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Fundamental solutions for an axisymmetric isotropic elastic
medium

An usual approach for solving problems in elasticity is the use of fundamental
solutions, constituted of displacements and stresses due to either distributed or point
loads in a fullspace, a halfspace or a layered media. These solutions are used for
the evaluation of influence coeflicients in analytical, semi-analytical or numerical
analyses of problems of more complex geometry and boundary conditions.

The boundary element method for axisymmetric problems of elasticity makes
use of fundamental solutions, in cylindrical coordinates (r, 6, z), due to ring loads
of intensity 27lr_f applied in the radial, tangential and axial directions, as depicted
in Fig. 2.1. The complete formulation of the method requires the expressions for
displacements and stresses at a point Q(r, z) due to ring loads applied at any other
point P(£, z) of the medium. These solutions are denoted by u;, and o7, in which

the index m refers to the direction of the load applied at P(&, 7). The indexes i and j

stand for the displacements and stresses components measured at Q(r, z).
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Figure 2.1: Ring loads: (a) in the radial direction; (b) in the tangential direction; (c) in the
axial direction.

This work addresses axisymmetric applications in homogeneous fullspace
and halsfspace media involving radial and axial loads. Accordingly, the fundamental
solutions due to ring loads in the radial and axial directions are necessary.

For the fullspace, displacements due to ring loads were first derived by
Kermanidis [12], by applying Betti’s theorem to Papkovich-Neuber solution [61]
for an infinite elastic medium. Later, Cruse et al. [15] and Bakr & Fenner [21]
solved Navier’s equilibrium equations by expressing displacements as Galerkin

vectors [61] and considering ring loads as body forces. Also, Shippy et al. [62]
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integrated Kelvin’s solution [61] for the three-dimensional infinite medium along a
circular path centered in the axisymmetric axis.

For the halfspace, Hasegawa [13, 14] deduced displacements and stresses
from stress functions [63] obtained by means of Fourier and Hankel transforms and
considering ring loads as body forces. Later on, Selvadurai & Rajapakse [2] im-
posed boundary conditions and continuity conditions to displacements and stresses
expressed by Muki’s solution [64, 65] and arrived at the same solutions. These
solutions were also obtained by Hanson & Wang [66] as a particular case of the
transversaly isotropic medium.

Both axisymmetric fundamental solutions for fullspace and halfspace can be
expressed by means of either integrals of Lipschitz-Hankel type involving products
of Bessel functions [67], or complete elliptic integrals of the first and second
types [68], or Legendre functions [68]. In this section, the approach presented by
Selvadurai & Rajapakse [2] is adopted. Expressions are written in terms of integrals
of Lipschitz-Hankel type [67]

Laé,ric) = foo Jp(ét) J (rt) e de (2-1)
0

in which p, g and A are integers, J,(£t) and J,(rt) are Bessel functions of the first
kind of order p and g, respectively. The integrals occurring in the axisymmetric
fundamental solutions are convergent [67] and their closed form expressions are
listed in Appendix A in terms of complete elliptic integrals of the first, second and
third kinds [68].

2.1
Governing equations

Strains € due to displacements u in a isotropic elastic medium are given by

e=5 (Vu+uV) (2-2)

in which ¢ is the Kronecker delta and V is the Del operator. For axisymmetric
problems, displacements do not depend on 6. Thus, applying the Del operator in

cylindrical coordinates,

V=i —tig— — + i — (2-3)
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the expressions for strains in Eq. (2-2) may be written as

€rr = Upy
1 ( Ug 4
€og= s \|\—— T Uy,
2 r
1
€:= 3 (ur,z +u; r)
2
Uy
€9 = —
r
1
€p; = ZUg,;
2
E.=U

Stresses ¢ are given by the constitutive relation
g=2ue+A8(V-¢)

where u and A are the Lamé coefficients, also expressed as

E
= e A= 4
2(1 +v) 1-2v

u

22

(2-4)
(2-5)
(2-6)
2-7)
(2-8)
(2-9)

(2-10)

(2-11)

in which p is the elastic shear modulus, E is the Young’s modulus and v is the

Poisson’s ratio. Substituting for strain and displacements given by Egs. (2-4) to

(2-9) leads to

\ 4
rr:2 ( rr T A)
7 H\H 1-2v
Ug
Org = ,U(—— + Me,r)
r
Or; = p (U, + u,)

u, %
0-99:2#(7+]—2VA)

Og; = MUy,

4
=2 (-,+ A)
Tz = A\t T,

where
u
A=u,+—+u,
r

Traction forces are given by

t=n-q

in which 7 is the surface unit outward normal.

(2-12)
(2-13)
(2-14)
(2-15)
(2-16)
(2-17)

(2-18)

(2-19)
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The equilibrium equation in the domain, for applied body forces b,

V-g+b=0 (2-20)
is written in cylindrical coordinates as
— @ + oy b =0 (2-21)
Fror 4+ 2T 4 gt by = 0 (2-22)
Tror + ‘77 + Ot b, =0 (2-23)

Substituting the strain and stress relations given by Egs. (2-4) to (2-9) and

Egs. (2-12) to (2-17) into the equilibrium equation leads to the Navier-Cauchy
equation

PV A+ DY (V- u)+b=0 (2-24)

where V2 is the Laplacian operator. In cylindrical coordinates, the Laplacian opera-

tor becomes
v 0? 10 1 & 0?

=t ——t = — + — 2-25
(9r2+r(9r+r2 892+6Z2 ( )

and the equilibrium equations are given by
(=20 (V2u, = %) 4 A, + b= 0 (2-26)

r
(1-2v) (Vzug - “—3) +by=0 (2-27)

r

A-2»)Vu,+A.+b. =0 (2-28)

The above expressions can be solved as two uncoupled problems, one referring to
Eq. (2-27) considering only torsional loads and the other one in terms of Egs. (2-26)
and (2-28) for applied radial and axial loads. In the fundamental solutions for radial
and axial loads, according to Egs. (2-26) and (2-28), ug = 0 and 0,4 = 0, = 0.

2.2
Fundamental solution for the axisymmetric fullspace

The fundamental solution can be derived from Muki’s asymmetric solu-
tion [64, 65] of Eq. (2-24) in the absence of body forces. Muki represented displace-

ments by means of harmonic and bi-harmonic functions and used Hankel transforms
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and their correspondence to Fourier transforms to arrive at the following solution

w=1 Z;) (U1 (1 2) = Vi1 (1, 2)] cOS M8 (2-29)
1 © .
uo =5 D W1 (n2) + Vot (n.2)] sinmé (2-30)

3
Il
(=]

1

o0 00 2
u. = Z (1- 21/)d G —2(1 = V)G ¢ t J,(rt) dt | cos mb (2-31)
m=0 0 dZ2

where
*(dG,,
Um+l (ra Z) = f ( + 2Hm) t2Jm+l (l’t) dr (2'32)
0 dz
= (dG,,
Vm—l(ra Z) = f ( - 2Hm) tz-]m—l(rt) dr (2'33)
0 dz
Gu(t,2) = (Ay + By 2)e" + (Cp + Dy2)e ™ (2-34)
Hm([, Z) =E, et + F, e (2'35)
in which A,,(¢), B, (1), ..., F,(t) are unknown functions to be determined from

boundary conditions.
If axisymmetry about the z-axis is considered, them m = 0 and the radial and

axial displacements may be simplified to

1 ~(d
U =~ f 95 on [J1(rt) — J_y(rt)] £ dt (2-36)
2 0 dZ
u, = (1-=2v) — =2(1 =)t G| Jo(rr)dt (2-37)
0 dz
where
G(t,2)=(A+By) e +(C+Dg)e™ (2-38)
Ht,2)=Eeé"+Fe™ (2-39)
in which A(?), B(), . . ., F(t) are unknown functions. The above equations constitute

the general axisymmetric solution of Egs. (2-26) and (2-28) in cylindrical coordi-
nates, in the absence of body forces.

Consider a fullspace separated into two parts, I and II, by a plan normal to z at
z =7/, as shown in Fig. 2.2. Applying Eqgs. (2-36) and (2-37) to parts I and II leads
to a total of 10 unknown functions. These functions can be obtained by applying
regularity conditions of displacements and stresses as 7 — +oo,

uI’H(r, ioo) = 0’ 0'1}.“(1‘, ioo) =0 (2_40)

i
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Figure 2.2: Ring loads in a fullspace: (a) in the radial direction; (b) in the axial direction.

compatibility conditions of displacements,
ui(r,2') = u; (r,7) (2-41)

and equilibrium conditions for radial and axial unit ring loads applied at (¢, Z")

6r—4) _ A AA6(r - )]

o (rZ)—op(rnd) =

2né 2né
1 00
= T j; JiED) Ji(rt) Etde (2-42)
o (r7)—on(r?)=0 (2-43)
and
ol (rn7)—oh(rn?)=0 (2-44)
Lo O =& A AL = )]
o (r)—o.(r)= o 2
_ L f Jo(€r) Jo(rt) Etde (2-45)
27T§ 0

In these equations, ¢ is the Dirac delta [69], and JZ,[f(r),r — ] = f(t) and
H Ff@,t = r] = H,[f(t),t — r] = f(r) are the Hankel transform of order
m and its corresponding inverse, respectively [70]. The orders m = 0 and m = 1 of
the Hankel transforms lead to the most simple solutions of the proposed problem.

The final expressions for displacements u(r, z) and u'(r, z) can be combined,
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leading to the following equations for displacements u;(r, z) € u; (r, z) of a fullspace

:f(,) = m {(3 —4v) 110 - 12 1_111} (2-46)
hy = ﬁ -47)
= T (248)
Wt = ﬂ;ﬁ%ﬁ;}k3—4ﬂﬂwrﬂﬂ%m} (2-49)
where
7=7-2 and Logr = L€, r5¢ = [2)) (2-50)

and the superscript f stands for fullspace fundamental solution.
Applying the elastic constitutive relations of Egs. (2-12) to (2-17), one obtains

stresses O'jjfm(P, Q) as

: 3-4w)i 71 _ o
T = 8(]_V){ Ao, By 32 - il @50
o'g(r) - 8(1 ) {szgn(z) 2(1 = v) L —21112} (2-52)
ﬁ%=8ﬂ_w{a 20) Tt + 2 T (2-53)
o 1 on n(z)2v I I (2-54)
)= i - ,
rr () 8(1— ) , 8z 001 — Z loo2
A 1-2v) I — 21, 2-55
Ore) = 8(1 —v){ (1 =-2v)Ion -2 012} (2-55)
1
sf _
Ouze@ = 8(1—v) {Slg”(z) 2(1 = v) Iooy +Z1002} (2-56)
where
1 ifz>0
sign(z) = 2-57
gn(2) { -1 ifz<0 ( )

In the above expressions, the indexes i and j refer to displacement and stress
components measured at Q(r,z). The index m refers to both the direction and
the location P(&, z’) at which the ring load is applied, its value indicated between
parenthesis.

If the ring load is applied at the axis of axisymmetry, i.e. £ = 0, the load in the
radial direction is naturally void and, consequently, uj(fr)lgzo = 0 and O'Zf(,.)lgzo = 0.
In such a case, the fundamental solution for the axial load simplifies to Kelvin’s
three-dimensional solution [61]. The expressions for u;?(fz)l‘f:o and O'?;(Z)l‘f:() can be
derived by taking the limit as ¢ — 0 in Egs. (2-46) to (2-49) and Egs. (2-51) to
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(2-56). Appendix A presents the limits of the integrals of Lipschitz-Hankel type as
&—=0.

2.3
Fundamental solution for the axisymmetric halfspace

An analogous procedure can be carried out for the axisymmetric halfspace.
Consider a plan normal to z, at z = 7/, separating the halfspace defined for z < 0

into two parts, as depicted in Fig. 2.3. Applying Egs. (2-36) and (2-37) to each part

(a) (b)

Figure 2.3: Ring loads in a halfspace: (a) in the radial direction; (b) in the axial direction.

of the halfspace leads to 10 unknown functions, as in the fullspace problem. These
functions can be evaluated by applying regularity conditions of displacements and
stresses at z — —oo in part I,

u}(r, —00) =0, o1 (r,—c0) = 0 (2-38)

ij
traction free boundary condition on part II,
ol(r,0)=0 (2-59)

displacement compatibility conditions and equilibrium conditions for the radial and
axial ring loads expressed in Eqgs. (2-41) to (2-45).

The expressions of displacements for parts I and II can be combined and a
similar procedure can also be applied to the complementary halsfspace z > O.

The final expressions of displacements «;"(P, Q) and their corresponding stresses
o;n (P, Q) are given by

wh(P,Q) = u (P,Q) + ul(P,Q) (2-60)
ol (P,Q) =, (P,Q) + 0s.(P,Q) (2-61)

ijm ijm ijm
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in which «f(P,Q) and of (P, Q) are the fullspace fundamental solution given by

im ijm

Egs. (2-46) to (2-49) and Egs. (2-51) to (2-56). The index d in the remaining terms
ul.*,?l(P, Q) and al.*;fn(P, Q) refers to the difference between the halfspace and fullspace

fundamental solutions; and for the halfspace defined either for z << 0 or z >> 0 are

. 1 R "
wd “Temi =V {5-12v+ 82 10— B —4v) 2l I+
222 Ihno) (2-62)
1 PR s
u:((ir) = ]6].(/1(1 _ V) {_4(1 - V)(] - 2V) Slgl’l(Z) 1100 + (3 - 4V)ZI|0|+
227’ sign(2) foo) (2-63)
1 3 .
wd . A —
7N —m {—4(] —v)(1 = 2v) sign(2) lopio — B = 4v) Z Lo +
227/ sign(2) fora) (2-64)
1 R . .
w«d 2 A ’
"o ~Tomi T =) {(5=12v + 87) fogo + B = 4v) [l foor + 222 o}~ (2-65)
and
o4 :; l [—(5 —12v+ 8 [0+ B =) 3| I, — QZZ'f|12] +
O 81 —v) | r
(5 = 6v) f1o1 — sign([(3 — 4v)z + 321 T10o — 222112 + 2ZZ'IA103} (2-66)
. ] . ~ ~ 17
ol S ) {—szgn(z) 20 =v)Lin +[B-4v)z+ [ 11o—
sign(2) 222 I3} (2-67)
) ] N . A 202 ' 7
o) =e—= {0 =20 oy + sign(®) [3 = 4)z = 21 hio = 222 Tros}  (2-68)
“ 8n(1 —v)
sd 1

1. . - _a
O-rr(z) :m {; [Slgi’l(Z) 4(] — V) (1 - 2V) IOIO + (3 - 4V) ZI()“—

Sign(ﬁ)ZZZ'IAmz] — sign(2) (2 = 3v) Ioor + [(3 = 4v)z = 321 oo+

sign(z) 2z7 foog} (2-69)
s 1 7 . A "7 7
0 =g =y {0~ 20 Jont = sign(@) (B = )z = 1o =22 os) - (2-70)
. ] . A - 17 . A ' 7
oo == {~sign(®) 200 = v) foo1 — [3 = 4v)z + 21 oo — sign(2)222 Ioos
R 8r(1 —v)
(2-71)
where
=74z and D=L re=12) (2-72)

If the ring load is applied at the axis of axisymmetry, i.e. & = 0, M??,ﬂg:o =0

and o7

iple=o = 0. Tn the case of axial load, u}{. ls=o and 077\ ls=o can be derived
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by taking the limit as & — 0 in Egs. (2-62) to (2-65) and Egs. (2-66) to (2-71).
The terms u;i(P, Q) and a,.*jffn(P, Q) are singular only if z = 0. One may notice that

the implementation of the halfspace fundamental solution requires little change in

codes where the fullspace solution is already used.

24
Properties of the fundamental solution

In sections 2.2 and 2.3, the fundamental solutions satisfying the equilibrium
equations expressed in Eq. (2-20) were derived considering no body forces, i.e,
b = 0. The effect of the radial and axial loads was taken into account by prescribing
adequate boundary conditions. Alternatively, these loads can be represented as
body forces and one checks that the fundamental solution satisfies the following
equilibrium equation
V-ag"+A =0 (2-73)

where A" is a generalization of Dirac’s delta function and is defined as

o(r — &) if both m and i refer to r-direction
A, =3 6(z—7) if both m and i refer to z-direction (2-74)

0 if m and i refer to different coordinate directions

Also, given an analytical function f(r, z),

f A fdQ =6 f (2-75)
Q

The tensor g* is a generalization of the Krockecker delta, given as

. | 1 ifiand mrefer to the same coordinate direction (2-76)
" 10 otherwise
From Egs. (2-73) and (2-75), one arrives at the relation
[v-a0--g @77)
Q ~ -

which is used in chapters 3 and 4 when deriving the boundary element formulation.
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