

Patrick Merz Paranhos

Localização em Ambientes Externos através da Fusão de Sensores GPS e Inercial por um Filtro de Kalman

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

> Orientadores: Marco Antonio Meggiolaro Álvaro de Lima Veiga Filho

> Rio de Janeiro, 18 de Setembro de 2009

Patrick Merz Paranhos

Localização em Ambientes Externos através da Fusão de Sensores GPS e Inercial por um Filtro de Kalman

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Marco Antonio Meggiolaro Orientador Departamento de Engenharia Mecânica – PUC-Rio

Prof. Álvaro de Lima Veiga Filho Co-Orientador Departamento de Engenharia Elétrica – PUC-Rio

Prof. Mauro Speranza Neto Departamento de Engenharia Mecânica – PUC-Rio

> Prof. Luciano Luporini Menegaldo Instituto Militar de Engenharia

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 18 de Setembro de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Patrick Merz Paranhos

Engenheiro de Controle e Automação formado pela PUC-Rio em 2007.

Ficha Catalográfica

Paranhos, Patrick Merz

Localização em ambientes externos através da fusão de sensores GPS e Inercial por um filtro de Kalman / Patrick Merz Paranhos ; orientadores: Marco Antonio Meggiolaro, Álvaro de Lima Veiga Filho. – 2009.

179 f. : il. (color.) ; 30 cm

Dissertação (Mestrado em Engenharia Mecânica)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Filtro de Kalman. 3. GPS. 4. Sensor Inercial. 5. Robôs móveis em ambiente externo. 6. Fusão de sensores. 7. Localização. I. Meggiolaro, Marco Antonio. II. Veiga Filho, Álvaro de Lima. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. V. Título.

Dedico esta dissertação a minha família que sempre se manteve ao meu lado.

Agradecimentos

aos Professores Doutores Marco Antonio Meggiolaro e Álvaro de Lima Veiga Filho pela orientação preciosa;

ao Ney Robinson por me acolher no projeto do Robô Ambiental Híbrido;

aos meus amigos de Laboratório no CENPES por sua amizade e ajuda;

a meu amigo Ricardo Saavedra por sua paciência e ajuda com as minhas incontáveis duvidas de português;

à FAPERJ pela bolsa de estudos.

Resumo

Paranhos, Patrick Merz; Meggiolaro, Marco Antonio. Localização em Ambientes Externos através da Fusão de Sensores GPS e Inercial por um Filtro de Kalman. Rio de Janeiro, 2009. 179p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Um dos problemas em soluções que envolvam mobilidade é estimar a posição do robô com precisão. Em ambientes externos, o sensor GPS é o mais comumente utilizado, pois o mesmo fornece uma posição global, porém existe uma imprecisão que é superior a alguns metros, além de depender da visibilidade aos satélites. Outra solução é utilizar um sensor inercial, que no início da operação apresenta uma boa precisão, porém o erro de posicionamento cresce ilimitadamente por ser calculado através da integral dupla das acelerações e velocidades angulares medidas. O presente trabalho desenvolve um sistema de localização de robôs móveis em ambientes externos. As soluções do posicionamento via GPS e via sensor inercial são combinadas através de um filtro de Kalman, reduzindo a incerteza da obtenção da posição. O equacionamento e duas implementações distintas do filtro de Kalman serão apresentadas. Uma implementação clássica e uma versão estendida para sensores inerciais de baixa qualidade, a qual utiliza a orientação fornecida por bússolas na filtragem. Através de experimentos e simulações será demonstrada a eficácia da localização através do filtro de Kalman e a melhora na performance do mesmo quando utilizado a implementação estendida em comparação a clássica.

Palavras-chave

Filtro de Kalman; GPS; Sensor Inercial; Robôs Móveis em Ambiente Externo; Fusão de Sensores; Localização

Abstract

Paranhos, Patrick Merz; Meggiolaro, Marco Antonio (Advisor). Localization in External Environments through GPS/INS Kalman Filter. Rio de Janeiro, 2009. 179p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

One of the problems with solutions that involve mobility is to accurately estimate the robot's position. In an outdoor environment, the GPS sensor is the most commonly used method because it provides a global position, but with an error margin that is greater than just a few meters, and creates a dependency on the visibility of the satellites. Another solution is to use an inertial sensor, which at the beginning of the operation shows good accuracy, but the positioning error grows indefinitely because it is calculated by a double integral of acceleration and angular velocity measures. This work develops a system for localization of mobile robots in outdoor environments. The positions are estimated via GPS and inertial sensors, combined using a Kalman filter, reducing the uncertainty. The equations and two distinct implementations of the filter will be presented. A classical implementation and an extended version for low-grade inertial measurement units, which utilizes the orientation given by compasses in the filtering process. The effectiveness of the Kalman filter navigation is verified through experimental and simulation results. The performance gain of the extended filter in comparison to the classic is also verified.

Keywords

Kalman Filter; GPS; Inertial Sensor; Mobile Robot; Localization in External Environment; Sensor Fusion;

Sumário

19
22
23
23
24
25
27
27
28
29
29
36
37
38
39
40
41
41
43
43
45
45
47
48
48
50
51

2.4.2. Erro	52
2.4.3. Disponibilidade Seletiva (SA)	53
2.4.4. lonosfera	53
2.4.5. Troposfera	54
2.4.6. Múltiplos Caminhos	54
2.4.7. Dados Ephemeris	55
2.4.8. Relógio do Satélite	55
2.4.9. Resolução e Ruído do Receptor	55
2.4.10. Diluição de Precisão (DOP)	56
2.4.11. Sistema Diferencial de Posicionamento de	
Satélites	57
3 Filtro de Kalman Discreto	59
3.1. Sistemas Lineares	59
3.2. Estimação Probabilística	60
3.3. Filtro de Kalman	61
3.4. Exemplo	64
3.4.1. Simples Posicionamento em 1 Dimensão	64
3.4.2. Ajuste do Ruído da Medida	66
3.5. Sistemas Não Lineares	68
3.6. Filtro de Kalman Estendido	69
3.6.1. Linearização	69
3.6.2. Equação do Filtro de Kalman Estendido	73
4 Navegação Inercial (INS)	75
4.1. Modelo da Terra	75
4.2. Sistemas de Coordenadas	76
4.2.1. Sistema Centrado e Fixo na Terra (ECEF)	77
4.2.2. Sistema Inercial Centrado na Terra (ECI)	78
4.2.3. Sistema Localmente Tangente (ENU)	79
4.2.4. Sistema Wander-Azimuth (NAV)	80
4.2.5. Coordenadas do Corpo	80
4.2.6. Coordenada de Medida	81
4.3. Navegação Inercial	82

4.3.1. Bloco 0 – Transformação das Coordenadas de	
Medida para as Coordenadas do Corpo.	84
4.3.2. Bloco 1 – Aceleração A ⁿ .	84
4.3.3. Bloco 2 – Velocidade V ⁿ .	85
4.3.4. Bloco 3 – Velocidade angular do sistema NAV relativo	
a ECEF (ρ ⁿ).	90
4.3.5. Bloco 4 – Posição Angular (Ce ⁿ)	94
4.3.6. Bloco 5 – Velocidade Angular da Terra expressa	
nas Coordenadas NAV (Ω ⁿ).	98
4.3.7. Bloco 6 – Velocidade Angular do sistema NAV com	
relação ao sistema ECI (w ⁿ _{in}).	98
4.3.8. Bloco 7 – Orientação (C _b ⁿ).	99
4.3.9. Condições Iniciais	100
4.4. Erro na Navegação Inercial	101
4.4.1. Erro na Posição Angular (δC _e ⁿ)	102
4.4.2. Erro na Orientação (δC _b ⁿ)	104
4.5. Propagação do Erro	105
4.5.1. Erro da Derivada da Posição Angular (δC_e^n).	107
4.5.2. Erro na Latitude($\delta \Phi$), Longitude ($\delta \lambda$) e Wander ($\delta \alpha$).	108
4.5.3. Erro na Derivada de Velocidade (δV)	108
4.5.4. Erro na Gravidade (δg)	109
4.5.5. Erro na Aceleração (δA ⁿ)	110
4.5.6. Erro na Velocidade Angular do sistema NAV	
relativo a ECEF ($\delta \rho^n$)	111
4.5.7. Erro na Altura (δh)	111
4.5.8. Erro na Orientação (δC _b ⁿ)	112
5 Equacionamento do Filtro de Kalman	114
5.1. Vetor de Estado (x)	115
5.2. Matriz de Observabilidade Clássica (H)	117
5.3. Matriz de Observabilidade Orientação (H)	119
5.4. Matriz de Dinâmica do Sistema (F)	120
5.5. Vetor de Entrada (u)	124

5.6. Ruídos da Medida	125
5.7. Ruídos do Processo	125
6 Simulações	126
6.1. Descrição da Simulação	126
6.2. Entrada	127
6.3. Modelo do Sensor Inercial (IMU)	128
6.4. Modelo do GPS	130
6.5. Navegação Inercial (INS)	131
6.6. Filtro de Kalman do GPS/INS	131
6.7. Resultados da Simulação	135
6.7.1. RMS	135
6.7.2. Posição	136
6.7.3. Velocidade Linear	141
6.7.4. Orientação	142
6.7.5. Aceleração Linear	146
6.7.6. Velocidade Angular	147
6.8. Resultados da Simulação de Falha do Sinal de GPS	148
7 Experimentos	152
7.1. Experimento na Floresta Amazônica	153
7.2. Ambiente Visualmente Reconhecível	154
7.3. Resultado Experimental	155
7.4. Resultados dos Experimento na Amazônia	156
7.5. Resultado Experimental no Ambiente	
Visualmente Reconhecível	160
7.6. Simulação de Falha no sinal do GPS no	
Experimento	165
7.7. Resultados de Outras Literaturas	169
8 Conclusões	172
Bibliografia	174

Anexo A

Anexo B

177

178

Lista de figuras

Figura 1 - Robô GP8 da Seegrid.	20
Figura 2 - Míssil de cruzeiro (Taurus KEPD 350).	20
Figura 3 - Rover para operações em solo marciano (MER-A).	21
Figura 4 - Diagrama	22
Figura 5 - Robô Ambiental Híbrido.	23
Figura 6 - Erros comuns entre entrada e saída: (a) bias; (b) fator de	
escala; (c) não-linearidade; (d) assimetria; (e) zona morta; (f)	
quantização.	28
Figura 7 - Sensor inercial Guimbale (BOSE, et. al., 1982)	30
Figura 8 - Sensor inercial Strapdown (BOSE, et. al., 1982)	30
Figura 9 - (a) Acelerômetro Mecânico. (b) Piezoelétrico.	
(DUDEK; JENKIN, et. al., 2008)	31
Figura 10 - Girômetro "Ring Laser"	32
Figura 11 - Girômetro de fibra óptica	32
Figura 12 - Girômetro Mecânico.	32
Figura 13 - Girômetro por efeito de Coriolis.	33
Figura 14 - A não detecção de uma fenda devido à divergência	
da onda sonora.	38
Figura 15 - Detecção do ambiente mais próximo do que este	
realmente se encontra.	38
Figura 16 - Espectro da energia eletromagnética	38
Figura 17 - Triangulação 1D	42
Figura 18 - Padrão estruturado de luz para triangulação em	
2 dimensões, (RAMAMOORTHI et. at.)	43
Figura 19 - LIDAR mapeando em duas dimensões.	44
Figura 20 - Resultado de uma varredura utilizando um sonar	45
Figura 21 - Varredura feita por um radar de milímetro.	
(SCHEDING; BROOKER; HENNESSY; BISHOP et. al., 2002)	46
Figura 22 - Constelação de Satélites. (Brock University	

Map Libary)	50
Figura 23 - Transmissão da Mensagem de Navegação com	
espalhamento C/A na L1.	51
Figura 24 - Erro do GPS devido a Troposfera e Ionosfera.	53
Figura 25 - Erro do GPS devido a múltiplos Caminhos.	55
Figura 26 - Boa distribuição espacial dos satélites.	56
Figura 27 - Má distribuição espacial dos satélites.	56
Figura 28 - Cadeia escondida de Markov que caracteriza a	
evolução do sistema.	61
Figura 29 - Densidade condicional da posição baseada no valor	
medido z1. (MAYBECK et. at., 1979)	64
Figura 30 - Densidade condicional da posição baseada no valor	
medido z_2 (MAYBECK et. at., 1979)	65
Figura 31 - Densidade condicional da posição baseada nos	
valores medidos $z_2 e z_2$. (MAYBECK et. at., 1979)	66
Figura 32 - Simulação do Filtro de Kalman com W=(0,01) ² .	
(WELCH e BISHOP et. al., 2006)	67
Figura 33 - Simulação do Filtro de Kalman com W=(0,1) ² .	
(WELCH e BISHOP et. al., 2006)	67
Figura 34 - Simulação do Filtro de Kalman com W=(1) ² .	
(WELCH e BISHOP et. al., 2006)	67
Figura35 - Transformação não-linear de uma distribuição com	
pequena variância. (THRUN; BURGARD; e FOX et. al., 2005)	71
Figura 36 - Transformação não-linear de uma distribuição com	
grande variância. (THRUN; BURGARD; e FOX et. al., 2005)	71
Figura 37 - Transformação através de um ponto com pequena não-	
linearidade local. (THRUN; BURGARD; e FOX et. al., 2005)	72
Figura 38 - Transformação através de um ponto com grande não-	
linearidade local. (THRUN; BURGARD; e FOX et. al., 2005)	72
Figura 39 - Aproximações à superfície da Terra.	76
Figura 40 - Sistema de Coordenadas ECEF. (Department	
of Defense World Geodetic System 1984 et. al., 2000)	77
Figura 41 - Representação do Ponto em Latitude, Longitude e	

Altura.	78
Figura 42 - Sistema de Coordenadas ECI	79
Figura 43 - Sistema de Coordenadas ENU	79
Figura 44 - Wander Azimuth	80
Figura 45 - Coordenadas do Corpo	81
Figura 46 - Coordenadas da Medida	81
Figura 47 - Diagrama de Blocos da Navegação Inercial	83
Figura 48 - Rotação do sistema (BOSE. et. al., 1982)	91
Figura 49 - Velocidade angular em torno do eixo E e N.	91
Figura 50 - Velocidade Angular no sistema NAV	92
Figura 51 - Velocidade Angular total. (BOSE et. al., 1982)	93
Figura 52 - Ângulos de Euler da Matriz de Rotação C_e^n .	
(BOSE et. al., 1982)	95
Figura 53 - Erro na Posição Angular. (BOSE et. al., 1982)	102
Figura 54 - Erro na Posição Angular Zoom. (BOSE et. al., 1982)	102
Figura 55 - Diagrama de Transformação do Erro na	
Posição Angular.	103
Figura 56 - Diagrama de Blocos da Propagação do Erro	
na Navegação Inercial	106
Figura 57 - Diagrama de Blocos da Fusão GPS/INS	115
Figura 58 - Diagrama de Blocos da Simulação	126
Figura 59 - Modelo Simplificado do Robô Ambiental Híbrido	127
Figura 60 - Diagrama de Blocos da Fusão GPS/INS	133
Figura 61 - Mapa Geo-referenciado do Percurso Medido	
pelo GPS na Simulação.	137
Figura 62 - Erro do Percurso Medido pelo GPS na Simulação.	137
Figura 63 – Mapa Geo-referenciado do Percurso Calculado pela	
Navegação Inercial Clássica e com Orientação.	138
Figura 64 - Erro do Percurso Calculado pelo INS na Simulação.	138
Figura 65 - Mapa Geo-referenciado do Percurso Calculado	
pela Fusão GPS/INS Clássica e com Orientação.	139
Figura 66 - Erro do Percurso Calculado pelo GPS/INS	
na Simulação.	140

Figura 67 - Gráfico do Erro da Velocidade Linear Total do	
INS/GPS e do GPS.	141
Figura 68 - Gráfico do Erro da Velocidade Linear Total INS.	142
Figura 69 - Erro de Roll do INS Clássico na Simulação.	143
Figura 70 - Erro de Roll do INS com Orientação e do	
GPS/INS na Simulação.	143
Figura 71 - Erro de Pitch do INS Clássico na Simulação.	144
Figura 72 - Erro de Pitch do INS com Orientação e do	
GPS/INS na Simulação.	144
Figura 73 - Erro de Yaw do INS Clássico na Simulação.	145
Figura 74 - Erro de Yaw do INS com Orientação e do	
GPS/INS na Simulação.	145
Figura 75 - Erro Total da Aceleração Linear na Simulação.	146
Figura 76 - Erro da Velocidade Angular na Simulação.	147
Figura 77 - Erro do Percurso na Simulação.	148
Figura 78 - Erro da Velocidade Linear Total na Simulação.	149
Figura 79 - Raiz do Erro Quadrático da Orientação na Simulação.	149
Figura 80 - Raiz do Erro Quadrático da Velocidade Angular	
na Simulação.	150
Figura 81 - Raiz do Erro Quadrático da Aceleração Linear	
na Simulação.	150
Figura 82 - Robô Ambiental Híbrido	152
Figura 83 - Sensor Inercial (Xsens)	152
Figura 84 - Sensor GPS (Garmin)	152
Figura 85 - Painel de Controle 1	153
Figura 86 - Painel de Controle 2	153
Figura 87 - Área de Testes na Floresta Amazônica	154
Figura 88 - Diagrama de Blocos do Experimento	155
Figura 89 - Mapa Geo-Referenciado das posições do Filtro	
de Kalman, do INS e do GPS nos testes na Amazônia.	157
Figura 90 - <i>Zoom</i> do Mapa Geo-Referenciado das posições do	
Filtro de Kalman, do INS e do GPS nos testes na Amazônia	157
Figura 91 - Corte 1 da Ampliação do Mapa Geo-Referenciado das	

posições do Filtro de Kalman, do INS e do GPS nos testes na	
Amazônia	158
Figura 92 - Corte 2 da Ampliação do Mapa Geo-Referenciado das	
posições do Filtro de Kalman, do INS e do GPS nos testes na	
Amazônia	158
Figura 93 - Erro de Altitude do INS nos testes da Amazônia	159
Figura 94 - Erro de Altitude do Filtro de Kalman nos testes	
da Amazônia	160
Figura 95 - Navegação do GPS e INS/GPS em torno da lagoa.	161
Figura 96 - Navegação do INS em torno da lagoa.	162
Figura 97 - Navegação do INS, INS/GPS e Real em torno da	
Lagoa.	163
Figura 98 - INS/GPS Clássico em torno da lagoa.	164
Figura 99 - Mapa da Falha do Sinal do GPS no Experimento	
na Lagoa.	165
Figura 100 - Latitude no Experimento na Lagoa.	166
Figura 101 - Longitude no Experimento na Lagoa.	166
Figura 102 - Vx no Experimento na Lagoa.	167
Figura 103 - Vy no Experimento na Lagoa.	167
Figura 104 - Roll no Experimento na Lagoa.	168
Figura 105 - Pitch no Experimento na Lagoa.	168
Figura 106 - Yaw no Experimento na Lagoa.	169
Figura 107 - Resultado experimental de (WANG et. al., 2006)	170
Figura 108 - Resultado experimental de (UMAR; TASHFEEN;	
AIME; e NOURELDIN et. al., 2009)	171
Figura 109 - "Datasheet" Xsnes	177
Figura 110 - "Datasheet" GPS Parte 1	178
Figura 111 - "Datasheet" GPS Parte 2	179

Lista de tabelas

Tabela 1 - Sistemas de GNSS existentes	49
Tabela 2 - Desvios padrão dos erros na estimativa de	
posição utilizando o sinal de GPS. (SCHRIEVER)	57
Tabela 4 - Parâmetros do WGS-84 (Department of Defense	
World Geodetic System 1984 et. al, 2000)	76
Tabela 3 - Parâmetros do modelo do Robô Ambiental Híbrido	128
Tabela 4 - Fontes de Erro do Sensor Inercial (Xsens)	128
Tabela 5 - Diagonal da Matriz de Ruído do Processo (V)	134
Tabela 6 - Diagonal da Matriz de Ruído do Medida	
Implementação Clássica (W)	134
Tabela 7 - Diagonal da Matriz de Ruído do Medida	
Implementação com Orientação (W)	134
Tabela 8 - RMS da Simulação	135
Tabela 9 - Diagonal da Matriz de Ruído do Processo	
Experimental (V)	156
Tabela 11 - Diagonal da Matriz de Ruído da Medida	
Experimental (W)	156