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1
Introduction

In elasticity, axisymmetric problems can be found in the analysis of circu-
lar footings and settlement of soils in geomechanics [1], indentation of cylinders
and spheres in contact mechanics [2, 3, 4], and fracture evolution and intensity
stress factors of penny shaped cracks and cylindrical inclusions in fracture mechan-
ics [2, 5, 6, 7], to name just a few examples. Some analytical solutions of these
problems can be found in the literature, such as those outlined by Selvadurai [1] in
geomechanics. However, in some cases, the solutions are given only either for some
specific location of the body, or for specific boundary conditions, or for specific
material properties.

For the cases not supported by analytical solutions, a possible approach is
the use of fundamental solutions to find the result of the problem either semi-
analytically or numerically. For axisymmetric problems, a variety of fundamen-
tal solutions can be found in elasticity depending on the material (isotropic
or anisotropic, homogeneous or non-homoegeneous), the boundary condition
(fullspace, halfspace or layered-media), the load type (point load, strip load or ring
load), and location (embedded in the medium or on the surface). Extensive surveys
on the existing solutions are given by Wang & Liao [8, 9], Wang et al. [10] and
Wideberg & Benitez [11].

In particular, the boundary element formulations are advantageous for ax-
isymmetric problems, since they reduce the analysis of the three-dimensional body
to a one-dimensional mesh discretization and the evaluation of linear integrals.
However, the fundamental solutions involved are of more complexity, requiring
special considerations on their manipulation and integration to correctly evaluate
the influence coeflicients arising from the boundary integral equations.

This work presents the conventional boundary element method as well as the
simplified-hybrid boundary element method for axisymmetric elasticity problems
in the fullspace and halfspace. One employs the fundamental solutions due to radial
and axial ring loads enbedded in a fullspace and halfspace derived by Kermani-
dis [12] and Hasegawa [13, 14], respectively. By expressing the fundamental solu-
tions by integrals of Lipschitz-Hankel, as adopted by Selvadurai & Rajapakse [2],

one has managed to manipulate the equations in an easier way, writing explicit
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equations for the expression of results at internal points. Moreover, the integrals
that arise in the formulation could be accurately evaluated via some appropriate nu-
merical schemes. The formulation for torsional loads, not addressed in this work,

involve simpler fundamental solutions and may be dealt with in a similar manner.

1.1
The boundary element method for axisymmetric elasticity

The boundary element method for axisymmetric elasticiy was first formu-
lated by Cruse et al. [15], using the fullspace fundamental solution derived by
Kermanidis [12]. One may cite several contributions regarding the axisymmetric
formulation, as the expansion of non-symmetric boundary conditions by Fourier se-
ries, as suggested by Mayr [16] and Rizzo & Shippy [17, 18], and the assessment
of body forces by means of particular integrals incorporated by Park [19]. Also, ax-
isymmetric formulations have been developed for transversely isotropy by Ishida &
Ochiai [20], thermoelasticity by Bakr & Fenner [21], elastoplasticity by Cathie &
Banerjee [22] and viscoplasticity by Sarihan & Mukherjee [23]. In elastodynamics,
one may cite the works by Wang & Banerjee [24, 25], Tsinopoulos et al. [26] and
Yang & Zhou [27] in the frequency domain. The method has also been successfully
applied to contact problems [28] and fracture mechanics [29].

For axisymmetric problems in the halfspace, the boundary element formula-
tion employed with the fullspace fundamental solution requires the discretization
of the free infinite surface. In this case, to take advantage of the reduction by one
dimension provided by the axisymmetric formulation, one needs to truncate the sur-
face at a reasonable distance from the axis of axisymmetry and the region of interest
[30]. The disadvantage of such scheme is that a large number of boundary elements
may be needed to model the remote surface satisfactorily.

An alternative way to deal with this problem is to use infinite boundary el-
ements, as suggested by Watson [31]. These infinite elements, which simulate the
decay of the displacement and stress fields in the far field, are mapped into a finite
region of intrinsic coordinate system to facilitate the integration. A variety of infinite
elements can be found in the literature for three-dimensional elasticity, depending
on the mapping scheme used and the application [32, 33, 34]. However, for axisym-
metry, such elements are not available, probably because treating the integration
of the singular kernels over the mapped infinite elements is not straightforward for
the fullspace fundamental solutions. Therefore, Kelvin’s three-dimensional funda-
mental solutions are usually employed together with the available surface infinite
elements for axisymmetric applications in the halfspace [35, 36, 37], thus requiring

the boundary surfaces to be discretized by three-dimensional elements.
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Another way to handle this problem is to implement the fundamental solutions
that satisfy in advance the traction free boundary condition on the free surface,
which circumvents its numerical discretization. In elasticity, this approach was
used by Telles & Brebbia [38] and Dumir & Mehta [39] to deal with problems
in the isotropic and orthotropic halfplane, respectively. This work presents the
boundary element formulation using the axisymmetric fundamental solution by
Hasegawa [13, 14] for the halfspace [40]. By identifying an embedded term due
to the fullspace fundamental solution in the halfspace fundamental solution, the
proposed formulation can be implemented by applying few modifications in the

existing axisymmetric computational codes.

1.2
The simplified-hybrid boundary element method for axisymmetric elastic-

ity

The hybrid boundary element method was introduced by Dumont [41, 42, 43]
about two decades ago on the basis of the Hellinger-Reissner potential, as a gen-
eralization of Pian’s hybrid finite element method [44]. The formulation requires
evaluation of integrals only along the boundary and makes use of fundamental so-
lutions to interpolate fields in the domain. Accordingly, an elastic body of arbitrary
shape may be treated as a single finite macro-element with as many boundary de-
grees of freedom as desired. In the meantime, the formulation has evolved to several
application possibilities, including time-dependent problems, fracture mechanics,
sensitivity analysis, and non-homogeneous materials [45, 46, 47, 48, 49]. The orig-
inal method makes use of a flexibility matrix F, for which evaluation of integrals
along the entire boundary is required.

A simplified, although equally accurate, version of the hybrid boundary
element method was proposed by Dumont & Chaves [50] about a decade ago [51,
52]. This simplified-hybrid boundary element method makes use of a displacement
matrix U* that is obtained directly from the fundamental solution, with which
the time-consuming evaluation of F is circumvented. Since it lacks a variational
basis, however, the method leads to a non-symmetric stiffness matrix. The manner
of evaluating results at internal points was inherited from the hybrid boundary
element method, which requires no integrals along the boundary. The ease of post-
processing results, the need for only integrating the well known influence matrix
H and its accuracy make the simplified-hybrid boundary element method of great
simplicity and applicability. The formulation is particularly attractive in the case
of problems for which the corresponding fundamental solutions are difficult to

manipulate, such as axisymmetry and gradient elasticity.
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The first application of the simplified-hybrid boundary element method was
presented by Dumont & Chaves [50] and Chaves [51] for steady state potential
and elasticity. Later on, the formulation was extended to general time-dependent
problems [53, 54, 47], functionally graded materials [55, 49] and sensitivity anal-
ysis [56]. In the successive applications, the method has undergone several modi-
fications and important theoretical aspects could be consolidated. The orthonormal
basis and the spectral properties of the matrices involved in the formulation play an
essential role and have been extensively investigated [57, 58].

In either the hybrid or the simplified-hybrid boundary element formulation,
submatrices about the main diagonal of matrices F* or U*, respectively, cannot be
obtained in the same way as the coefficients referring to different nodes are evalu-
ated: their evaluation requires the use of spectral properties that are related to rigid-
body displacements, for a bounded domain (or for the complementary domain, in
the case of an unbounded region) [41, 42]. For some specific topological configu-
rations, however, as in the case of notches, for axisymmetric problems or for some
spectral abnormalities related to material non-homogeneity, this procedure may lead
to local mathematical indefinitions (approximate zero by zero divisions) [59] and
the diagonal submatrices can only — if ever — be obtained by interpolation of
values from adjacent coefficients.

This work presents new theoretical developments that provide a definitive
solution to the issue [60]. The simplified-hybrid boundary element method relies
basically on a virtual work statement and on a displacement compatibility equation.
The key improvement consists in correctly applying a contragradient theorem to
derive simple relations that are generally valid and can successfully substitute for
the spectral properties. Actually, an underlying hybrid virtual work principle was
known since the onset of the formulation, but its application had been precluded
by some until recently not well understood theoretical subtleties. With the new
developments, once some simple stress or strain cases are identified as inherent to a
given problem, it is always possible to find a set of linearly independent analytical
solutions to provide sufficient equations for the evaluation of the submatrices about
the main diagonal, regardless of topology and spectral properties.

The development of this new version of the simplified-hybrid boundary ele-
ment method has been motivated by the need to solve axisymmetric problems, for
which the domain to be analyzed is usually non-convex. For such topological con-
figurations, some submatrices about the main diagonal of U* cannot be determined
by the procedure proposed in the original formulation. Moreover, an orthonormal
basis A was introduced to formally take into account the fact that axisymmetric
radial loads applied on the axis of axisymmetry generate no displacements.

In this work, one presents the complete formulation of the simplified-hybrid
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boundary element method for the axisymmetric fullspace. For the halfspace, some
questions regarding the analytical solutions needed for the evaluation of submatrices

about the main diagonal of U still remain unsolved.

1.3
Volume composition

This thesis comprises eight chapters and two appendices, as described in the
following.

Chapter 2 treats the axisymmetric fundamental solutions for the elastic
fullspace and halfspace. The governing equations for an axisymmetric elastic
medium are presented in cylindrical coordinates. The fundamental solutions for
the fullspace and halfspace are derived from Muki’s solution of the Navier-Cauchy
equilibrium equation in terms of integrals of Lipschitz-Hankel type.

Chapter 3 presents the boundary element method for fullspace and halfspace
axisymmetric problems. The boundary integral equations and their corresponding
matrix governing equations are derived by employing the fundamental solutions
presented in Chapter 2. Also, the evaluation of a stiffness matrix and the manip-
ulation of some generalized inverses are discussed. The expressions for assessing
displacements and stresses in the domain and along the boundary are provided in
explicit manner.

Chapter 4 discusses the simplified-hybrid boundary element method for
fullspace and halfspace axisymmetric problems. A new version of the method is
introduced, in which the governing equations are derived from a displacement vir-
tual work, a nodal displacement compatibility statement and a hybrid contragradient
theorem. The procedure of evaluating the unknown coefficients of U* is described in
detail for the fullspace, including the necessary analytical solutions. The evaluation
of a stiffness matrix as well as of displacements and stresses at internal points is
also discussed. The orthonormal basis, projectors and generalized inverses involved
in the formulation are commented through the whole chapter.

Chapter 5 deals with the numerical schemes to evaluate the integrals arising in
the boundary element method and the simplified-hybrid boundary element method
for the fullspace and halfspace axisymmetric problems. The integration cases are
grouped according to the position of the load source of the fundamental solution
relative to the axis of axisymmetry and to the segment of the boundary along which
the integration is carried out.

Chapter 6 presents a few numerical, validating examples of finite, infinite and
halfspace axisymmetric problems solved by both the boundary element method and

the simplified-hybrid boundary element method. The results of displacements and
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stresses are compared with analytical solutions on the boundary and at some points
in the domain.

Chapter 7 provides the conclusions of each aspect discussed in this work,
emphasizing the advantages and disadvantages of the boundary element method and
the hybrid boundary element method, for the fullspace and halfspace axisymmetric
problems. Moreover, one outlines the contributions as well as the questions that still
remain unsolved in these formulations.

Finally, Appendix A refers to Lipschitz-Hankel integrals in terms of products
of Bessel functions, giving their explicit expressions in terms of complete elliptic
integrals. Appendix B provides an overview of the numerical schemes to evaluate
regular, weakly singular integrals of logarithmic terms and finite part of singular

integrals.
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