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On the Asset and Liability Management for pension

funds: a multistage stochastic programming model and

a equilibrium risk measuring method

Davi Valladão1, Álvaro Veiga

Electrical Engineering Department, Pontifical Catholic University of Rio de Janeiro
(PUC-Rio), Rio de Janeiro 22451-900, R.J. Brazil

Abstract

This paper proposes an Asset and Liability Management (ALM) for pen-
sion funds via multistage stochastic programming and an equilibrium risk
measuring method.

The ALM of a pension fund consists in finding the optimal investment
policy given the stochastic nature of the asset returns and the liability cash
flows. Since it refers to a dynamic portfolio, the most suitable approach would
be a multistage stochastic programming model. However, computational
restrictions don’t allow covering the entire pension fund’s planning horizon.
Thus, several articles in literature have proposed an arbitrary fixed capital
requirement obtained independently on the investment policy adopted to
approximate the effects of the non-considered periods.

Whereas the fund’s actual opportunity cost, we propose a method for
measuring and controlling the equilibrium risk which bootstraps the portfolio
return scenarios embedded in the optimal solution in order to approximate
the liability discount rate distribution for the periods beyond the considered
planning horizon.

Key words: Asset Liability Management(ALM), Stochastic Programming,
Pension Funds, Solvency Risk, Equilibrium Risk, Bootstrap
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1. Introduction

The term Asset and Liability Management (ALM) designates the prac-
tice of managing a business coordinating decisions and actions taken with
respect to assets and liabilities. The ALM is crucial pursuit for any organiza-
tion which receives and invests money in order to fulfill capital requirements
and future cash demands. Moreover, ALM can be defined by the Society
of Actuaries “as an ongoing financial management process of formulating,
implementing, monitoring, and revising strategies related to assets and lia-
bilities in an attempt to achieve organization’s financial objectives given its
risk tolerances and other constraints”. According to each context, ALM can
have substantially different aspects. For instance, derivative traders under-
stand assets and liabilities as similar entities traded in the financial market
while ALM of pension funds is focused on deciding an optimal investment
policy while liabilities cannot be changed. The main financial objective of
the latter financial institution is to ensure the payment of lifelong benefits by
investing contributions. Hence, the investment policy must assure two condi-
tions: equilibrium and liquidity - long and short term solvency, respectively.

The first condition states that the value of the assets should always be
large enough to pay all benefits until the plan extinction. In other words,
the solvency capital (the difference between the total asset value and the net
present liability value) should be positive. The second condition states that
the investment program should provide enough cash to pay current liabilities,
which means that cash level must always be positive. Solvency capital and
cash level are affected both by investment policy (decision variables) and
asset returns and liability payments (risk factors).

In this paper, we propose a multistage stochastic programming model for
an ALM and a new method for measuring and controlling the equilibrium
risk of a pension fund in Brazil. Several articles in literature which proposed
stochastic programming models for optimal allocation (Bradley and Crane,
1972; Kallberg et al., 1982; Zenios, 1995; Carino and Ziemba, 1998; Kouwen-
berg, 2001; Hilli et al., 2007), could only measure the equilibrium risk at the
end of the considered planning horizon by comparing the final wealth in each
scenario to a fixed capital requirement obtained independently on the invest-
ment policy adopted. However, in an ALM problem, the liabilities discount
rate should be taken as the portfolio return (Veiga, 2003), which depend on
the stochastic asset returns and the investment policy. In order to solve this
problem, we propose an iterative method to measure the equilibrium risk.
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This method discards the fixed capital requirement approximation and uses
the portfolio return scenarios embedded on the stochastic programming to
generate, via bootstrap, the liability discount rate distribution. Then, we can
estimate the net present value distribution of benefits beyond the stochastic
programming planning horizon and the related insolvency probability.

This paper is organized as follows: After the introduction, we present the
stochastic programming model and all processes to produce the necessary in-
put to the optimization problem. These processes include a stochastic model
for economic risk factors, a scenario tree generation method and financial
models for the assets and liabilities involved. After that, the equilibrium risk
measuring method will be developed and then the results and conclusions
will be presented.

2. Multistage stochastic programming model

A multistage stochastic programming model is an optimization problem
under uncertainty which the discrete form is solved based on an event tree.
Each tree node is associated to a possible state of the system and has a
unique predecessor (representing a unique history) and several successors
(representing several possible outcomes in the future). In this paper, we
describe the ALM as a linear maximization problem which, given an initial
portfolio allocation, defines the capital movements between the asset classes
as the decision variables. The asset classes, indexed as i = 1, ..., 4, are,
respectively, stocks, properties, bonds and cash. The model also includes
loans, to cover possible cash shortages and transaction costs. Cash balance
and asset inventory constraints are represented, as well as the regulatory and
market liquidity ones. The objective function is the final wealth expected
utility with a penalty for the insolvent scenarios.

A stage is denoted by t ∈ 0, ..., T and a node related to staget is defined
as nt ∈ (Nt−1 + 1) , ..., Nt, where Nt is the number of nodes at stage t. Con-
sider N−1 = 0. For illustrative purpose, the event tree has 5 stages and a
conditional branching structure given by 1− 10− 6− 6− 4− 4. Indeed, the
stages can have different lengths, for instance, the first and the second have
one year, the third has three years, the fourth has five years and the last
one has ten years. This length structure would lead to a 20-year planning
horizon. This structure is represented by Figure 1.

For the optimization model development, first a list of decision variables
and parameters is provided. Parameters are divided in deterministic (with
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Figure 1: Event tree

no uncertainty) and stochastic (risk factors).

∙ Decisions variables

– ci(nt): amount bought of asset class i at node nt

– vi(nt): amount sold of asset class i at node nt

– e(nt): loan obtained at node nt

– ai(nt): amount invested in asset class i at node nt

– y(nT ): positive solvency capital at node nT

– w(nT ): negative solvency capital at node nT

∙ Deterministic parameters

– pe: insolvency penalization

– bo: solvency bonus

– sp: spread between the borrowing rate and the short term interest
rate

– ma: maximum stock allocation (%)
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– ct: transaction cost (%)

– cci: market buying capacity of asset class i

– cvi: market selling capacity of asset class i

– ai: initial allocation of asset class i

– L: capital requirement at the end of planning horizon (t = T )

∙ Stochastic parameters

– l(nt): nominal liability cash flow at node nt

– ri(nt): return of asset class i between two linked nodes nt−1 e nt

2.1. Objective function

The objective function is defined by (1).

NT
∑

nT=nT−1+1

p(nT )[bo ⋅ y(nT )− pe ⋅ w(nT )] (1)

It represents the pension fund terminal wealth expected utility which pe-
nalizes the insolvent scenarios at the end of the planning horizon. Given
that pe > bo, the wealth utility at a terminal node nT is described as a
piecewise linear concave function representing the risk-averse pension fund’s
preferences. Then, for the insolvent scenarios, we have y(nT ) = 0 and
w(nT ) > 0. On the other hand, for the solvent scenarios, we have y(nT ) > 0
and w(nT ) = 0. For the illustrative example, pe = 2 and bo = 1.

These constraints have a modified version for t = T − 1. It defines the
variables y(nT ) and w(nT ) used on the objective function. The concave char-
acteristic of the objective function ensures that if y(nT ) > 0 then w(nT ) = 0,
and if w(nT ) > 0 then y(nT ) = 0. Thus, y(nT ) is how much the final wealth
exceeds the capital requirement L. Similarly, w(nT ) is how much the final
wealth lacks the capital requirement L. For each pair of linked node nT−1

and nT the constraint we define (2).

L+ y(nT )− w(nT ) =
4

∑

i=1

[(1 + ri(nT ))ai(nT−1)]− l(nT−1)

−(1 + sp+ r3(nT )).e(nT−1)− ct.
4

∑

i=1

[ci(nT ) + vi(nT )] (2)
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2.2. Asset inventory constraint

The asset inventory constraint specifies that the future value of an asset
class i at node nt is equal to the present value of the same asset class adjusted
for buying and selling at node nt+1, for each pair of linked nodes(nt, nt+1)
. Note that the asset class i = 4 (cash) is not included because there is no
meaning in “buying” or “selling” cash. For t ∈ {0, 1, ..., T − 2}, for each
pair of linked node (nt, nt+1) and for i ∈ {1, 2, 3}, we define (3) as an asset
inventory constraint. Moreover, for i ∈ {1, 2, 3}, we define (4) as the initial
asset inventory constraint.

ai(nt+1) = (1 + ri(nt+1))ai(nt) + ci(nt+1)− vi(nt+1) (3)

ai(n0) = ai + ci(n0)− vi(n0) (4)

2.3. Regulatory constraint for stock allocation

The Brazilian law determines a maximum stock allocation of 70% of the
portfolio. Given ma = 70% the stock allocation at each node is bounded as
follows.

a1(nt) ≤ ma
4

∑

i=1

ai(nt), ∀t = 0, ..., T − 1 (5)

2.4. Market liquidity constraint

This constraint represents the fact that large pension funds are cannot
transact a great amount of money without affecting the respective market
prices. So the transactions are bounded by the market capacity.

ci(nt) ≤ cci, ∀t = 0, ..., T − 1, ∀i = 1, 2, 3 (6)

vi(nt) ≤ cvi, ∀t = 0, ..., T − 1, ∀i = 1, 2, 3 (7)

3. Stochastic model for economic risk factors

The optimization model will give a realistic solution if, and only if, the
risk factors are appropriately modeled. These risk factors include economic
random variables related to the financial market and the economy as a whole.
Thus, a stochastic model for the economic risk factors will be developed to
forecast these random variables over the planning horizon.
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x1 x2 x3 x4 x5

Mean 2.66% 3.46% 9.04% 18.58% 6.26%
Median 2.96% 4.05% 6.14% 17.22% 4.52%

Maximum 13.98% 11.58% 50.18% 31.11% 45.85%
Minimum -7.26% -10.36% -6.10% 11.40% -30.88%
Std. Dev. 4.57% 4.46% 9.83% 4.71% 17.20%
Skewness -0.069 -0.841 1.982 1.079 0.11
Kurtosis 3.18 3.89 8.31 3.85 2.99

Table 1: Statistics, time series 1996Q2-2007Q2

The stochastic model for economic risk factors chosen is a Vector Auto-
Regressive based on Dert (1998). The variables are chosen to model appro-
priately the asset returns used as inputs for the optimization problem. The
mean vector is specified exogenously and can be interpreted as a sensitivity
parameter for the model response to the economic risk factors. This model
has quarterly data with a sample representing the Brazilian economy from
1996Q2 to 2007Q2.

Xq − � = �(Xq−1 − �) + �q, �q ∼ N(0,Σ) (8)

xj,q = log(1 + yjq), ∀j = 1, . . . , 5 (9)

Where

yj,q =

⎧













⎨













⎩

output growtℎ rate, j = 1

rental growtℎ rate, j = 2

inflation rate, j = 3

interest rate, j = 4

stock return, j = 5

The time series statistics are described in Table 1. As we see, the his-
torical mean of Brazilian interest rate is too high because of some inter-
national crisis (Asia-1997 and Russia-1998) and the hyperinflation process
remnants at the beginning of the sample. For this reason, the mean of
the economic variables must be determined exogenously, for example: � =
(4%, 11%, 4%, 10%, 12%)′.

The other coefficients (Σ and �) are estimated using the Ordinary Least
Squares method, and are given by Tables 2 and 3.
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x1 x2 x3 x4 x5

x1 0.001886 0.000347 0.000881 -0.000285 0.000084
x2 0.000347 0.001927 0.001555 -0.000020 0.000123
x3 0.000881 0.001555 0.008173 -0.000026 0.003296
x4 -0.000285 -0.000020 -0.000026 0.000683 -0.000531
x5 0.000084 0.000123 0.003296 -0.000531 0.036031

Table 2: Covariance matrix, quarterly 1996Q2-2007Q2

x1,q−1 − 0.04 x2,q−1 − 0.11 x3,q−1 − 0.04 x4,q−1 − 0.10 x5,q−1 − 0.12

x1,q − 0.04 -0.148696 -0.185559 -0.045314 -0.229618 0.086285
(0.15288) (0.13395) (0.07164) (0.17779) (0.03676)

x2,q − 0.11 -0.422790 0.114880 0.064160 -0.919097 0.030370
(0.15454) (0.13541) (0.07242) (0.17972) (0.03716)

x3,q − 0.04 0.040368 -0.176425 0.418518 0.176557 -0.174167
(0.31828) (0.27888) (0.14915) (0.37014) (0.07654)

x4,q − 0.10 -0.008872 -0.078176 0.067767 0.657944 -0.088930
(0.09198) (0.08059) (0.04310) (0.10697) (0.02212)

x5,q − 0.12 -0.431145 0.612786 -0.139294 0.066837 0.140459
(0.66828) (0.58556) (0.31317) (0.77717) (0.16070)

Table 3: � coefficient, standard deviation in ( ), sample: 1996Q2-2007Q2

4. Scenario tree generation method

The scenario tree generation method is based on the “Adjusted Random
Sampling” of Kouwenberg (2001). Some modifications were introduced in
order to take into account the different time intervals between nodes in our
event tree. We modify the notation of the equation (8) to make the cor-
respondence between the stage t of the event tree and the quarter q of the
stochastic model. So, X t

q is the risk factor vector of q quarters ahead stage
t. The stochastic model is rewritten as (10).

X t
q − � = �(X t

q−1 − �) + "tq, "
t
q N (0,Σ) (10)

The first step of the method is to generate a deterministic one-quarter
forecast from the beginning of stage t for each predecessor node.

X t
q − � = �

(

X t
q−1 − �

)

(11)

The first (Nt −Nt−1) /2 values of "tq ∼ N (0,Σ) are randomly generated:

"tq (nt)N (0,Σ) , ∀nt = Nt−1 + 1, . . . , Nt/2 (12)

In order to guarantee the mean and the other odd central moments as
zero, as stated by the Normal distribution, we take the antithetic values.

8



"tq (nt +Nt/2) = −"tq (nt) , ∀nt = Nt−1 + 1, . . . , Nt/2 (13)

Another adjustment is made in order to fit the variances of the tree struc-
ture and the stochastic model. This adjustment is made for each component

j of the vector "tq (nt) =
(

"t1,q (nt) , . . . , "
t
5,q (nt)

)′

.

�tj,q (nt) =
�j

√

1
Nt−1

∑Nt

i=1

(

"tj,q (nt)
)2
"tj,q (nt) , ∀nt = Nt−1 + 1, . . . , Nt (14)

This process is repeated for all quarters of stage t computing Nt − Nt−1

independent scenarios. The last observation of each scenario belonging to
stage t will initialize a set of conditional branches of stage t+1 restarting all
over the process. Considering Q(t) the number of quarters that compound
stage t, the initialization for a given predecessor node nt is represented as
follows:

X t+1
0 = X t

Q(t) (nt) (15)

5. Asset pricing model

The asset pricing is an important part of ALM process. It consists of
transforming the economic risk factors into the asset class returns. The
stock return (16) is modeled as the return of stock index, the properties
return (17) is modeled as the return on the rental activity, the bonds return
(18) is the short term interest rate plus a deterministic spread and, finally
the cash return is the short term interest rate (19). Consider a pair of linked
nodes (nt, nt−1), the returns are given as follows:

r1 (nt) =
stock index (nt)

stock index (nt−1)
− 1 (16)

r2 (nt) =
rental activity (nt)

rental activity (nt−1)
− 1 (17)

r3 (nt) = interest rate (nt) + spread (18)

r3 (nt) = interest rate (nt) (19)

9



Following (16), (17), (18) and (19) the asset returns are calculated as
functions of economic risk factors. Since the economic factors are represented

as components of the vector ytq (nt) =
(

yt1,q (nt) , . . . , y
t
5,q (nt)

)′

and xj,q (nt) =

ln
(

1 + ytjq (nt)
)

, ∀j = 1, . . . , 5, the returns of each node are computed as
follows:

r1 (nt) = exp

⎛

⎝

1

Q (t)

Q(t)
∑

q=1

xt
5,q (nt)

⎞

⎠− 1 (20)

r2 (nt) = exp

⎛

⎝

1

Q (t)

Q(t)
∑

q=1

xt
2,q (nt)

⎞

⎠− 1 (21)

r3 (nt) =

⎡

⎣exp

⎛

⎝

1

Q (t)

Q(t)
∑

q=1

xt
4,q (nt)

⎞

⎠− 1

⎤

⎦+ spread (22)

r4 (nt) = exp

⎛

⎝

1

Q (t)

Q(t)
∑

q=1

xt
4,q (nt)

⎞

⎠− 1 (23)

6. Liability model

We created an artificial data base of a pension fund with 110200 partic-
ipants distributed as 45000 active, 60000 retired 5200 pensioners. All the
participants have a defined benefit plan to which they contribute, along with
the plan sponsor, 16% of their salary to receive a benefit of 90% of the last
salary after retirement. Let Ideatℎ be a dummy variable assuming 1 when
the participant is dead and 0 otherwise. Similarly Iret assumes 1 when the
participant is retired and 0 otherwise. Thus, the contribution of participant
p at year k is defined in (24) while the benefit of participant p at year k is
defined in (25).

contribution (p, k) = 0.16salary (p, k) (1− Ideatℎ) (1− Iret) (24)

benefit (p, k) = 0.9last salary (p, k) (1− Ideatℎ) Iret (25)

Considering a deterministic age of retirement, the expected contribu-
tion and benefit of participant p at year k are defined, respectively, in (26)
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and(27). The expected values are used due to the large number of partici-
pants and the independence assumption over their time of death.

E [contribution (p, k)] = 0.16 ⋅ salary (p, k) ⋅
(

1− qage(p)
)

⋅ (1− Iret) (26)

E [benefit (p, k)] = 0.9 ⋅ last salary (p, k) ⋅ (1− qdeatℎ) ⋅ Iret (27)

The expected values are accumulated for all participants in (28).

RF (k) =
10200
∑

p=1

{E [benefit (p, k)]− E [contribution (p, k)]} (28)

7. Equilibrium risk measuring method

The equilibrium risk is defined as the insolvency probability, i.e., the prob-
ability that the pension fund won’t meet all obligations until its extinction.
In other words, insolvency is a state at a defined instant of time where the
total asset value is smaller than the net present value of the fund’s liabilities,
namely the technical reserve.

The total asset value at a determined instant of time is easily calculated
by the sum of the amount invested in each asset class. On the other hand,
the technical reserve calculation is more complicated because the net present
value of the fund’s liability cash flows needs a discount rate which, following
Veiga (2003), should be the fund’s portfolio return. In the first years un-
der study, this calculation is implicitly done by the stochastic optimization
model. However, the liability horizon is, usually, longer than the period cho-
sen to optimize the investment policy. Thus, the portfolio return for each
scenario, given the optimal decisions, is known only for these first years while
some assumptions are needed to model the remaining period.

Choosing a fixed discount rate is not necessarily a good approximation
for the portfolio returns of this remaining period nonetheless the previous
papers in the literature have assumed this approach for mostly based on a
regulatory statement of the country under study. Thus, their approximation
gives rise to an arbitrary technical reserve and, consequently, a meaningless
equilibrium risk measure.

In order to solve this inadequacy, we propose a new method to better
estimate the equilibrium risk. First an optimal solution is obtained with
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Figure 2: Bootstrapped discount rate

a null capital requirement (L = 0). After that the discount rate empirical
distribution is obtained bootstrapping the portfolio return embedded on the
stochastic programming model. Then, a sequence of the liabilities cash flows
is discounted to the end of the stochastic programming horizon using differ-
ent sequences of bootstrapped portfolio return in order to approximate the
technical reserve distribution at the terminal stage.

To form a bootstrapped sequence of the returns we choose the returns
r(ns) according to the following probabilities. Let S and N be random vari-
ables that represent, respectively, the stage and the node to be bootstrapped
as a future portfolio return. This process is based on the joint distribution
of these two variables 29.

P (S = s,N = n) = P (N = n∣S)P (S = s) (29)

The conditional distribution of N given S and the marginal distribution
of S are described as the following probability functions:

P (N = n∣S) =
1

Ns −Ns−1

(30)

P (S = s) =
Q (s)

∑T

t=1Q (t)
(31)

12
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Figure 3: Equilibrium risk measure

Using the stochastic discount rate, the technical reserve distribution can
be estimated and consequently a conditional insolvency probability is calcu-
lated for each terminal node of the tree structure. Indeed, the conditional
insolvency probability is calculated as the maximum p-value which the tech-
nical reserve is greater than the wealth of each terminal node. Finally, the
insolvency probability at the root node will be the average of all a conditional
insolvency probabilities since all scenarios have the same probability.

To sum up, the insolvency probability has to be compared to the fund’s
risk tolerance to accept the optimal solution. If the equilibrium risk is on
an acceptable level then the optimal allocation is defined. But if the equi-
librium risk is too high, there are two possibilities to decrease the insolvency
probability without changing the initial wealth: raising the insolvency pe-
nalization or changing the capital requirement (L) from zero to one quantile
of the technical reserve distribution. To test the possible equilibrium risk
control we implemented the latter iterative method.

13
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Figure 4: Underfunding and Insolvency probability

8. Illustrative example

The illustrative example has the objective of comparing two non-arbitrary
equilibrium risk measures: the underfunding probability and the insolvency
probability. An underfunding state is defined as a negative wealth at the
end of the stochastic programming horizon while the insolvency state is de-
scribed by a deficit at the end of the fund existence. Since the stochastic
programming horizon is smaller than the fun existence, the underfunding
probability is a lower bound for the insolvency probability, underestimating
the actual equilibrium risk. The underfunding probability will be calculated
as a proportion of the scenarios negative terminal wealth and the insolvency
probability will be calculated with the bootstrap method proposed in this
paper. Furthermore, the iterative method which increases the capital re-
quirement (L) will also be tested.

First, it is proposed to run the whole process with different initial wealth
considering a null capital requirement (Figure 4). This example confirms
the theoretical result that the underfunding probability underestimates the
actual equilibrium risk, the insolvency probability.

Second, it is proposed, for several different initial wealth, an influential

14



analysis of capital requirement on the insolvency probability. Four cases are
considered:

∙ Case 1: Null capital requirement

∙ Case 2: Iterative method

– Step 1: Null Capital requirement

– Step 2: Capital requirement as the average technical reserve

∙ Case 3: Iterative method

– Step 1: Null Capital requirement

– Step 2: Capital requirement as the reserve with risk correction
(1% significance)

∙ Case 4: Capital requirement as a predetermined value (real discount
rate: 6% by Brazilian law)

It is confirmed that when the capital requirement is increased the insolvency
probability is decreased. Figure 5 also shows that the differences between
each case are small suggesting that the main factor that influences the equi-
librium risk is the initial wealth.

9. Conclusions

This paper proposed an ALM multistage stochastic programming model
for a Brazilian pension fund and a new methodology of measuring and con-
trolling the equilibrium risk. To do this, the whole process was divided into
small parts and each one was described in details. A flowchart (Figure 6)
can summarize the whole process.

The process begins with the estimation of the stochastic model coeffi-
cients used to generate the risk factor tree structured scenarios. So, financial
models are used to do the asset pricing and the liability cash flow calcula-
tion. After that, the asset returns and the liability cash flows are used as the
stochastic programming inputs to find an optimal investment policy with null
capital requirement. Then, the optimal portfolio returns are bootstrapped
to obtain the technical reserve distribution. Finally, using this result, the
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Figure 5: Insolvency probability
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insolvency probability is estimated as the average of the conditional insol-
vency probabilities calculated for each terminal node. If the risk acceptance
criteria is satisfied, then the optimal allocation is defined, else another so-
lution is obtained with a higher capital requirement or a higher insolvency
penalization.

In conclusion, this proposed methodology can give a better estimate of
the equilibrium risk involved in a pension fund. In fact, the underfunding
probability (previous work non-arbitrary risk measure) underestimates the
long term risk of a pension fund since it is much smaller than the insolvency
probability. Moreover, it was also tested an iterative method, increasing the
capital requirement, to control the equilibrium risk. For instance, on the
illustrative example, this approach actually decreased the insolvency proba-
bility however it shows just small improvements controlling the equilibrium
risk.
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