
2Natural Dedution
2.1Bakground and terminologyNatural Dedution is a logial system designed by Gentzen and Ja�skowskiin the early 30's on an attempt to reate a dedutive system more ompatiblewith mathematial reasoning. It is also natural in the sense that it allowsus to write dedutions in a more straightfoward way. We are interested inthe fragment {∧,∨,→,⊥} of intuitionisti logi. We all these logial symbolsonjuntion, disjuntion, impliation and falsum respetively.The properties of eah logial operator are given by an elimination andan introdution rule and there is a rule for ⊥. They are as follows:(∧-int) A B

A ∧ B (∧-el) A ∧ B
A

A ∧ B
B(→-int) [A]...

B
A → B

(→-el) A → B A
B

(∨-int) A
A ∨ B

B
A ∨ B (∨-el)

A ∨ B

[A℄...
C

[B℄...
C

C(⊥i) ⊥
AIn ⊥i we require A to be di�erent from ⊥ and we put formulas betweenbrakets when they are disharged (see the de�nition below) and sometimeswe indiate with a number the appliation where it ours.We an de�ne negation as a partiular ase of impliation, i.e., ¬A anbe de�ned as A → ⊥ and, putting B = ⊥ in →-int and →-el, we obtain ¬-int
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2-ategory and Proof Theory 11and ¬-el, respetively:(¬-int) [A]...
⊥
¬A

(¬-el) A ¬A
⊥We say that a formula A is atomi if A has neither of the forms B ∧ C,

B∨C nor B → C. If A has any of these forms, then B and C are subformulas of
A and so are any subformula of B and C and the operator between B and C isalledmain onnetive. The major premiss is the premiss of an elimination rulethat has the main onnetive that is to be eliminated. Every premiss that isnot a major premiss is a minor premiss. A thread is a sequene A1, A2, . . . , Anof formulas where A1 is an hypothesis, An is the onlusion and Ai, i 6= n,stands immediately above Ai+1. Let τ be a thread that begins with a formula
A. Then A may be disharged at B when B is the �rst formula ourrene in
τ that:1. is a premiss of the appliation that has A → B as onsequene. Forexample,

[A]1 D

A ∧ D (1)
A → A ∧ D2. is either the minor premiss on the left or the minor premiss on the righton an appliation of ∨-el that has either A ∨ D or D ∨ A (for some D)respetively as the major premiss. For example,

A ∨ D

[A]1 D (a)
A ∧ D

A [D]1 (a)
A ∧ D (1)

A ∧ D (b)
A

(2-1)An assumption that was disharged is alled losed, otherwise it is alledopen. A branh in a dedution is a sequene A1, A2, . . . , An of formulas suhthat A1 is an assumption not disharged by ∨-el, Ai+1 ours immediatelybelow Ai and An is either the �rst ourrene in the thread that is a minorpremiss of →-el or the onlusion of the derivation and a main branh of aderivation is a branh that is also a thread. A path is like a branh but theformula that sueeds the major premiss of an ∨-el rule is one of the hypothesisdisharged by the appliation of this rule (14).
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2-ategory and Proof Theory 12When, in a derivation, an introdution rule α is followed by an eliminationrule β, the onnetive that was introdued by α is immediately eliminated by
β, i.e., there was no neessity of introduing it in the �rst plae. Instead ofgoing straight to its goal - the onlusion - the derivation made a detour. Aformula that is both the onlusion of an introdution rule and a major premissis alled maximum formula. A derivation without maximum formulas is saidto be normal.In order to �nd a normal derivation, Prawitz introdued the notion ofredution. If a derivation Ψ is ahieved from a derivation Π by a sequene ofthe following steps, then we say that Π redues to Ψ (denoted Π � Ψ).(∧) Π1

A

Π2

B
A ∧ B

A
Π3

�

Π1

A
Π3

and Π1

A

Π2

B
A ∧ B

B
Π3

�

Π2

B
Π3(→) Π1

A

[A]

Π2

B
A → B
B
Π3

�

Π1

[A]

Π2

B
Π3(∨) Π1

A
A ∨ B

[A℄
Π2

C

[B℄
Π3

C
C
Π4

�

Π1

[A]

Π2

C
Π4

and Π1

B
A ∨ B

[A℄
Π2

C

[B℄
Π3

C
C
Π4

�

Π1

[B]

Π3

C
Π4where Π1

[F ]
, F = A, B means that Π1

F
replaed every ourrene of Fthat was disharged in the original derivation by the rule in question. Given aderivation Π, we also de�ne Π � Π as the identity redution.Prawitz showed (15) (p.256) that, for every derivation, there exists a�nite sequene of redutions leading to a normal derivation whih is unique.This result is known as Normalization Theorem.Given redutions α and β, the sequenes 〈α, β〉 and 〈β, α〉 are di�erentsequene of redutions and, given redutions α1 and α2, if α1 : Π1 � Π2 and

α2 : Π1 � Π′

2, then there exist β1 : Π2 � Π3 and β2 : Π′

2 � Π3 suh that both
〈α1, β1〉 and 〈α2, β2〉 go from Π1 to Π3. This property is known as the Churh-Rosser property.We do not �nd, in a branh of a normal derivation, an introdutionrule followed by an elimination rule for, if otherwise, it would have maximumformulas and therefore it would not be normal. Thus, we may say that the
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2-ategory and Proof Theory 13general struture of a branh of a normal derivation has the shape of anhourglass, with all the elimination rules (if any) on its top and the introdutionrules (if any) on its bottom. To the formula that is in between we allminimumformula, it is the onlusion of an elimination and the premiss of either anintrodution rule or the ⊥i and it is both subformula of an hypothesis and ofthe end-formula of the branh.The above redutions are not enough to bring any derivation to its normalform. In a normal derivation, the paths must also have all the elimination rulespreeding the introdution rules. In the two paths of (2-1), we have introdutionrules (a) preeding an elimination rule (b). Moreover, suessive appliations of
∨-elimination rules form a sequene of formula ourrenes of the same shapeand we would like to eliminate suh a sequene. To deal with situations likethis, and with the intention of proving normalization for intuitionisti logi,Prawitz introdued the permutation redution:

Π1

A ∨ B

Π2

C

Π3

C
C Π4

D

�
Π1

A ∨ B

Π2

C Π4

D

Π3

C Π4

D
Dwhere the lowest ourrene of C is a major premiss, there is at leastone ourrene of C in the sequene that is the onlusion of an in-trodution rule and Π4 may be empty. Hene, (2-1) an be redued to

A ∨ B

[A] D

A ∧ D
A

A [D]

A ∧ D
A

A

and then to A ∨ B [A] A

A
by ∧-redutions.There exists a ertain symmetry between elimination and introdutionrules whih is stated by the inversion priniple (14). We quote Prawitz (15)(p.246): the onlusion obtained by an elimination does not state any-thing more than what must have already been obtained if the majorpremiss of the elimination was inferred by an introdution.This priniple guarantees that the semanti of a derivation does nothanges with its redution.Another important priniple, the subformula priniple, states that everyformula in a normal derivation is either a subformula of the onlusion or asubformula of an hypothesis. This priniple is quite intuitive and guarantees
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2-ategory and Proof Theory 14that no formula and no operator di�erent from the expeted our in thenormal derivation.The derivation ⊥
A ∧ B

A
is normal aording to our de�nition, i.e, there isno formula that is the onlusion of an introdution rule and a major premiss.However, A ∧ B is of a higher degree than the surrounding formulas and it isneither a subformula of⊥ nor a subformula of A. Therefore, in order to preservethe inversion priniple, we also say that a formula that is the onlusion of ⊥iand a major premiss is a maximum formula. Thus, in a normal derivation,every rule that ours below ⊥i is of introdution.To bring derivations with at least one ourrene of ⊥i to its normalform, we annot use any of the previous redutions, so we add the followingone, where E is an elimination rule and B 6= ⊥:(⊥-red) Π1

⊥
A (E)
B
Π2

�

Π1

⊥
B
Π2This redution is de�ned as follows:If E = ∧-el, then Π1

⊥
A1 ∧ A2

Ai

Π2

�

Π1

⊥
Ai

Π2

, i = 1, 2

If E = ∨-el, then Π1

⊥
A ∨ B

[A℄
Π2

C

[B℄
Π3

C
C
Π4

�

Π1

⊥
C
Π4If E =→-el, then Π1

A

Π2

⊥
A → B
B
Π2

�

Π2

⊥
B
Π3To ategorially represent the system here presented, we need some moreredutions (the reason is shown in later hapters). To begin with, as from ⊥ wean derive any formula, we an expand (⊥-red) to when E is an introdutionrule with the restrition that, if it is an→-int, it does not disharge any formulaof the derivation:If E = ∧-int, then Π1

⊥
A

Π2

B
A ∧ B

Π3

�

Π1

⊥
A ∧ B

Π3

and Π2

A

Π1

⊥
B

A ∧ B
Π3

�

Π1

⊥
A ∧ B

Π3
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2-ategory and Proof Theory 15If E = ∨-int, then Π1

⊥
A

A ∨ B
Π2

�

Π1

⊥
A ∨ B

Π2

and Π1

⊥
B

A ∨ B
Π2

�

Π1

⊥
A ∨ B

Π2If E =→-int, then Π1

⊥
B

A → B
Π2

�

Π1

⊥
A → B

Π2With the introdution of these expansions we loose the uniity of normalform derivations. For example, the derivation ⊥
A

A ∨ B
B

A ∨ B
A

A ∨ B
A ∨ Ban be redued either to ⊥

A
A ∨ B

by the appliation of ∨-redution or to
⊥

A ∨ B
by ⊥-redution applied twie. To deal with this issue we state that an

⊥-redution an only be applied whenever ∨, ∧ and →-redution annot beapplied.Then we introdue expansions, whih have been envisaged by Prawitz(15) to make all minimum formulas atomi. As is the ase with redution,expansion steps form a sequene of derivations and we use the same notation,viz. Π � Ψ, to signify that Π expands to Ψ (� an also mean a ombinationof redutions and expansions). We believe that the use of the same notationdoes not reate onfusion and it is interesting for pratial reasons. We all rexeither a sequene of redutions, a sequene of expansions or a ombination ofthem. Let C be a minimum formula.If C = A ∧ B, then Π1

A ∧ B
Π3

�

Π1

A ∧ B
A

Π1

A ∧ B
B

A ∧ B
Π3If C = A → B, then Π1

A → B
Π2

�

[A]1
Π1

A → B

B (1)
A → B

Π2If C = A ∨ B, then Π1

A ∨ B
Π2

�

Π1

A ∨ B

[A℄
A ∨ B

[B℄
A ∨ B

A ∨ B
Π2With the introdution of expansions we introdue the posibility ofreating in�nite rex sequenes. For example, a sequene that begins with the
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2-ategory and Proof Theory 16derivation Π1

A ∧ B
A

Π2

A ∧ B
B

A ∧ B
A

an be as lenghty as we want by suessivesappliations of ∧-redution followed by ∧-expansion, i.e.,
Π1

A ∧ B
A

Π2

A ∧ B
B

A ∧ B
A

�

Π1

A ∧ B
A

�

Π1

A ∧ B
A

Π2

A ∧ B
B

A ∧ B
A

�

Π1

A ∧ B
A

. . .Note that, in this ase, both the appliation of the redution followed bythe appliation of the expansion and the appliation of the expansion followedby the appliation of the redution yelds the same result as the appliation ofthe identity redution.We also allow the permutation redution to work the other way around,i.e.,
Π1

A ∨ B

Π2

C Π4

D

Π3

C Π4

D
D

�

Π1

A ∨ B

Π2

C

Π3

C
C Π4

DFinally, we add expansions to derivations with at least one appliationof ⊥i: (⊥-exp) Π
⊥
B
Π′

�

Π
⊥
A r
B
Π′whih an be expanded so that r is either an introdution or an eliminationrule:If r is an introdution rule and

B = A ∧ C, then Π
⊥

A ∧ C
Π′

�

Π
⊥
A

Π
⊥
C

A ∧ C
Π′

B = A → C, then Π
⊥

A → C
Π′

�

Π
⊥
C

A → C
Π′
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2-ategory and Proof Theory 17
B = A ∨ C, then Π

⊥
A ∨ C

Π′

�

Π
⊥
A

A ∨ C
Π′

or Π
⊥
C

A ∨ C
Π′If r is an elimination rule, then(∧) Π

⊥
B
Π′

�

Π
⊥

A ∧ B
B
Π′

or Π
⊥

B ∧ A
B
Π′

, for any A;
(→) Π

⊥
B
Π′

�

Π
⊥
A

Π
⊥

A → B
B
Π′

, for any A;
(∨) Π

⊥
B
Π′

�

⊥
A ∨ C

Π
⊥
B

Π
⊥
B

B
Π′

, for any A and CWe say that two derivations Π and Ψ are equivalent if either Π � Ψ or
Ψ � Π. With Normalization Theorem, it is easy to prove that there is not aproof (a derivation where every hypothesis is losed) of ⊥:Suppose that there exists a proof of ⊥. Then, there exists a normal proofof ⊥ whih is the minimum formula of the main branh. As ⊥ is not inferredby an introdution rule, the only rules in the main branh of the proof are rulesof elimination, whih do not disharge premisses. Therefore, ⊥ is subformulaof an hypothesis that was not disharged.We now enoune three properties whih our dedutive system agrees with.All redution systems for normalizing natural dedution derivations agree withthe properties below. Property (0) means that rex is transitive and properties(1) and (2) mean that we an either redue a derivation and then applysubstitution or apply substitution and then redue the resulting derivation.Let � be a redution, an expansion or a ombination of both. Then, we havethat:0) If Π � Π′ and Π′

� Π′′, then Π � Π′′;1) If Π(X) � Π′(X), then for all Σ, Π(Σ) � Π′(Σ);2) If Σ � Σ′ then Π(Σ) � Π(Σ′)
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2-ategory and Proof Theory 18where Π(X) means that X is an hypothesis of Π and Π(Σ) is the resultof substituting every ourrene of the formula X by a derivation Σ whoseonlusion is X.As mathematiians often deal with di�erent proofs for a same theorem,it is natural to try to answer when two proofs (or derivations, as is our ase)are equal. We now state a onjeture formulated by Prawitz (15) that weare going to all Prawitz's Conjeture. It is also known as Identity (19) andNormalization (4) Conjeture.Conjeture: Two derivations represent the same proof (derivation) if,and only if, they are equivalent.Suh a onjeture is plausible due to the inversion priniple and, althoughnot proved, is very important in Proof Theory.2.2Strutural redutionsIn ontrast to loal redutions, that deal with introdution and elimina-tion of logial operators, strutural redutions work on a global level, i.e., asthe name indiates it, on the struture of the derivation. We show two stru-tural redutions, the �rst one due to Jan Ekman (5) and the seond one dueto Pereira and Haeusler (13).2.2.1Ekman's redutionIn (5), Ekman worked with a system N of Natural Dedution for naïveset theory whih omprises the symbols {=,∈,⊥,⊃, &, ∀,∨, ∃} and theirorresponding introdution and elimination rules. He laimed that the ruleused to eliminate equality in this system ould hide a redution and heused a derivation that represents the Russel Paradox to give an exampleof a derivation that does not have a normal form in N but has a normalderivation in another system. This another system may be the system Pof propositional logi whih omprises the symbols {⊥,⊃, &,∨} and theirorresponding introdution and elimination rules. It also has A ⇔ B de�nedas (A ⊃ B) ∧ (B ⊃ A).With this analysis Ekman reahed the following redution shema where
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2-ategory and Proof Theory 19
D is any derivation of ¬P :

P ⇔ ¬P
P ⊃ ¬P

P ⇔ ¬P
¬P ⊃ P

D
¬P

P
¬P

�
D
¬PHe generalises this redution to the following one:

Π1

B → A

Π2

A → B

Π3

A
B

A

�E
Π3

A
(2-2)Note that the derivation of the left hand side is normal aording to Prawitz'sde�nition but, intuitively, there is too muh information in it, for Π3 is alreadya derivation of the onlusion A.Immediately after this redution, Ekman de�ned, as follows, a moregeneral redution:

Γ
Π1

A
Π2

A

�E

Γ′

Π1

Awhere Γ and Γ′ are sets of hypothesis and Γ′ ⊆ Γ. We use �E and E-redutionto di�erentiate Ekman's from Prawitz's redutions. Γ′ may have less formulasthan Γ beause, if there exists a derivation of A from Γ′, then there existsa derivation of A from Γ but Γ′ annot have a formula that is not in Γ, forthe addition of new hypothesis hanges the semanti of the derivation. Forexample, A ∧ B
A

[A]

A ∨ B
A → A ∨ B

A ∨ B

⋫E

A
A ∨ B beause the hypothesis o thederivation of the right side is not an hypothesis of the original derivation.2.2.2PH's redutionPereira and Haeusler de�ned the following redution on an attempt toapproximate Proof Theory to the ategorial semanti (to be disussed insetion 3.3.2):

Π1

⊥
A

Π2

A → B
B

�P−H

Π1

⊥
B
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2-ategory and Proof Theory 20we all this redution PH's redution. We believe that they have reahed thisredution by onsidering what would be missed in (2-2) if the minor premiss ofthe last rule applied on the derivation of the left hand side had been inferredby ⊥i.With this redution, we an prove that, if there exist derivations from Cto ⊥, these derivations are equivalent to eah other: let Π1 and Π2 be two suhderivations. Then
C
Π1

⊥
A

C
Π2

⊥
A → B
B

(2-3)
redues to C

Π1

⊥
B

aording to PH's redution and to C
Π2

⊥
B

aording to ⊥-redution so, aording to Prawitz's Conjeture, these derivations are equiva-lent to (2-3) and, therefore, equivalent to eah other and then Π1 and Π2 areequivalent derivations.2.3Curry-Howard IsomorphismThis setion gives a general idea of the history of the Curry-HowardIsomorphism, that is, whih path was made to reah its enuniation. Wedisuss it in more detail in next hapter where we relate typed λ-aluluswith Cartesian Closed Category.There are suh basi notions in logi that one take them for granted, asthe proess of substitution (3). The idea of ombinatory logi is the analysisof an adequate foundation for those basi theories. It all seems to have beganwith an artile (16) written by Shön�nkel, where he introdues what is nowalled ombinators. Those ombinators allow funtions and funtions valuesto appear as argument. Shön�nkel introdued the ombinators I, C, T , Zand S that represent identity, onstany, interhange, omposition and fusionfuntions respetively (as he alled them) de�ned by the equations
Ix = x;
Cxy = x;
Tφxy = φyx;
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2-ategory and Proof Theory 21
Zφχx = φ(χx);
Sφχx = (φx)(χx).where juxtaposition is used to indiate appliation, and he then showedthat I, T and Z an be written in funtion of S and C only (I = SCC,

T = S(ZZS)(CC) and Z = S(CS)C) and that those ombinators an be usedto represent any ombination of variables.Without knowing this work, Curry had started to work in this samesubjet (2). He worked with B, C, W and I before he knew of Shön�nkel'spaper. B, C and K represent Shön�nkel's T , Z and C1, respetively and Wis alled dupliator and is de�ned by Wfx = fxx, that an also be written infuntion of S and K (as SS(SK)).To prove that any ombination of variables an be written uniquely bymeans of S and K, Curry (1) used the fat that, two ombinations of S and
K �whose appliation of a series x0x1x2 . . . yields the same transformation, areequal� (p.383) (e.g., SK and K(SKK) determine the same result).In (2), Curry shows that those ombinators an be written in a no-tation due to Churh: the λ-alulus. He de�nes λx.M as that funtionwhose value, for any argument a, is the result of substituting a for xin M (3). For multiple arguments, we write λx1x2 . . . xn.M to designate
(λx1(λx2 . . . (λxn−2(λxn−1(λxn.M))) . . .)) and the appliation is indiated byjuxtaposition with assoiation to the left.In this ase, we have that:
S ≡ λxyz.xz(yz)

K ≡ λxy.x

B ≡ λxyz.x(yz)

C ≡ λxyz.xzy

W ≡ λxy.xyyKleene and Rosser, in 1935, showed that there was an inonsisteny inChurh's and Curry's system, they realized the importane of introduing typein their theory. Type symbols are introdued reursively: there exists primitivetypes and, if α and β are types, then αβ is a type.1We will adopt Curry's notation from now on
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2-ategory and Proof Theory 22In (3), Curry and Feys pointed out that the types of S and K (viz.
(α → (β → γ)) → ((α → β) → (α → γ)) and α → (β → α) respetively) arepreisely the axioms of intuitionisti impliational logi and what they alledRule P, i.e., the rule that derives β from αβ and α, an be viewed as the ruleof modus ponens.The type of a ombinator (i.e., the type of a λ-term) an be foundaording to the rules (18)1

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢ M : τ 2

Γ ⊢ λx.M : σ → τ
Γ ⊢ M : σ → τ Γ ⊢ N : σ 3

Γ ⊢ MN : τwhere σ and τ are types, x is a variable and M and N are terms.Thus, the type of S an be found in the following way where, to savespae, we write αβ instead of α → β and Γ instead of x : α(βγ), y : αβ, z : α:(1)
Γ ⊢ x : α(βγ)

(1)
Γ ⊢ z : α (3)

Γ ⊢ xz : βγ

(1)
Γ ⊢ y : αβ

(1)
Γ ⊢ z : α (3)

Γ ⊢ yz : β (3)
Γ ⊢ xz(yz) : γ (2)

x : α(βγ), y : αβ ⊢ λz.xz(yz) : αγ (2)
x : α(βγ) ⊢ λyz.xz(yz) : αβ(αγ) (2)
⊢ λxyz.xz(yz) : (α(βγ))(αβ(αγ))Compare this derivation with the proof of (α → (β → γ)) → ((α →

β) → (α → γ)) in intuitionisti impliational alulus:
[α → (β → γ)]3 [α]1

β → γ

[α → β]2 [α]1

β
γ 1α → γ 2

(α → β) → (α → γ) 3
(α → (β → γ)) → ((α → β) → (α → γ))In (6), Howard stated a orrespondene between positive impliationalpropositional logi (P (⊃)) and the ombinators, and he introdued what isnow known as the Curry-Howard Isomorphism:Given any derivation of Γ → β in P (⊃) we an �nd aonstrution of Γ → β and onversely.where a onstrution of (a term of type) Γ → β is �(. . .) a term F β of type βsuh that for every free variable Xα ourring in F β there is a orrespondingourrene of α in Γ�. The orrespondene also preserves redutions, that isto say, if a derivation Π redues to Π′, then we an �nd a onstrution of Πthat redues to a onstrution of Π′ and onversely. Nowadays we have others
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2-ategory and Proof Theory 23orrespondenes between Proof Theory and Combinatorial Logi, eg., minimalpropositional logi orresponds to simply typed λ-alulus, �rst-order logiorresponds to dependent types, seond-order logi orresponds to polymorphitypes, et (18). Howard has also stated a orrespondene between a typed λ-alulus and Heyting Arithmeti.
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