

Mijail Febres Soria

Modelagem Tridimensional de Golfada Unitária em Tubulação Horizontal com Modelo VOF (Volume of Fluid)

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pósgraduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do grau de Mestre em Engenharia Mecânica. Aprovada pela Comissão Examinadora abaixo assinada.

Orientadora: Professora Angela Ourivio Nieckele

Mijail Febres Soria

Modelagem Tridimensional de Golfada Unitária em Tubulação Horizontal com Modelo VOF (Volume of Fluid)

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Angela Ourivio Nieckele Orientadora Departamento de Engenharia Mecânica – PUC-Rio

Prof. Luis Fernando Alzuguir AzevedoDepartamento de Engenharia Mecânica – PUC-Rio

Prof. Eugênio Spanó Rosa Universidade Estadual de Campinas

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 29 de Julho de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Mijail Febres Soria

Graduou-se em Engenharia Mecânica na Universidad Nacional San Antonio Abad (CUSCO – PERÚ). Atualmente trabalhando na simulação de Escoamento Multifásico dentro da área de Petróleo e Energia.

Ficha Catalográfica

Febres Soria, Mijail

Modelagem tridimensional de golfada unitária em tubulação horizontal com modelo VOF (Volume of Fluid) / Mijail Febres Soria; orientadora: Angela Ourivio Nieckele. – 2009.

127 f.: il.(color.); 30 cm

Dissertação (Mestrado em Engenharia Mecânica)—Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Escoamento em golfadas. 3. Modelo VOF. 4. Tubulação horizontal. 5. Tri-dimensional. I. Nieckele, Angela Ourivio. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

Agradecimentos

À Professora Angela Ourivio Nieckele, pela amizade e pela paciência para transmitir seu conhecimento, pela incansável motivação na realização deste trabalho e por ter me brindado apoio o tempo todo durante minha estância no Brasil.

Os meus Pais e Irmã, pela compreensão, apoio, amor e inspiração, por comemorar comigo os meus sucessos e me consolar nos fracassos, por serem testemunhas permanentes de meu desenvolvimento.

Ao Paul, Marlene, Javier e Presvítero, minha família no Brasil, por todo o carinho, bondade e apoio nestes últimos anos.

Aos meus amigos Juan Carlos, Herberth, Luis, Manolo,..... e toda a galera da sala Azul de Termociências, por compartir comigo este caminho e sempre estar dispostos a mostrar o melhor sorriso mesmo nos momentos difíceis.

À minha namorada, Manuela, por seu amor e sua confiança, por ter se convertido no motor da minha vida e fazer de mim uma melhor pessoa apenas sendo simplesmente ela.

À CAPES e a PUC-Rio, pelo auxílio concedido, o trabalho não poderia ter sido realizado sem esse apoio.

Resumo

Soria, Mijail Febres; Nieckele, Angela Ourivio. **Modelagem Tridimensional de Golfada Unitária em Tubulação Horizontal com Modelo VOF (Volume of Fluid).** Rio de Janeiro, 2009. 127p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O constante crescimento na demanda de combustíveis fósseis e as últimas descobertas de petróleo no Brasil têm tornado a modelagem de escoamentos multifásicos em tubulações e equipamentos na indústria do Petróleo numa tarefa crucial. Dentro as configurações possíveis que o escoamento multifásico pode adotar, o regime das golfadas possui uma enorme relevância devido às suas características intermitentes e seus fortes gradientes de pressão produzidos nas tubulações por onde escoa. Neste trabalho, estuda-se numericamente, com o método de volumes finitos, o regime das golfadas, determinando-se o campo de velocidade e pressão, assim como a forma do nariz da bolha de Taylor e a velocidade de translação de uma unidade básica de golfada tridimensional em uma tubulação horizontal. Considerou-se o escoamento isotérmico, e utilizouse o referencial coincidente com a bolha de Taylor. Para modelar o escoamento turbulento utilizou-se o modelo κ - ε RNG. A interface foi determinada com o modelo VOF (Volume of Fluid). Os resultados das simulações foram comparados com dados experimentais disponíveis, apresentando uma boa concordância.

Palavras-chave

Escoamento em golfadas; Modelo VOF; tubulação horizontal, tridimensional.

Abstract

Soria, Mijail Febres; Nieckele, Angela Ourivio. (Advisor) **Three Dimensional Modeling of a Single Unit Slug in a Horizontal Pipeline with the VOF Model.** Rio de Janeiro, 2009. 127p. MSc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Pipeline and equipment multiphase flow modeling in oil industry has become a crucial task due to the constant increasing fossil fuel demand and latest oil discovers in Brazil. Among all possible flow configurations that multiphase flow can take, the slug flow regime plays an important role due to its intermittent characteristics and its strong pressure gradients in pipelines, where this flow regime can be found. In the present work, a numerical study of a slug flow is performed, with the finite volume method. The flow and pressure field are determined, as well as, the Taylor bubble nose shape and the translational velocity of a three dimensional single unit slug in a horizontal pipeline. The flow field was considered isothermal and it was employed a coordinate system coincident with the Taylor bubble. To model the turbulent flow, the RNG κ – ε model was selected. The interface was determined with the Volume of Fluid models (VOF). The results from the simulations were compared with available experimental data, presenting good agreement.

Keywords

Slug flow; Volume of Fluid - VOF; horizontal pipeline; three dimensional.

Sumário

1 Introdução	19
1.1 Objetivo	22
1.2 Organização do Trabalho	23
2 Revisão Bibliográfica	24
2.1 Padrões de Escoamento	24
2.2 Escoamento em Golfadas	28
2.2.1 Estudos Experimentais	29
2.2.2 Estudos Numéricos	31
3 Modelagem Matemática	35
3.1 Modelo VOF	35
3.2 Modelo de Turbulência k-e RNG	38
3.2.1 Lei da Parede	40
3.3 Condições de Contorno	42
4 Modelagem Numérica	47
4.1 Discretização Temporal	47
4.2 Discretização Espacial	48
4.3 Acoplamento Velocidade-Pressão	49
4.4 Discretização Temporal do Método VOF	49
4.4.1 Esquema de Reconstrução Geométrica	50
4.5 Solução do Sistema Algébrico	51
4.6 Domínio Computacional	51
4.7 Inicialização do Problema	53

5 Resultados	54
5.1 Comparação com Fagundes Netto et al. (1999a)	54
5.2 Comparação com Fonseca (2009)	58
5.2.1 Velocidade de Translação da Bolha	63
5.2.2 Perfil do Nariz da Bolha	64
5.2.3 Vetores Velocidade	66
5.2.4 Coordenadas dos Perfis de Velocidade	72
5.2.5 Perfis de Velocidade Axial a Jusante do Nariz da Bolha	73
5.2.6 Perfis de Velocidade Axial a Montante do Nariz da Bolha	79
5.2.7 Perfis de Velocidade Vertical a Jusante do Nariz da Bolha	85
5.2.8 Perfis de Velocidade Vertical a Montante do Nariz da Bolha	88
5.2.9 Quantificação das Diferenças entre Dados Numéricos e	
Experimentais	91
5.2.10 Tensão Cisalhante na Parede	97
6. Comentários Finais	105
6.2 Recomendações para trabalhos futuros	106
Referências Bibliográficas	107
Apêndice A	115
Apêndice B	123

Lista de tabelas

Tabela 4.1- Teste de Malha	51
Tabela 5.1- Propriedades dos Fluidos	55
Tabela 5.2- Condições Experimentais de Operação (Fagundes Netto, 1999a)	55
Tabela 5.3- Condições Experimentais de Operação (Fonseca, 2009)	60
Tabela 5.4- Condições Numéricas de Operação	61
Tabela 5.5- Velocidade da bolha teórica (correlação) e numérica	64
Tabela 5.6- Relação de deslizamento	79
Tabela 5.7- Resultados da regressão linear para C_{0num} e C_1	91

Lista de figuras

Figura 1.1-	Diagramas esquemáticos dos padrões de	
	escoamento.	20
Figura 1.2-	Esquema de uma unidade básica de escoamento em	
	golfada.	20
Figura 1.3-	Cauda e frente da bolha no padrão de golfada.	
	Fagundes et al., 1999(a)	21
Figura 2.1-	Mapa de arranjo de Baker, modificado por Scott	
	(Wallis, 1969)	25
Figura 2.2-	Mapa de arranjos de Taitel e Dukler (1976) para	
	tubulações horizontais.	26
Figura 2.3-	Mapa de arranjos de Waisman et al. (1979) para	
	tubulações horizontais.	27
Figura 2.4-	Célula unitária de uma golfada.	29
Figura 3.1-	Esquema de velocidades, para um referencial sob a	
	golfada.	42
Figura 3.2-	Exemplos de distribuição das fases na seção	
	transversal de um duto.	43
Figura 3.3-	Estrutura dos perfis de velocidade dentro da golfada	
	líquida.	44
Figura 4.1-	Discretização esquema QUICK	48
Figura 4.2-	Formas de interface entre dois fluidos.	51
Figura 4.3-	Domínios Computacionais	52
Figura 4.4-	Distribuição axial esquemática da malha	53
Figura 4.5-	Distribuição axial da zona de interesse	53
Figura 4.6-	Esquema de inicialização do domínio computacional,	
	Ujang et al. (2008).	53
Figura 5.1-	Esquema da inicialização para os casos de Fagundes	
	Netto et al. (1999a).	55

Figura 5.2-	Forma do nariz da boina. Experimental (Fagundes	
	Netto, 1999a) e numérico.	56
Figura 5.3-	Forma da cauda da bolha. Experimental (Fagundes	
	Netto, 1999a) e numérico.	57
Figura 5.4-	Fração Volumétrica na golfada líquida.	58
Figura 5.5-	Exemplo de análise realizada.	58
Figura 5.6-	Esquema da instalação experimental. Fonseca	
	(2009).	59
Figura 5.7-	Mapa de arranjos de fases.	62
Figura 5.8-	Mapa de arranjos de fases, Mandhane et al. (1974).	62
Figura 5.9-	Contorno de Fração Volumétrica em distintos tempos	63
Figura 5.10-	Diagrama de penetração axial e radial da bolha	
	alongada.	64
Figura 5.11-	Penetração axial e radial.	65
Figura 5.12-	Comparação da penetração radial da bolha.	66
Figura 5.13-	Comparação da Fração volumétrica.	67
Figura 5.14-	Comparação dos campos de velocidade.	68
Figura 5.15-	Comparação do perfil de velocidades na golfada	
	líquida.	69
Figura 5.16-	Contornos da Fração volumétrica em diversas	
	secções transversais. Caso 1.	70
Figura 5.17-	Campos de velocidade em diversas secções	
	transversais.	71
Figura 5.18-	Fração volumétrica e vetor velocidade na seção	
	transversal -5D.	72
Figura 5.19-	Posições de aquisição e comparação de dados	72
Figura 5.20-	Perfis da Velocidade Axial nas linhas a jusante para o	
	Grupo 2.	74
Figura 5.21-	Perfis da Velocidade Axial nas linhas a jusante para o	
	Grupo 1.	75
Figura 5.22-	Perfis da Velocidade Axial nas linhas a jusante para o	
	Caso 2.	76
Figura 5.23-	Perfis da Velocidade Axial nas linhas a jusante para o	

	Caso 3.	77
Figura 5.24-	Perfil da Velocidade Axial nas linhas a jusante para o	
	Caso 6.	78
Figura 5.25-	Desenvolvimento da velocidade axial ao longo da	
	tubulação.	80
Figura 5.26-	Perfis da velocidade axial a montante da bolha.	80
Figura 5.27-	Perfis da Velocidade Axial nas linhas a montante	
	para o Caso 1.	81
Figura 5.28-	Perfil da Velocidade Axial nas linhas a montante para	
	o Caso 2.	82
Figura 5.29-	Perfil da Velocidade Axial nas linhas a montante para	
	o Caso 3.	83
Figura 5.30-	Perfil da Velocidade Axial nas linhas a montante para	
	o Caso 6.	84
Figura 5.31-	Perfis da velocidade vertical nas linhas a jusante.	
	Grupo 1.	86
Figura 5.32-	Perfis da velocidade vertical nas linhas a jusante.	
	Grupo 2.	87
Figura 5.33-	Perfis da velocidade vertical nas linhas a montante.	
	Grupo 1.	89
Figura 5.34-	Perfis da Velocidade Vertical nas linhas a montante.	
	Grupo 2.	90
Figura 5.35-	Regressão linear para os dados numéricos obtidos	92
Figura 5.36-	Erro relativo da velocidade axial nas linhas a jusante	93
Figura 5.37-	Erro Relativo da velocidade axial nas linhas a	
	montante.	94
Figura 5.38-	Erro Relativo da velocidade vertical nas linhas a	
	jusante.	95
Figura 5.39-	Erro Relativo da velocidade vertical nas linhas a	
	montante.	96
Figura 5.40-	Variação da Fração Volumétrica com o tempo ao	
	longo do duto, Modelo 1D. Caso 6.	99
Figura 5.41-	Tensão de cisalhamento na parede para os Casos 2,	

	3 e 6. Grupo 1.	100
Figura 5.42-	Fração Volumétrica na seção axial para os Casos 2,	
	3 e 6. Grupo 1 .	101
Figura 5.43-	Perímetro molhado da fase líquida.	102
Figura 5.44-	Tensão cisalhante nos perímetros molhados para o	
	Caso 2.	103
Figura 5.45-	Tensão cisalhante nos perímetros molhados para o	
	Caso 3.	103
Figura 5.46-	Tensão cisalhante nos perímetros molhados para o	
	Caso 6.	103
Figura 5.47-	Contorno da Fração Volumétrica para o Caso 6 nas	
	coordenadas 0,275m e 0,300m.	104
Figura A.1-	Perfis de velocidade para o Caso 2 na zona a jusante	
	do nariz da bolha.	115
Figura A.2-	Perfis de velocidade para o Caso 2 na zona a	
	montante do nariz da bolha.	115
Figura A.3-	Perfis de velocidade para o Caso 11 na zona a	
	jusante do nariz da bolha.	116
Figura A.4-	Perfis de velocidade para o Caso 11 na zona a	
	montante do nariz da bolha.	116
Figura A.5-	Domínio Computacional com maior uniformidade na	
	direção axial.	117
Figura A.6-	Comparação dos perfis de velocidade para as malhas	
	2 e 4.	117
Figura A.7-	Velocidade axial no eixo axial do domínio	
	computacional.	118
Figura A.8-	Secção transversal da malha 5.	118
Figura A.9-	Perfis de velocidade para o Caso 2 na zona a jusante	
	e montante do nariz da bolha no domínio	
	computacional inteiro.	119
Figura A.10-	Perfis de velocidade para o Caso 11 na zona a	
	jusante e montante do nariz da bolha.	120

 \vec{n}_i

n

Lista de símbolos

A	Area da seção transversal da tubulação
C	Constante
C_w	Fração Volumétrica
C_0	Parâmetro de distribuição
C_{μ}	Constante do modelo $\kappa – \varepsilon$
$C_{2\varepsilon}^*$	Parâmetro no modelo κ – ε RNG
$C_{I\varepsilon}$	Constante empírica do modelo κ – ε RNG
$C_{2arepsilon}$	Constante empírica do modelo κ – ε RNG
d	Diâmetro crítico
D	Diâmetro da tubulação
Eo	Número de <i>Eötvös</i>
f	Fator de fricção
F	Parâmetro adimensional
$ec{F}$	Força externa por unidade de volume
Fr	Número de <i>Froude</i>
g	Aceleração da gravidade
G	Fluxo de massa
G_{κ}	Geração de energia cinética turbulenta
h_L	Altura da superfície do líquido
k	Parâmetro adimensional
K	Parâmetro adimensional
ℓ	Escala de comprimento
L	Comprimento da unidade básica de golfada
L_f	Comprimento do filme líquido
L_s	Comprimento das golfadas

Vetor normal à superfície

Constante empírica

- N Número de dados Pressão na interface p P Pressão Vazão Q Raio de curvatura r R Raio da tubulação R_{ε} Termo de sorvedouro Relação de deslizamento R_{drift} Re Número de Reynolds S_{ij} Tensor taxa de deformação S módulo do tensor deformação do escoamento médio S_{l} Perímetro molhado da fase líquida Coeficiente de escudo Tempo t TParâmetro adimensional u^* Velocidade de atrito \vec{u} Vetor velocidade Fluxo volumétrico através da face U_f VComponente vertical da Velocidade da fase Velocidade Superficial W_{S} WComponente axial da Velocidade da fase W_d Velocidade de deslizamento W_G Velocidade da frente da golfada líquida W_m Velocidade superficial da mistura W_T Velocidade de translação da bolha alongada W_T^* Velocidade de translação da bolha alongada corrigida Coordenada horizontal \boldsymbol{x} X^2 Parâmetro de Lockhart Martinelli Coordenada vertical $\boldsymbol{\mathcal{V}}$ y_p Penetração vertical
- Coordenada axial Penetração axial

Parâmetro adimensional

Y

 Z_p

Símbolos gregos

- α Saturação da fase
- β Ângulo de inclinação da tubulação com respeito à horizontal
- Δ Variação de uma grandeza
- ε Taxa de dissipação turbulenta
- ϕ Grandeza a ser calculada
- γ Curvatura
- η razão da turbulência para a escala de deformação média
- φ Variável adimensional
- κ Energia cinética turbulenta
- λ Inverso do número de Prandtl
- μ Viscosidade dinâmica
- v Viscosidade cinemática
- π Constante Pi
- θ Variável do esquema QUICK
- ρ Massa específica
- σ Tensão superficial
- σ_{κ} Número de Prandtl para κ
- σ_{ε} Número de Prandtl para ε
- *τ* Tensão de cisalhamento
- \mathcal{Y} Função que inclui uma discretização espacial qualquer
- ∀ Volume

Subscritos

- *e,w* Faces leste e oeste do volume de controle principal
- ef Referido a efetivo
- E Referente ao centro do volume principal de controle a leste
- EE Referente ao centro do volume secundário de controle a leste
- inlet Entrada da tubulação
- g Fase gasosa

- l Fase líquida
- *i* Fase
- n Normal à parede
- *m* Mistura
- max Máximo valor
- P Referente ao centro do volume de controle principal
- wall Parede da tubulação
- W Referente ao centro do volume principal de controle a leste

Sobrescritos

- T Vetor Transposto
- ~ Referente a uma grandeza adimensional
- *n* Referente ao passo de tempo atual
- + Grandeza adimensional