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The boundary element method for axisymmetric elasticity

The boundary element method for axisymmetric elasticiy was first formu-
lated by Cruse et al. [15], using the fullspace fundamental solution derived by
Kermanidis [12], which was presented in Section 2.2. One may cite several con-
tributions regarding the axisymmetric formulation, as the expansion of asymmet-
ric boundary conditions by Fourier series suggested by Mayr [16] and Rizzo &
Shippy [17, 18]; and the assessment of body forces by means of particular integrals
incorporated by Park [19]. Also, axisymmetric formulations have been developed
for transversely isotropy by Ishida & Ochiai [20], thermoelasticity by Bakr & Fen-
ner [21], elastoplasticity by Cathie & Banerjee [22] and viscoplasticity by Sarihan
& Mukherjee [23]. In elastodynamics, one may cite the works by Wang & Baner-
jee [24, 25], Tsinopoulos et al. [26] and Yang & Zhou [27] in the frequency domain.

For problems in the halfspace, boundary element formulations that make use
of fullspace fundamental solutions require the discretization of the free infinite
surface, with truncation at a reasonable distance from the axis z. The errors caused
by this approximation can be attenuated by using infinite elements [31, 32], which
simulates the decay of the displacement and stress fields as » — oo. Alternatively,
on may implement fundamental solutions that satisfy in advance the traction free
boundary condition on the free surface, thus dispensing with its discretization. In
elasticity, this approach was used by Telles & Brebbia [38] and Dumir & Mehta [39]
to deal with problems in the isotropic and orthotropic halfplane, respectively.

This chapter presents the axisymmetric boundary element formulation using
the fundamental solutions presented in Chapter 2. In the case of the fullspace,
some relevance of the developments outlined may be claimed in relation tothe
numerical integration schemes as well to the systematic evaluation of stresses at
internal points, presenting explicit expressions in terms of integrals of Lipschitz-
Hankel type. The axisymmetric halfspace formulation has not been addressed in the
literature up to now. In this case, all developments in theory and implementation,
which seem to be original, are presented in more detail.

The next sections address problems involving radial and axial loads. The
formulation for torsional loads can be derived in a similar manner. In the following,

the superscript f refers to fullspace and 4 to halfspace.
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3.1
Formulation for the axisymmetric fullspace problem

3.1.1
Boundary integral equation

Za

Sv

(@)

Figure 3.1: Meridian plane of an elastic axisymmetric body submitted to body forces,
traction forces and prescribed displacements

Consider an axisymmetric body submitted to body forces b; in €, traction
forces ¢; on I, and prescribed displacements i; on I, as shown in Fig. 3.1. One is
looking for displacements u; and tractions #; along the boundary I' that best satisfy
the equilibrium equation in the domain €, as well the boundary conditions.

The solution of this problem can be derived by using Betti’s reciprocity
theorem, which relates the self-equilibrate state (u;, ], b) and the approximately

self-equilibrated state (u;, t;, b;) by the expression

ftiu,.*dl“+fbiu;f‘d£2=fti*u,-dl"+fbfu,~dQ 3-1)
r Q r Q

where u; = u; on ', and #; = f; on I',; and the displacements and traction forces
of the remaining part of I are to be obtained. In fact. Eq. (3-1) is valid only within

some approximation error.
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Figure 3.2: Axisymmetric body submitted to: a) radial ring load; b) axial ring load.

The auxiliary state (u:,t:,b}) results from the application of ring loads of
intensity p;, at a point P(£,7) in Q, weith b} = A} p; . as depicted in Fig. 3.2.

Hence, displacements and stresses at any point Q(r, z) can be evaluated by using the

fundamental solution, so that

u;(Q) = u;,(Q.P) p,,(P) + ¢] (3-2)

;(Q) = ,(Q.P) p,(P) (3-3)
The fundamental solutions u;, and #;; = o}, 1; correspond to displacements and
traction forces in a fullspace submitted to radial and axial loads, presented in
Chapter 2. In the above equation, ¢] are arbitrary rigid body constants that are
intrinsic to the fundamental solution. As presented, the index m refers to both the
direction and the location P(£,7") of the applied load. The index j refers to the
direction of the displacements and traction forces measured at Q(r, z).

Substituting the above relations into Betti’s reciprocity theorem leads to

f 1(Q) u;,(Q, P) dI'+ f bi(Q) u;,(Q, P)dQ = f 1(Q, P) ui(Q) dT'+ f A, ui(Q) dQ
r Q r Q (3-4)
in which the error in estimating the work of tractions #(Q) and body forces ;,(Q)
over rigid body displacements ¢/ is ommited. This error tends to zero as £;(Q) and

b;(Q) tend to represent a self-equilibrated stress field [71, 53].
For an axisymmetric body, the surface corresponding to the three-dimensional
boundary is given by
dl'(r,z,0) = rd0dl(r,z) (3-5)

where ['(7, z) is the boundary of the meridian plane, as indicated in Fig. 3.2. Then,
one may integrate Eq. (3-4) over # and apply the property of A’ expressed in
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Eq. (2-75) to arrive at

u,(P) = -2n f 1P, Q) ui(Q) rdl'(r,z) + 21 f uf (P,Q)t(Q)rdl'(r,z) (3-6)
r r

The above equation is the Somigliana’s identity for axisymmetric problems [15] in
the absence of body forces, which relates displacements at a point P(£,z") in the
domain to displacements and stresses along the boundary. From this relation, one
may obtain a system of integral equations on the boundary and the matrix governing

equation of the problem, as presented in Section 3.1.3.

3.1.2
Approximation of displacements and tractions

Let the boundary I'(7, z) of the meridian plane be subdivided into n, elements
of boundary I', with a total of n, nodes. The displacements and tractions can be

approximated along the boundary by

U; = Uy U, where n=1,n, (3-7)
L, =ty where [=1,n,
where u, and ¢; are nodal values; u;, and t; are the respective interpolation functions.
The index n refers to each displacement degree of freedom of a total n, = 2n,; and
the index / refers to each traction force degree of freedom of a total n, > n,. Note
that the numbers of degrees of freedom for traction forces and displacements are not
necessarily the same, since one may need additional traction parameters to represent

load discontinuities along the boundary [72].

3.13
Matrix governing equation

Let the point P(¢, ') in the Somigliana’s identity given by Eq. (3-6) approach
the boundary I". In the limit, the first integral becomes singular and the second term

can be rearranged to arrive at the following integral equation

21 f 6P, Q) ui(Q) r AU (r, 2) + 6, ui(Q) = 27 f U, (P, Q) 1:(Q) rdl(r,z) (3-8)
r r

Substituting the approximations expressed in Eq. (3-7) for displacements u; and

tractions #;, one arrives at

H,,u,=G,t; or Hu=Gt (3-9)
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where
Hun =27 [ G0 QuQ a2 + 6 = oty (410
G =2n j; (P, Q) 1:(Q) rdI'(r, 2) (3-11)
in terms of the generalized Kronecker delta

5 { 1 if m and n refer to both the same node and coordinate direction
mn

0 otherwise
(3-12)
and the Cauchy principal value of the singular integral

H,y, =27 f £ (P, Q) u;,(Q) r dI(r, 2) (3-13)
r

The constants ¢!, refer from the inclusion of the discontinuous part of the singular
integral and their evaluation is detailed in Section 3.1.5.

In the governing equation given by Eq. (3-9), H = [H,,] € R™ and
G = [G,;] € R are influence matrices, u = [u,] € R* and t = [f] € R™
are displacements and tractions in each coordinate direction at each nodal point
along the boundary. As mentioned before, the number of nodal traction forces can
be greater than the number of nodal displacements and, in this case, G becomes a
rectangular matrix.

By rearranging each term of the above equation according to the prescribed
boundary conditions for displacements and traction forces, i; and 7; respectively, a
linear system of equations A'Y = B is obtained, in which Y contains the unknown

parameters of the problem [73].

314
Stiffness matrix

The solution can also be found by means of a stiffness matrix K = [K,,,] €

R2%*2m for the following linear system of equations
Ku=p (3-14)

where u = [u,] € R™ and p = [pn] € R™ contain nodal displacements and
equivalent nodal forces, respectively. This approach is usually applied to couple the
finite element method and the boundary element method. In this case, the portion of
the body modeled by the boundary element method is considered as a superelement

whose stiffness contributes to the global stiffness matrix of the problem [73, 74].
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The equivalent nodal forces p,, can be obtained from the traction forces ¢; in

terms of virtual work

Pm Oy, = 21U, fu,-m t;rdl'(r,2) (3-15)

r

which leads to
Pm = 2n fuim tirdl'(r, 2) (3-16)
r

Moreover, the traction forces can be approximated by Eq. (3-7) and the above
expression becomes
p=L"t (3-17)

where L = [L,,] € R"*" is given by

Ly =21 f tir Wim 1 dI'(r, 2) (3-18)
r

Then, isolating the vector of traction forces t in Eq. (3-9) and substituting into

Eq. (3-15) one arrives at the following expression for the stiffness matrix
K=L"G""H (3-19)

Notice that matrix G may be rectangular and non-singular, in which cases its
inverse should be obtained in the frame of generalized inverses [75], denoted by

the superscript (—1), according to the following developments [58].

3.1.4.1
Generalized inverses of G

If the number of nodal traction forces n, is greater then the number of nodal
displacements n,, then matrix G is rectangular. Also, if the boundary I" contains any
node on the axis of axisymmetry, all the coeflicients of the rows of G corresponding
to the r-direction are void, since ul.*(fr) = 0 for & = 0. Thus, one must distinguish the

following cases concerning the form and rank of G:

Case 1: n, = n; and I'(r, z) does no intercept the axis of axisymmetry

The simplest case is a toroid. The matrix G is square and non-singular, thus

can be inverted directly.
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Case 2: n, = n; and I'(r, z) intercepts the axis of axisymmetry

The simplest case is a sphere. Let n, be the points at which I'(r, z) intersects
the axis of axisymmetry. The matrix G is square of order n, and singular with
rank(G) = n, — n,. To deal with the linear algebra problem, one resorts to a matrix
A = [A;] € R™ whose columns are defined as following.

For each node i of intersection, for which & = 0, A;; is written as

(3-20)

i —

1 if [ refers to both node i and r-direction
0 otherwise

The matrix A is by definition orthonormal, with columns spanning the null space of
G. This null space means that a radial load applied at the axis of axisymmetry must
produce no displacements in the body, except for rigid body displacements in the
z-direction).

The corresponding orthogonal projector and the complementary orthogonal

projector are, respectively,

P,=AA" (3-21)
P,=1-P, (3-22)

The inverse of G can be obtained in the frame of the Bott-Duffin inverse [76,

75] for the solution of t in the following restricted system

t=d"
G (3-23)
PAt = 0

which refers to the transformation of traction forces t = P,o* t into displacements
d*. Since G does not transform traction forces of the space spanned by Pa, i.e.,

G P4 = 0, its inverse can be written as
GV =P (G + APy (3-24)

The term in brackets is by construction a non-singular matrix. The projection P, is
multiplied by a arbitrary constant A to make sure the summands have approximately
the same order of magnitude []. In this case, one may adopt the order 1/u, where u
is the elastic shear modulus introduced by Eq. (2-10).

where the sum between parenthesis is non-singular and 4 is a constant of order
1/u to assure well-conditioning.

The inverse of G given by the above equation may appear more cumbersome

to calculate than the simple inverse presented in Case 1. However, its computational


DBD
PUC-Rio - Certificação Digital Nº 0410745/CA


PUC-Rio - Certificacéo Digital N° 0410745/CA

The boundary element method for axisymmetric elasticity 37

implementation comprises only the following steps: a) prior to the inversion, make
G,y = A for each element where m and [ refer to the nodes on the axis of axisym-
metry and the r-direction; b) invert the modified matrix; c) after the inversion, make
GV = 0 for each element modified in step b).

Im

Case 3: n, < n; and I'(r, z) does not intersect the axis of axisymmetry

The matrix G is rectangular and full rank. Its generalized right-inverse is given
by [58]
G"=LGL)" (3-25)

Case 4: n, < n; and I'(r, z) intersects the axis of axisymmetry

Let n, be the number of point at which I'(r, z) intersects the axis of axisym-
metry. The matrix G is rectangular with rank G) = n, —n,. Its generalized inversion

can be obtained by combining Cases 2 and 3, leading to
GV =LP;(GL+APy)"! (3-26)

Its computational implementation can be performed in a similar manner to the
procedure presented in Case 2, modifying specific elements of matrix G L.

Notice that for the Cases 2 and 4, the stiffness matrix K has its rank reduced by
—1 for each node on the axis of axisymmetry. In this case, prescription of zero radial
displacements at these nodes provides the additional conditions for the equation
system to be solved.

More elaborated developments on the spectral properties of the matrix G,
its inverses and the spectral transformations and algebraic spaces that arise in the
frame of the boundary element methods may be found in Dumont [71, 43], Dumont
et al. [57], Oliveira [58] and Oliveira et al. [77].

3.1.5
Discontinuity constants c!

mn

The constants ¢!

mn

(3-6) and contribute only to the elements of H,,, in which m and n refer to the same

account for the discontinuous part of the first integral in Eq.

node. In this cases, they can be expressed as

fo_ ox :
cmn - 5mn + 27{ ll_l;%

(P Q) 15y (Q)r dI = 27t lim f £ (P Q) 1 (Q) rdT
- (3-27)

t
Te
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where I'. and I, are portions of the circumference of radius e, as depicted in Fig. 3.3

for P(¢, 7’) placed either outside or on the axis of axisymmetry z.

ZA

=V

(a) (b)

Figure 3.3: Integration paths of constants ¢! for (a) & > 0 and (b) & = 0.

mn

For the traction forces t;,fl in the fullspace, presented in Section 2.2, when the
distance p between P(&, ') and Q(r, z) tends to zero, i.e. p — 0, the modulus m of the
complete elliptic integrals tends to unity. Accordingly, E(m) — 1 and K(m) — oo

in the integrals ,,;. One can expand K(m) by an infinity series for m < 1 [68] as

1 1\’ 1.3\, (1-3.5\

Then, the integral in Eq. (3-27) can be simplified by replacing r = & + € cos 6,

(3-28)

z=27 +e€sinb, n, = —cosh, n, = —sin6, d[, = —ed6. As a result, when m and n
do not refer to the same node,
=0 (3-29)

On the other hand, when m and n refer to the same node and & > 0, one obtains

1 sin 26, — sin 26
f 1 b
= +2(1 —v)A8
““n = dm (- [ 2 (= ]
fo_ e s 02 o2
Corz = Con = nd =" [sm 0, —sin6, ]
1 sin 26, — sin 26
f 1 b
y = - +2(1-v)Ab 3-30
Cz2) 4 (1 —v) [ D) ( V) ] ( )

where 6, = 8, — A8 and A€ the internal angle beteween 6, and 6,. Finally, when m
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and n refer to the same node and & = 0,

c{rr) =1
C{rz) =0
]
£ _
@ T Ax -

1
fo_ : 2 : 2
= Iy |sin 6, [2(1 - v) - cos 6,71 = sin 6, [2(1 - v) — cos 6% (3-31)

[—cos 9,3 + cos 923]

The expression given by Eq. (3-30) was obtained by Cruse et al. [15] and
coincide with the constants for plane strain elasticity [78]. Correspondingly, the
expression given by Eq. (3-31) can be derived by integrating the constants for three-
dimensional elasticity [78] over the axis of axisymmetry. Also, these constants can
be computed in an indirect manner, by applying analytical solutions to the final

system of equations [79], as it is presented in detail in Section 5.1.

3.1.6
Displacements and stresses in the domain

From the solution ; and ¢; along the boundary, displacements at a point P(&, )
in the domain can be obtained by the Somigliana’s identity, expressed in Eq. (3-6).
Stresses in the domain can be evaluated by applying the Somigliana’s identity to the
constitutive relations given by Egs. (2-12) to (2-17), leading to

om(P) = 2n f frnn(P, Q) ui(Q) r dT(r, 2) + 271 f i3, (P, Q) 1:(Q) r dT'(r,7) (3-32)
r r

where u; and ¢; are displacements and traction forces along the boundary interpo-

«f f

lated from nodal values, as expressed in Eq. (3-7). The evaluation of &}, and 7

is a cumbersome task since it involves the derivatives of the fundamental solutions
sf sf
uim and tim‘

elliptic integrals. However, they can be written in a more compact form in terms of

Their expressions were tabulated by Tan [80, 81] in terms of complete

integrals of Lipschitz-Hankel type as developed in the frame of the present theoret-
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ical investigations. Thus, for & > 0, one has

1 1 - - - _
—xf - —
=——— = |=Psly1o + 12l Lii1 | + P3 Loor — |Z) I
Uy () 87r(1—v){ [ ali0 + 12| 111] 3 Loo1 — 12| 012}
_*f = ! —Z _101 - szgn(z) 2VI_00| +ZI()02
L T - w | €
1
—xf _
Uy (rp) = m{ sign(z) 2 Py Iy +Z1|12}
1 _
—xf —
= ———1-P5 1 1
U () 87l —v){ > Lo — 2] 102}
1
it
— 1P, Iy + 12 I,
U ) = 87l —v){ 2 lorr + 12| 012}
1
7t
Uz = m{ sign(z) 2 P, 1001—Z1002}
and
G o= = AL [Py L = 18 T + o= [~Pa Too + 21 T | +
arrraews b LERIT o2 + 27 110 11
1 o
- [P3 o1 12| 1012] =3 1oo2 — 2 1003}
Tl = S - l[sign(z) 2P, I —21_112] — sign(2) 2 Ioix + Z o1
rz(rr) 47T(] ) f
— xf T = T T ST,
= Py Loy + 12| oo | + Loz — 12| 1
O r) = 47r(]—v){ [ 2 o1 + 12 102] 002 — IZ] 003}
— xf 4 = T 5T ; H T =7
Trrirsy = 47r(1 v){ [—Slg”(Z)zpl Iy +21112] + sign(z) 2 Loz —21103}
— xf 5 T
. —1Zl1
Tr00 = G (1 v){ 112 — |2l 113}
o Mzl
7209 = 4r (1 - v)
— xf H
= ——— Py Iy + 12 Lorz | + Tooz — 121 1
Orriz) = Al —v){ [ 2 loin + 12 012] 002 — IZ] 003}
— «f _ /JZIOI3

Tre) = —47r(1 -v)

— xf H T =17
oy = ——— oo + 7|

T () (=) { 002 + [Z] 003}

where

o _ *
lLipn = 0 jmn 1 = O jimn 11

and

Pir=1-v, P,=1-2v, P3=3-2v, P,=3-4y

—xf
mn mn

equations. The expressions for limg_, 1,4, are listed in Appendix A.

For ¢ = 0, one can derive i}

40

(3-33)

(3-34)

(3-35)

(3-36)

(3-37)

(3-38)

(3-39)

(3-40)

(3-41)

(3-42)
(3-43)
(3-44)
(3-45)

(3-46)

(3-47)

(3-48)

(3-49)

and 7' by taking the limit of the above
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3.1.7
Stresses on the boundary

Stresses at a point P(¢, z’) on the boundary can be obtained by substituting for
u,,(P) according to the Somigliana’s identity of Eq. (3-6) in the constitutive relations
for axisymmetry, given by Egs. (2-12) to (2-17). As a result, the integral equation
becomes hypersingular. This integral was first presented by Lacerda & Wrobel [82],
with contributions by Mukherjee [83] regarding its numerical integration.

Due to the complexity in evaluating these hypersingular integrals, this work
adopts the approach of interpolating the nodal results in a local coordinate sys-
tem [73]. The nodal values of traction forces and displacements can be rotated to

the local coordinate system (7, Z) at P(&, ), as depicted in Fig. 3.4, to arrive at
and 0. =1 (3-50)

where &; and 7; are stresses and traction forces in the local coordinate system.

2 A

= 4

A

(a)

Figure 3.4: Local coordinate system at point P(¢,7")

The remaining stresses are given by

1
5'” =< [2,[1 (grr + V€99) + Va—zz] (3_51)
(1-v)
1
Ogy = m [2u (&g + V&) + v ] (3-52)
in which, for r # 0, &, = €, = = and & = %Q and for r = 0, & = &,

Displacements iz, are evaluated by interpolating the nodal displacement values along
the element, as expressed in Eq. (3-7). Finally, stresses in the global coordinate

system are determined by back rotating the tensor &;.
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3.2
Formulation for the axisymmetric halfspace problem

3.2.1

Boundary integral equation

In a manner similar to that used for the fullspace, displacements «,,(P) in the

domain Q of an elastic halfspace can be expressed by the Somigliana’s identity

u,(P) = -2mn ft;‘;;(P, Q) u;(Q)rdl(r,z) + 2n fuf,',‘l(P, Q) #;(Q)rdl'(r,z) (3-53)
r r

where I'(r, z) = I; U’y UT is the boundary of the meridian plane shown in Fig. 3.3.
In this figure, I;, ['; and I', refer to the internal boundary, the loaded portion of the

boundary at z = 0 and the traction free portion of the boundary at z = 0, respectively.

7 A 7 A

(b)

Figure 3.5: Axisymmetric halfspace submitted to: a) radial ring load; b) axial ring load.

The fundamental solutions «;" and #;" are displacements and traction forces in
the halfspace that satisfy in advance the boundary conditions at z = 0. Since there
are by definition no traction forces #;(Q) on I'y, Eq. (3-53) simplifies to

u,(P) = -2n f 2P, Q) u(Q) rdl'(r,2) + 2n f NP, Q) 1(Q) rdl'(r,z) (3-54)
T f

where I’ = T'; U T,. From the above expression on may obtain a system of boundary
integral equations and the matrix governing equation, provided that the fundamental

solution for the halfspace is available, as presented in Section 2.3.
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3.2.2
Matrix governing equation

Taking the point P(¢, 7’) to the boundary in the Somigliana’s identity given by
Eq. (3-54), the following integral equation is obtained

2 f (P, Q) ui(Q) rd'(r, 2) + 0}, u(Q) = 21 f un(P, Q) 1(Q) rdI(r,z) (3-55)
I; r

in which the first integral is singular. Displacements and traction forces can be

approximated by the relations given by Eq. (3-7), arriving at

H,,u,=G,t; or Hu=Gt (3-56)

where
Ho =25 [ GPQuAQ A2 48, = Fpu by (5D
G =2n j; (P, Q) 1(Q) r dT'(r, 2) (3-58)

Eq. (3-57) is expressed in terms of the Cauchy principal value of the singular

integral

Hy = 2r f £1P, Q) n(Q) (1, 2) (3-59)
T;

and of the discontinuity term

(3-60)

C

v | 6, ifP(rnz) el
™ e ifP(rz) €T

mn

The constants &

. €an be obtained similarly to the procedure presented in Section

3.1.5 for the fullspace. For the halfspace, the fundamental solution can be decom-
posed as ;' = ¥ + 179, as presented in Section 2.3, where term 7} is the funda-
mental solution for the fullspace. Since the difference term £ has no singularity
if P(¢,7) € Ty, i.e. z # 0, the constants & = are identical to those derived for the

mn

fullspace in Section Secdo 3.1.5 and thus

EBm = crfnn (3_61)

Equation (3-56) can be rearranged in a system of equations, as mentioned

in Section 3.1.3 for the fullspace formulation. Alternatively, one may also find a
stiffness matrix ax expressed by Eq. (3-19), as presented in Section 3.1.4.

Notice that the submatrices of H becomes the identity matrix when the

integration refers to the boundary T's. In this case, one has z = 0 and as a
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—_ 3
6"1”

consequence Hmn =0and "

mn

3.2.3
Displacements and stresses in the domain

Displacements at a point P(¢, z) in the domain can be directly evaluated by
the Somigliana’s identity given by Eq. (3-54), similarly to the procedure presented
in Section 3.1.6 for the fullspace. Stresses in the domain are evaluated by applying

this equation to the constitutive relation, arriving at

oun(P) = 27 f fomn (P, Qu(Q) r dT'(r, 2) + 270 f iy (P, Q) 1(Q) rdI'(r,2) (3-62)

where u; and #; are displacements and traction forces interpolated from the nodal
solutions along the boundary. The halfspace fundamental solutions can be decom-

posed as indicated in Eq. (2-61) and, as a consequence, u#> and ;> can be ex-

mn

pressed as
—xh _ —xf —xd
Uipp = umm + Ujpn (3'63)
~h
timn - tlmn + ttmn (3'64)

where ii:f and 77 are the functions listed in Egs. (3-33) to (3-47) for the fullspace.

mn mn
4 and 4 for & # 0 can be written in terms of integrals of

The functions i e

Lipschitz-Hankel type as

1 1 N - A .
—xd N ’
o =——————3—=|—Pelijo+ Ps 2l [111 — 227" 1 + Ps Iy —
'y St -7 {f[ 6 Lo + Pa |2l Iy — 222 112] s lon
sign(2) (P42 +32) fora + 222/ Ions (3-65)
1 1 N " o
_*d . A - . A ’
U “Srd =) {g [szgn(z) 4P Py 1100 — P42 1101 — sign(2) 2zz 1102] -
sign(2) 2 Py Ioor + (P42 — 32) loos + sign() 227/ f003} (3-66)

—xd

1 A N o
Upr) =57 {—sign(ﬁ) 2P Ly + (Ps 2 + 2) I11p — sign(2) 227 1113} (3-67)
< 87‘((1 V)

By = A= (1 {P2 T — sign(2) (Ps 2 = 2) f1op — 222 f103} (3-68)
_¥d
Upzz) = 871(1 ) {Pz Tor1 + sign(2) (P42’ — 2) for — 222 1013} (3-69)
_x((i ) = { sign(2) 2 Py Ioo1 — (P42’ + 2) Ioox — 2 sign(2) ZZ’f003} (3-70)
‘@ T8r(1—v) (1 V)
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and

— xd l’l

T rr(rr) :m {E [Ps Loy — sign(Z) (P4 z + 32') 102 + 222 1103] +

—[—P61110—2ZZ Ii1o + Py |Z|1111] + - [Pslon—
é&r r

sign(2) (Psz' + 32) Io1n + 227 fo13] — Slo0p + 312 ooz — 227 f004} (3-71)

d M Ly o § N o
T2 (rr) —m {E [—szgn(z) 2Py Iy + (Paz+2) 111 — sign(2) 2zz 1113] +

sign(2) 2 fory = 3z + 2) Ions + sign(2) 222’ fora) (3-72)
—xd _ H 1 7 . a "N T 7
O e (rr) “ax(—v) {E [Pz Loy + sign(2) (Paz = 2') Lo — 222 1103] -

ono + sign(2) (=32 + ) foos + 222’ Toou (3-73)
T =—t __{ [—szgn(z) 2Py Iy + (P32 +2) I11n — sign(2) 2zz 1113] +

Y Ar(1-v) |\ r

sign(2)2 hop — (z+ 32) Fhos + sign(2) 222’ Trou) (3-74)

_d H c st )5
== R+l -2z ] 3-75
Tred = Il =) { 12 + 12l s — 222 114} (3-75)
G2y = (2103 — sign(2) 222 Tioa) (3-76)
“09 4 (1 - v)

—xd _ M 1 2 . A ’ 7 _ ' 7 _
T = Im (=) {; [Pz Loy + sign(2) (P4z" — 2) loin — 222 1013]

fooy + sign(2) (z = 32) foos + 222 oou (3-77)
d M
e (2013 — sign(2) 222/ Iora (3-78)
— xd lu

R = g1y ooz — 2 oo = 222 3-79
Tz 47T(1—v){ 002 — 12l doos — 22z 004} (3-79)

where
P1:]—V P2:]—2V P3:2—3V

3-80
P,=3—-4y Ps=5-6v Pc=5-12v+ &7 (3-80)

For ¢ = 0, these functions can be obtained in terms of limits. The expressions for
limg_, I pqa are listed in Appendix A.

Notice that these equations are also valid to evaluate displacements and
stresses on the non-discretized boundary I',, at the free surface, for z = 0.

Stresses at a point P(£,z") on the boundary can be evaluated in a similar

manner to that presented in Section 3.1.7 for the fullspace.


DBD
PUC-Rio - Certificação Digital Nº 0410745/CA




