0.$	72

Figura 29: Esquema em <i>microstrip</i> de um divisor paramétrico de	
freqüência de 1959.	73
Figura 30: Diagrama em blocos de um divisor paramétrico de	
freqüência por dois, com um único varactor.	73
Figura 31: a: Desenho do circuito ressoador subharmônico	
balanceado proposto por Harrison; b: Desenho da estrutura do	
divisor por dois realizado em linha <i>microstrip</i> /CPW balanceada.	74
Figura 32: Esquemático do circuito equivalente de modo ímpar do	
ressoador em linhas acopladas carregadas pelas capacitâncias dos	
varactores.	75
Figura 33: Desenho estrutural do divisor por dois em linhas	
<i>microstrip/slotline</i> proposto por Kalivas e Harrison.	78
Figura 34: Desenho de realização para o divisor balanceado de	
freqüência por dois proposto por Kalivas e Harrison em [83].	78
Figura 35: Representação esquemática do divisor de freqüência por	
dois proposto por Kalivas e Harrison em [67] e [83].	79
Figura 36: Desenho representativo do circuito proposto por Cornish	
em [90].	80
Figura 37: Foto do circuito realizado por Heshmati et al. em [93 e 94].	82
Figura 38: Modelo do encapsulamento SOT-89 da Filtronic.	86
Figura 39: Esquemático do modelo não-linear para o PHEMT FPD	
1500 incluindo as parasitas externas.	87
Figura 40: Diagrama em blocos da topologia do divisor de freqüência	
proposto.	90
Figura 41: a: Híbrida Rat-Race; b: Híbrida Rat-Race modificada.	91
Figura 42: (a): Esquemático de um balum de linhas acopladas de	
$\lambda/4$; (b): Desenho de fabricação de um balum de 5 seções de linhas	
acopladas de $\lambda/4$.	92
Figura 43: Desenho de fabricação de um balum de 3 seções de linhas	
acopladas de $\lambda/4$ com <i>septum</i> no plano de terra.	93
Figura 44: Representação esquemática do circuito divisor de	
freqüência paramétrico balanceado proposto por Stapleton e Stubbs	
em [91].	94

Figura 45: Esquemático do circuito do PHEMT FPD1500SOT89	
utilizado na simulação.	95
Figura 46: Curvas $I_{ds} \times V_{ds}$ parametrizadas por V_{gs} para o PHEMT	
FPD1500SOT89.	96
Figura 47: Curva $C_{gs} \times V_{gs}$ para o PHEMT FPD1500SOT89.	96
Figura 48: a: Configuração para excitação do modo ímpar; b:	
Distribuição de tensão ao longo das linhas para o modo ímpar.	100
Figura 49: Caminhos percorridos $\ell_1 \in \ell_2$ pelo sinal de bombeamento	
na freqüência de entrada.	101
Figura 50: a: Esquemático do circuito ressonante equivalente para o	
modo par; b: Esquemático do circuito ressonante equivalente para o	
modo ímpar.	102
Figura 51: Esquemático do circuito parcial do divisor de freqüência	
para $V_{ds} = 3V$, $V_{gs} = -0.6V$, o ressoador com Z_{00} igual a 35,9012 Ω e	
θ_0 igual a 35°.	106
Figura 52: Representação esquemática do circuito do ressoador com	
linhas microstrip acopladas, com casamento na freqüência de	
entrada.	109
Figura 53: Esquemático do circuito do divisor de freqüência por dois	
paramétrico com ressoador de linhas microstrip acopladas e rede de	
casamento, na freqüência de entrada.	110
Figura 54: Esquemático do circuito do ressoador em série de linhas	
microstrip.	112
Figura 55: Representação esquemática do circuito equivalente de	
uma junção em T em linhas <i>microstrip.</i>	113
Figura 56: Representação esquemática do circuito do divisor de	
freqüência por dois paramétrico com ressoador em série de linhas	
<i>microstrip</i> , com a <i>probe</i> de impedância.	113
Figura 57: Esquemático do circuito do ressoador em série de linhas	
<i>microstrip</i> , com casamento na freqüência de entrada.	114
Figura 58: Representação esquemática do circuito do divisor de	
freqüência por dois paramétrico com ressoador em série de linhas	
microstrip e rede de casamento, na freqüência de entrada.	114

freque

Figura 59: Esquemático do circuito de um divisor de freqüência por	
dois regenerativo.	122
Figura 60: Sinais de entrada e saída de um divisor de freqüência por	
dois regenerativo, a) No domínio do tempo, b) No domínio da	
freqüência.	123
Figura 61: Esquemático de um circuito de um divisor de freqüência	
por dois paramétrico.	124
Figura 62: Sinais no domínio do tempo de um divisor de freqüência	
por dois paramétrico, a) Na entrada, b) Na saída.	125
Figura 63: Espectro dos sinais de entrada e saída de um divisor de	
freqüência por dois paramétrico.	126
Figura 64: Fotografia das amostras montadas do PHEMT	
FPD1500SOT89 para caracterização dos parâmetros S.	129
Figura 65: Ambiente de teste dos parâmetros S.	130
Figura 66: Fotografia dos padrões de calibração da medida dos	
parâmetros <i>S</i> .	131
Figura 67: Espectro de saída do divisor#1 para uma potência de	
entrada de -10 dBm e a freqüência variando de 1,6 a 2,5 GHz.	136
Figura 68: Espectro de saída do divisor#1 para uma potência de	
entrada de -6 dBm e a freqüência variando de 1,6 a 2,5 GHz.	136
Figura 69: Espectro de saída do divisor#1 para uma potência de	
entrada de 0 dBm e a freqüência variando de 1,6 a 2,5 GHz.	137
Figura 70: Espectro de saída do divisor#1 para uma potência de	
entrada de 0 dBm e a freqüência de 2,3 GHz.	137
Figura 71: Espectro de duas vezes a diferença entre as saídas	
balanceadas do divisor#1 para uma potência de entrada de 0 dBm e	
freqüência de 2,3 GHz.	138
Figura 72: Tensão de saída em cada uma das portas balanceadas	
do divisor#1 para uma potência de entrada de 0 dBm e a freqüência	
de 2,3 GHz.	138
Figura 73: Espectro de saída do divisor#2 para uma potência de	
entrada de -10 dBm e a freqüência variando de 2,1 a 2,3 GHz.	139
Figura 74: Espectro de saída do divisor#2 para uma potência de	
entrada de -8 dBm e a freqüência variando de 2,1 a 2,3 GHz.	139

Figura 75: Espectro de saída do divisor#2 para uma potência de	
entrada de -6 dBm e a freqüência variando de 1,6 a 2,5 GHz.	140
Figura 76: Espectro de saída do divisor#2 para uma potência de	
entrada de 0 dBm e a freqüência variando de 1,6 a 2,5 GHz.	140
Figura 77: Espectro de saída do divisor#3 para uma potência de	
entrada de -10 dBm e a freqüência variando de 1,9 a 2,4 GHz.	141
Figura 78: Espectro de saída do divisor#3 para uma potência de	
entrada de -5 dBm e a freqüência variando de 2,0 a 2,3 GHz.	141
Figura 79: Espectro de saída do divisor#3 para uma potência de	
entrada de -4 dBm e a freqüência variando de 2,0 a 2,3 GHz.	141
Figura 80: Espectro de saída do divisor#3 para uma potência de	
entrada de 0 dBm e a freqüência variando de 1,9 a 2,4 GHz.	142
Figura 81: Espectro de saída do divisor#4 para uma potência de	
entrada de -9 dBm e a freqüência variando de 1,6 a 2,8 GHz.	142
Figura 82: Espectro de saída do divisor#4 para uma potência de	
entrada de -7 dBm e a freqüência variando de 1,6 a 2,5 GHz.	143
Figura 83: Espectro de saída do divisor#4 para uma potência de	
entrada de 0 dBm e a freqüência variando de 1,6 a 2,5 GHz.	143
Figura 84: Espectro de saída do divisor#5 para uma potência de	
entrada de -10 dBm e a freqüência variando de 1,8 a 2,2 GHz.	144
Figura 85: Espectro de saída do divisor#5 para uma potência de	
entrada de -1 dBm e a freqüência variando de 1,9 a 2,1 GHz.	144
Figura 86: Espectro de saída do divisor#5 para uma potência de	
entrada de 0 dBm e a freqüência variando de 1,6 a 2,4 GHz.	145
Figura 87: Espectro de saída do divisor#6 para uma potência de	
entrada de -10 dBm e a freqüência variando de 1,8 a 2,0 GHz.	146
Figura 88: Espectro de saída do divisor#6 para uma potência de	
entrada de -8 dBm na freqüência 2,0 GHz.	146
Figura 89: Espectro de saída do divisor#6 para uma potência de	
entrada de 0 dBm e a freqüência variando de 1,6 a 2,4 GHz.	147
Figura 90: Espectro de saída do divisor#7 para uma potência de	
entrada de -10 dBm e a freqüência variando de 1,6 a 2,4 GHz.	147
Figura 91: Espectro de saída do divisor#7 para uma potência de	
entrada de -6 dBm e a freqüência variando de 1,6 a 2,4 GHz.	148

Figura 92: Espectro de saída do divisor#7 para uma potência de	
entrada de -3 dBm e a freqüência variando de 1,6 a 2,4 GHz.	148
Figura 93: Espectro de saída do divisor#7 para uma potência de	
entrada de 0 dBm e a freqüência variando de 1,6 a 2,4 GHz.	149
Figura 94: Espectro de saída do divisor#8 para uma potência de	
entrada de –10 dBm e a freqüência variando de 1,6 a 2,5 GHz.	150
Figura 95: Espectro de saída do divisor#8 para uma potência de	
entrada de –7 dBm e a freqüência variando de 1,6 a 2,5 GHz.	150
Figura 96: Espectro de saída do divisor#8 para uma potência de	
entrada de 0 dBm e freqüência variando de 1,6 a 2,5 GHz.	150
Figura 97: Espectro de saída do divisor#9 para uma potência de	
entrada de –10 dBm e a freqüência variando de 2,2 a 2,5 GHz.	151
Figura 98: Espectro de saída do divisor#9 para uma potência de	
entrada de -6 dBm e a freqüência variando de 2,2 a 2,5 GHz.	152
Figura 99: Espectro de saída do divisor#9 para uma potência de	
entrada de -4 dBm e a freqüência variando de 2,2 a 2,4 GHz.	152
Figura 100: Espectro de saída do divisor#9 para uma potência de	
entrada de 0 dBm e a freqüência variando de 1,6 a 2,4 GHz.	153
Figura 101: Espectro de saída do divisor#10 para uma potência de	
entrada de -30 dBm e freqüência de 2,1 GHz.	154
Figura 102: Espectro de saída do divisor#10 para uma potência de	
entrada de -10 dBm e freqüência variando de 2,1 a 2,4 GHz, com	
uma oscilação em 1165 MHz.	154
Figura 103: Espectro de saída do divisor#10 para uma potência de	
entrada de 0 dBm e a freqüência variando de 1,8 a 2,4 GHz.	155
Figura 104: Espectro de saída do divisor#10 para uma potência de	
entrada de 10 dBm e a freqüência variando de 1,6 a 2,4 GHz.	155
Figura 105: Espectro de saída do divisor#11 para uma potência de	
entrada de -30 dBm e freqüência de 2,1 GHz.	156
Figura 106: Espectro de saída do divisor#11 para uma potência de	
entrada de -12 dBm e freqüência de 2,1 GHz.	156
Figura 107: Espectro de saída do divisor#11 para uma potência de	
entrada de -10 dBm e a freqüência variando de 2,1 a 2,3 GHz.	157

Figura 108: Espectro de saída do divisor#11 para uma potência de	
entrada de 0 dBm e a freqüência variando de 1,6 a 2,4 GHz.	157
Figura 109: Espectro de saída do divisor#12 para uma potência de	
entrada de -30 dBm e freqüência variando de 1,6 a 2,5 GHz.	158
Figura 110: Espectro de saída do divisor#12 para uma potência de	
entrada de -8 dBm e freqüência variando de 2,2 a 2,3 GHz.	158
Figura 111: Espectro de saída do divisor#12 para uma potência de	
entrada de 0 dBm e freqüência variando de 1,6 a 2,5 GHz.	159
Figura 112: Espectro de saída do divisor#13 para uma potência de	
entrada de -6 dBm e a freqüência variando de 1,6 a 2,4 GHz.	159
Figura 113: Espectro de saída do divisor#13 para uma potência de	
entrada de -2 dBm na freqüência de 2,0 GHz.	160
Figura 114: Espectro de saída do divisor#13 para uma potência de	
entrada de 0 dBm e a freqüência variando de 1,6 a 2,4 GHz.	160
Figura 115: Espectro de saída do divisor#14 para uma potência de	
entrada de -10 dBm e freqüência variando de 1,8 a 2,1 GHz.	161
Figura 116: Espectro de saída do divisor#14 para uma potência de	
entrada de -8 dBm na freqüência de 2,0 GHz.	161
Figura 117: Espectro de saída do divisor#14 para uma potência de	
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz.	162
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de	162
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz.	162 162
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 119: Espectro de saída do divisor#15 para uma potência de	162 162
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 119: Espectro de saída do divisor#15 para uma potência de entrada de -10 dBm e freqüência variando de 1,6 a 2,4 GHz.	162 162 163
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 119: Espectro de saída do divisor#15 para uma potência de entrada de -10 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 120: Espectro de saída do divisor#15 para uma potência de	162 162 163
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 119: Espectro de saída do divisor#15 para uma potência de entrada de -10 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 120: Espectro de saída do divisor#15 para uma potência de entrada de -3 dBm na freqüência de 2,1 GHz.	162 162 163 163
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 119: Espectro de saída do divisor#15 para uma potência de entrada de -10 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 120: Espectro de saída do divisor#15 para uma potência de entrada de -3 dBm na freqüência de 2,1 GHz. Figura 121: Espectro de saída do divisor#15 para uma potência de	162 162 163 163
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 119: Espectro de saída do divisor#15 para uma potência de entrada de -10 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 120: Espectro de saída do divisor#15 para uma potência de entrada de -3 dBm na freqüência de 2,1 GHz. Figura 121: Espectro de saída do divisor#15 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz.	162 162 163 163 164
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 119: Espectro de saída do divisor#15 para uma potência de entrada de -10 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 120: Espectro de saída do divisor#15 para uma potência de entrada de -3 dBm na freqüência de 2,1 GHz. Figura 121: Espectro de saída do divisor#15 para uma potência de entrada de 0 dBm e freqüência de 2,1 GHz.	162 162 163 163 164
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 119: Espectro de saída do divisor#15 para uma potência de entrada de -10 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 120: Espectro de saída do divisor#15 para uma potência de entrada de -3 dBm na freqüência de 2,1 GHz. Figura 121: Espectro de saída do divisor#15 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 122: Espectro de saída do divisor#15 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz.	162 162 163 163 164
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 119: Espectro de saída do divisor#15 para uma potência de entrada de -10 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 120: Espectro de saída do divisor#15 para uma potência de entrada de -3 dBm na freqüência de 2,1 GHz. Figura 121: Espectro de saída do divisor#15 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 122: Espectro de saída do divisor#15 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 122: Espectro de saída do divisor#15 para uma potência de entrada de 10 dBm e a freqüência variando 1,8 a 2,2 GHz. Figura 123: Espectro de saída do divisor#16 para uma potência de	162 162 163 163 164 164
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 119: Espectro de saída do divisor#15 para uma potência de entrada de -10 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 120: Espectro de saída do divisor#15 para uma potência de entrada de -3 dBm na freqüência de 2,1 GHz. Figura 121: Espectro de saída do divisor#15 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 122: Espectro de saída do divisor#15 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 122: Espectro de saída do divisor#15 para uma potência de entrada de 10 dBm e a freqüência variando 1,8 a 2,2 GHz. Figura 123: Espectro de saída do divisor#16 para uma potência de entrada de -10 dBm e freqüência variando 1,8 a 2,2 GHz.	 162 162 163 163 164 164 165
Figura 117: Espectro de saída do divisor#14 para uma potência de entrada de -3 dBm e freqüência variando de 1,9 e 2,0 GHz. Figura 118: Espectro de saída do divisor#14 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 119: Espectro de saída do divisor#15 para uma potência de entrada de -10 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 120: Espectro de saída do divisor#15 para uma potência de entrada de -3 dBm na freqüência de 2,1 GHz. Figura 121: Espectro de saída do divisor#15 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 122: Espectro de saída do divisor#15 para uma potência de entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz. Figura 122: Espectro de saída do divisor#15 para uma potência de entrada de 10 dBm e a freqüência variando 1,8 a 2,2 GHz. Figura 123: Espectro de saída do divisor#16 para uma potência de entrada de -10 dBm e freqüência variando de 1,6 a 2,4 GHz.	 162 162 163 163 164 164 165

Figura 125: Espectro de saída do divisor#16 para uma potência de	
entrada de 0 dBm e freqüência variando de 1,6 a 2,4 GHz.	166
Figura 126: Espectro de saída do divisor#16 para uma potência de	
entrada de 10 dBm e freqüência variando de 1,6 a 2,4 GHz.	166
Figura 127: Fotografia do esquema de testes utilizado nas medidas	
experimentais dos divisores de freqüência realizados.	168
Figura 128: Fotografia do divisor#17.	168
Figura 129: Resultados da simulação do divisor#17.	169
Figura 130: Espectro medido do divisor#17.	169
Figura 131: Fotografia do divisor#18.	170
Figura 132: Resultados da simulação do divisor#18.	171
Figura 133: Espectro medido do divisor#18.	171
Figura 134: Fotografia do divisor#7.	172
Figura 135: Espectro medido do divisor#7.	172
Figura 136: Fotografia do divisor#19.	173
Figura 137: Resultado da simulação do divisor#19.	174
Figura 138: Espectro medido do divisor#19.	174
Figura 139: Fotografia do divisor#20.	175
Figura 140: Resultado da simulação do divisor#20.	175
Figura 141: Espectro medido do divisor#20.	176
Figura 142: Fotografia do divisor#21.	177
Figura 143: Resultado da simulação do divisor#21.	177
Figura 144: Espectro medido do divisor#21.	178
Figura 145: Fotografia do divisor#22.	179
Figura 146: Resultado da simulação do divisor#22.	179
Figura 147: Espectro medido do divisor#22.	180
Figura 148: Fotografia do divisor#23.	181
Figura 149: Resultado da simulação do divisor#23.	181
Figura 150: Espectro medido do divisor#23	182
Figura 151: Espectro medido do divisor#23 para $V_{ds} = 3,98V$	
$e V_{gs} = -1,5V$.	182

Lista de Tabelas.

Tabela 1: Resumo das características dos receptores analógicos	
de GE	32
Tabela 2: Freqüência máxima obtida por várias realizações de	
divisores digitais de freqüência estáticos.	58
Tabela 3: Freqüência máxima obtida por várias realizações de	
divisores digitais de freqüência dinâmicos.	58
Tabela 4: Divisão de freqüência versus produtos de misturação.	60
Tabela 5: Desempenho obtido pelo divisor de freqüência da	
referência [90].	81
Tabela 6: Características do divisor de freqüência realizado em	
[93 e 94].	82
Tabela 7: Parasitas devido o encapsulamento SOT89.	86
Tabela 8: Parasitas externos do PHEMT FPD1500.	88
Tabela 9: Parâmetros do modelo TOM3 para o PHEMT FPD1500.	89
Tabela 10: Parâmetros S do PHEMT FPD1500SOT89, para	
$V_{ds} = 3V \ e \ V_{gs} = -0.6V$.	97
Tabela 11: Impedância e admitância de entrada do PHEMT	
FPD1500SOT89, para $V_{ds} = 3V e^{V_{gs}} = -0.6V$.	98
Tabela 12: Parâmetros S do PHEMT FPD1500SOT89, para	
$V_{ds} = 3V \ e \ V_{gs} = -1V$.	98
Tabela 13: Impedância e admitância de entrada do PHEMT	
FPD1500SOT89, para $V_{ds} = 3V e V_{gs} = -1V$.	99
Tabela 14: Valores de Z_{00} , Z_{0e} e das dimensões físicas do ressoador,	
para vários valores de θ_o , $V_{ds} = 3V$, $V_{gs} = -0.6V$ e o substrato	
RT5880, com <i>H</i> =0,787 mm e <i>t</i> =0,7 mil.	104
Tabela 15: Valores de Z_{0o} , Z_{0e} e das dimensões físicas do ressoador,	
para vários valores de θ_o , $V_{ds} = 3V$, $V_{gs} = -1V$ e o substrato RT5880,	
com <i>H</i> =0,787 mm e <i>t</i> =0,7 mil.	104

Tabela 16: Parâmetros <i>S</i> do circuito parcial do divisor de freqüência,	
para $V_{ds} = 3V$, $V_{gs} = -0.6V$, o ressoador com Z_{00} igual a 35,9012 Ω e	
θ_0 igual a 35°.	106
Tabela 17: Impedância de saída do circuito parcial do divisor de	
freqüência, para $V_{ds} = 3V$, $V_{gs} = -0.6V$, o ressoador com Z_{00} igual a	
35,9012 Ω e θ_0 igual a 35°.	107
Tabela 18: Parâmetros <i>S</i> do circuito parcial do divisor de freqüência,	
para $V_{ds} = 3V$, $V_{gs} = -0.6V$, o ressoador com Z_{00} igual a 43,5408 Ω e	
θ_0 igual a 30°.	108
Tabela 19: Impedância de saída do circuito parcial do divisor de	
freqüência, para $V_{ds} = 3V$, $V_{gs} = -0.6V$, o ressoador com Z_{00} igual a	
43,5408 Ω e θ_0 igual a 30°.	109
Tabela 20: Valores das linhas do ressoador série, para	
$V_{ds} = 3V$, $V_{gs} = -0.6V$, com e sem casamento na freqüência de	
entrada (2 GHz).	110
Tabela 21: Valores das linhas do ressoador série, para $V_{ds} = 3V$,	
$V_{gs} = -1V$, com e sem casamento na freqüência de entrada (2 GHz).	111
Tabela 22: Valores das linhas do ressoador série, para	
$V_{ds} = 3V$, $V_{gs} = -0.6V$, com e sem casamento na freqüência de	
entrada (2 GHz).	115
Tabela 23: Valores das linhas do ressoador série, para $V_{ds} = 3V$,	
$V_{gs} = -1V$, com e sem casamento na freqüência de entrada (2 GHz).	115
Tabela 24: Parâmetros <i>S</i> medidos do PHEMT FPD1500SOT89, para	
$V_{ds} = 3V$, $V_{gs} = -0.6V$ e potência de entrada de -10 dBm.	131
Tabela 25: Parâmetros <i>S</i> medidos do PHEMT FPD1500SOT89, para	
$V_{ds} = 3V$, $V_{gs} = -0.6V$ e potência de entrada de 0 dBm.	132
Tabela 26: Parâmetros S medidos do PHEMT FPD1500SOT89, para	
$V_{ds} = 3V$, $V_{gs} = -1V$ e potência de entrada de -10 dBm.	132
Tabela 27: Parâmetros <i>S</i> medidos do PHEMT FPD1500SOT89, para	
$V_{ds} = 3V$, $V_{gs} = -1V$ e potência de entrada de 0 dBm.	133

Tabela 28: Resumo dos resultados obtidos com os divisores de	
freqüência realizados.	183
Tabela 29: Resumo comparativo dos divisores de freqüência	
realizado com os relatados na literatura disponível.	187