

Fillipe Machado Pinto Napolitano

Uma Estratégia Baseada em Simulação para Validação de Modelos em i*

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Informática da PUC-Rio como requisito parcial para obtenção do título de Mestre em Informática.

Orientador: Prof. Julio Cesar Sampaio do Prado Leite

Fillipe Machado Pinto Napolitano

Uma Estratégia Baseada em Simulação para Validação de Modelos em i*

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Informática do Departamento de Informática do Centro Técnico e Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Julio Cesar Sampaio do Prado Leite Orientador Departamento de Informática – PUC-Rio

Marco Antônio Casanova Departamento de Informática – PUC-Rio

Simone Diniz Junqueira Barbosa Departamento de Informática – PUC–Rio

José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC–Rio Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Fillipe Machado Pinto Napolitano

Graduou-se em Engenharia de Telemática pelo Instituto Militar de Engenharia – IME, em novembro de 2004. Área de interesse acadêmico: Engenharia de Software, mais especificamente em Engenharia de Requisitos. Atualmente trabalha no Centro Tecnológico do Exército, como adjunto a Divisão de Tecnologia da Informação.

Ficha Catalográfica

Napolitano, Fillipe Machado Pinto

Uma estratégia baseada em simulação para validação de modelos em i* / Fillipe Machado Pinto Napolitano; orientador: Julio Cesar Sampaio do Prado Leite – 2009

164 f; 30 cm

Dissertação (Mestrado em Informática) — Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia.

1. Informática – Teses. 2. Engenharia de Requisitos. 3. Orientação a metas. 4. Framework i*. 5. Validação. 6. Simulação I. Leite, Julio César Sampaio do Prado. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. III. Título.

Este trabalho é dedicado à minha família.

Agradecimentos

Ao meu orientador, professor Julio Cesar Sampaio do Prado Leite, pela confiança depositada em mim, pela paciência e por todas as orientações durante este trabalho.

À professora Simone Diniz Junqueira Barbosa, pela disposição e importante colaboração durante meus estudos.

À minha querida esposa Andreia, pelo carinho e compreensão nos momentos difíceis.

Aos amigos do grupo de Engenharia de Requisitos, pelas valiosas contribuições a este trabalho.

Aos amigos da Divisão de Tecnologia da Informação – CTEx, pelos ensinamentos e incentivo.

Resumo

Napolitano, Fillipe Machado Pinto; Leite, Julio Cesar Sampaio do Prado. Uma Estratégia Baseada em Simulação para Validação de Modelos em i*. Rio de Janeiro, 2009. 164p. Dissertação de Mestrado – Departamento de

Informática, Pontifícia Universidade Católica do Rio de Janeiro.

O entendimento da organização antes de iniciar o desenvolvimento dos

sistemas organizacionais tem se mostrado bastante eficaz na elicitação de

requisitos. Neste contexto, a utilização dos conceitos de intencionalidade através

do Framework i* tem sido amplamente empregada por pesquisadores e em

algumas empresas. Porém, o uso do framework i* para a modelagem da

intencionalidade organizacional carrega a complexidade intrínseca dos modelos.

Sendo assim, este trabalho tem como principal objetivo elaborar uma estratégia

baseada em simulação para ajudar o engenheiro de requisitos a validar os modelos

em i* elicitados junto aos interessados, sem que os mesmos precisem absorver a

complexidade inerente a esses modelos. São apresentados também os resultados

obtidos com a aplicação desta estratégia em um estudo de caso.

Palayras-chave

Engenharia de requisitos; framework i*; validação; simulação

Abstract

Napolitano, Fillipe Machado Pinto; Leite, Julio Cesar Sampaio do Prado (Advisor). **A Simulation–Based Validation Strategy to i* Models.** Rio de Janeiro, 2009. 164p. MSc. Dissertation – Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

The understanding of the organization before starting the development of organizational systems has been very effective in requirements elicitation. In this context, the use of intentionality concepts through the i * framework has been widely used by researchers and by some companies. However, the use of i* framework to modeling organizational intentionality brings the inherent complexity of the models. Thus, this work has the main objective to develop a simulation–based strategy to help the requirements engineer to validate the i* models elicitated with the stakeholders, without absorbing the inherent complexity of these models. We also present the results of the strategy implementation in a case study.

Keywords

Requirements engineering; i* framework; validation; simulation

Sumário

1 Introdução	17
1.1. Motivação	17
1.2. Objetivos	18
1.3. Conceitos	19
1.3.1. Requisitos Funcionais	19
1.3.2. Requisitos Não Funcionais	19
1.3.3. Ação Concreta x Ação Flexível	19
1.3.4. Léxico Estendido da Linguagem (LEL)	20
1.3.5. Cenários	20
1.3.6. Grafos NFR	20
1.4. Organização da Dissertação	21
2 O Framework de Modelagem i*	22
2.1. Visão geral do framework i*	22
2.2. O Modelo SD – Strategic Dependency	23
2.3. O Modelo SR – Strategic Rationale	26
2.4. Extensões do <i>framework</i> i*	29
2.4.1. O Modelo SA – Strategic Actor	29
2.4.2. Situação de Dependência Estratégica - SDsituations	32
2.4.3. Painel de Intencionalidade – Diagrama IP	34
3 Estratégia de Validação Baseada em Simulação	37
3.1. Visão Geral da Estratégia	37
3.2. Construir Modelos i*	39
3.2.1. Elicitar as Metas dos Atores	41
3.2.1.1. Preparar o Léxico Estendido da Linguagem	41
3.2.1.2. Definir Metas dos Agentes Vindas do Léxico – AGFL	42
3.2.1.3. Refinar as Metas	44
3.2.2. Identificar as Situações de Dependência Estratégica	45
3.2.2.1. Distinguir <i>SDsituations</i>	45

3.2.2.2. Reconhecer Interdependencias entre SDsituations	46
3.2.2.3. Construir Diagramas de <i>SDsituations</i>	46
3.2.3. Modelar as Metas dos Atores	47
3.2.3.1. Identificar Agentes, Posições e Papéis	47
3.2.3.2. Criar os Painéis de Intencionalidade	48
3.2.4. Modelar a Racionalização das Metas dos Atores	49
3.2.4.1. Construir Modelos SD	49
3.2.4.2. Construir Modelos SR	50
3.2.5. Especificar as <i>SDsituations</i>	51
3.2.6. Analisar os Modelos SD e SR	54
3.3. Transformar	55
3.3.1. Heurísticas de Transformação	55
3.3.2. Tratando Restrições do Tipo Metas Flexíveis	57
3.4. Validar por Simulação	61
3.4.1. Heurísticas de Validação por Simulação	63
4 Estudo de Caso	66
4.1. SimulES	66
4.1.1. Cartão de Projetos	67
4.1.2. Tabuleiros	68
4.1.3. Cartas	68
4.1.4. Artefatos	69
4.2. Aplicação da Estratégia no Projeto SimulES	70
4.2.1. Elicitar as Metas dos Atores	70
4.2.1.1. Preparar o LEL – Léxico Estendido da Linguagem	70
4.2.1.2. Definir AGFL – Metas dos Agentes Vindas do Léxico	70
4.2.2. Identificar as Situações de Dependência Estratégica	93
4.2.3. Modelar as Metas dos Atores	96
4.2.4. Modelar a Racionalização das Metas dos Agentes	103
4.2.5. Especificar as SDsituations	114
4.3. Transformar	118
4.4. Validar por Simulação	125
4.4.1 Tratando os Resultados Obtidos	127

4.5. Considerações Sobre o Estudo de Caso	151
5 Conclusões	153
5.1. Análise de Trabalhos Relacionados	153
5.1.1. i* Diagnoses: A Quality Process for Building i* Models [28]	153
5.1.2. A Survey of Good Practices and Misuses for Modelling	
with i* Framework [29]	154
5.1.3. A Method for the Definition of Metrics over i* Models [30]	156
5.1.4. Comparação com a Literatura Apresentada	158
5.2. Avaliação dos Resultados Obtidos	158
5.3. Contribuições	159
5.4. Trabalhos Futuros	160
6 Referências Bibliográficas	162

Lista de Figuras

Figura 2.1 – Tipos de dependências entre atores no modelo SD.	24
Figura 2.2 – Exemplo de um modelo SD. Retirado de [2].	25
Figura 2.3 – Decomposição de tarefas (parte). Baseado em [2].	27
Figura 2.4 – Elos meios–fim (parte). Baseado em [2].	28
Figura 2.5 – Exemplo de Modelo SR. Retirado de [2].	29
Figura 2.6 – Exemplo de um modelo SA.	31
Figura 2.7 – Exemplo de interdependências entre <i>SDsituations</i> .	
Adaptado de [3].	33
Figura 2.8 – Diagrama de classes de uma SDsituation.	
Traduzido de [2].	34
Figura 2.9 – Exemplo de um painel de intencionalidade [2].	36
Figura 3.1 – SADT da estratégia de validação de modelos em i*.	38
Figura 3.2 – Etapas do método ERi*c. Adaptado de [2].	40
Figura 3.3 – Exemplo de símbolos do LEL [19].	42
Figura 3.4 – Exemplo de <i>template</i> para ações	
concretas (sujeito e objeto) [2].	43
Figura 3.5 – Exemplo de <i>template</i> para ações	
flexíveis (sujeito e objeto) [2].	44
Figura 3.6 – Metas agrupadas por ator cronologicamente	
organizadas [2].	44
Figura 3.7 – Metas concretas e flexíveis de <i>caixa</i>	
organizadas por <i>SDsituations</i> .	45
Figura 3.8 – Diagrama de <i>SDsituations</i> – Controle de Caixa	
de Restaurante [2].	46
Figura 3.9 – Diagrama SA – Controle do Caixa de Restaurante	47
Figura 3.10 – Diagrama IP – Atendimento da Mesa [2].	48
Figura 3.11 – Modelo SD para Atendimento da Mesa [2].	50
Figura 3.12 – Modelo SR da situação Atendimento de	
Mesa. Retirado de [2].	51
Figura 3.13 – Modelo de Cenário. Traduzido de [13].	52

Figura 3.14 – Exemplo de representação em cenário.	54
Figura 3.15 – Exemplo de grafo NFR.	58
Figura 3.16 – Exemplo de metas flexíveis conflitantes.	59
Figura 3.17 – Metas flexíveis inseridas nos cenários da ferramenta.	61
Figura 3.18 – Simulação do cenário Atendimento da Mesa no <i>UCEd</i> .	63
Figura 3.19 – Escolha de um episódio fora da ordem inicial adotada.	64
Figura 4.1 – Cartão de Projeto do SimulES [25].	67
Figura 4.2 – Tabuleiro individual com engenheiros [26].	68
Figura 4.3 – Exemplos de cartas [25].	69
Figura 4.4 – Artefatos com e sem defeito [25].	69
Figura 4.5 – LEL dos símbolos do tipo sujeito.	71
Figura 4.6 – <i>Template</i> preenchido com metas dos símbolos	
do tipo sujeito.	73
Figura 4.7 – LEL dos símbolos do tipo objeto.	77
Figura 4.8 – <i>Template</i> com metas concretas dos símbolos	
do tipo objeto.	82
Figura 4.9 – <i>Template</i> com metas flexíveis dos símbolos	
do tipo objeto.	83
Figura 4.10 – LEL dos símbolos do tipo verbo.	85
Figura 4.11 – <i>Template</i> com metas dos símbolos do tipo verbo.	89
Figura 4.12 – LEL dos símbolos do tipo estado.	90
Figura 4.13 – <i>Template</i> com metas dos símbolos do tipo estado.	92
Figura 4.14 – Metas agrupadas por ator e cronologicamente	
organizadas.	93
Figura 4.15 – Metas organizadas em SDsituations.	95
Figura 4.16 – Diagrama de SDsituations do SimulES.	96
Figura 4.17 – O modelo SA do SimulES.	97
Figura 4.18 – Diagrama IP – Joga Rodada de Início.	97
Figura 4.19 – Diagramas IP – Joga Rodada de Ações.	98
Figura 4.20 – Diagramas IP – Construção de Artefatos	
e Inspeção de Artefatos.	99
Figura 4.21 – Diagramas IP: Correção de Artefatos	
e Integração de Artefatos em Módulo.	100

Figura 4.22 – Diagrama IP: Joga Rodada de Conceitos.	101
Figura 4.23 – Diagramas IP – Tratamento de Problema	
e Submissão de Produto.	102
Figura 4.24 – Modelo SD – Joga Rodada de Início.	103
Figura 4.25 – Modelo SR – Joga Rodada de Início.	104
Figura 4.26 – Modelo SD – Joga Rodada de Ações.	104
Figura 4.27 – Modelo SR – Joga Rodada de Ações.	105
Figura 4.28 – Modelo SD – Construção de Artefato.	106
Figura 4.29 – Modelo SR – Construção de Artefato.	106
Figura 4.30 – Modelo SD – Inspeção de Artefato.	107
Figura 4.31 – Modelo SR – Inspeção de Artefato.	107
Figura 4.32 – Modelo SD – Correção de Artefato.	108
Figura 4.33 – Modelo SR – Correção de Artefato.	108
Figura 4.34 – Modelo SD – Integração de Artefato em Módulo.	109
Figura 4.35 – Modelo SR – Integração de Artefato em Módulo.	109
Figura 4.36 – Modelo SD – Joga Rodada de Conceitos.	110
Figura 4.37 – Modelo SR – Joga Rodada de Conceitos.	111
Figura 4.38 – Modelo SD – Tratamento de Problema.	112
Figura 4.39 – Modelo SR – Tratamento de Problema.	112
Figura 4.40 – Modelo SD – Submissão de Produto.	113
Figura 4.41 – Modelo SR – Submissão de Produto.	113
Figura 4.42 – SDsituation Joga Rodada de Início (descrição).	114
Figura 4.43 – SDsituation Joga Rodada de Ações (descrição).	114
Figura 4.44 – SDsituation Construção de Artefato (descrição).	115
Figura 4.45 – SDsituation Inspeção de Artefato (descrição).	115
Figura 4.46 – SDsituation Correção de Artefato (descrição).	116
Figura 4.47 – SDsituation Integração de Artefatos em	
Módulo (descrição).	116
Figura 4.48 – SDsituation Joga Rodada de Conceitos (descrição).	117
Figura 4.49 – SDsituation Tratamento de Problema (descrição).	117
Figura 4.50 – SDsituation Submissão de Produto (descrição).	118
Figura 4.51 – Grafo NFR da meta flexível Qualidade [artefato].	119
Figura 4.52 – Grafo NFR da meta flexível Qualidade [projeto].	119

Figura 4.53 – Cenario Joga Rodada de inicio (transformado).	120
Figura 4.54 – Cenário Joga Rodada de Ações (transformado).	121
Figura 4.55 – Cenário Construção de Artefato (transformado).	121
Figura 4.56 – Cenário Inspeção de Artefato (transformado).	122
Figura 4.57 – Cenário Correção de Artefato (transformado).	122
Figura 4.58 – Cenário Integração de Artefato em	
Módulo (transformado).	123
Figura 4.59 – Cenário Joga Rodada de Conceitos (transformado).	123
Figura 4.60 – Cenário Tratamento de Problema (transformado).	124
Figura 4.61 – Cenário Submissão de Produto (transformado).	124
Figura 4.62 – Alterações realizadas pelo Interessado 1	
durante a simulação.	126
Figura 4.63 – Alterações realizadas pelo Interessado 2	
durante a simulação.	126
Figura 4.64 – Alterações realizadas pelo Interessado 3	
durante a simulação.	126
Figura 4.65 – Alterações resultantes realizadas pelos Interessados.	127
Figura 4.66 - Template da meta flexível Boa [estratégia] (parcial).	130
Figura 4.67 – Símbolos impactados pela meta flexível	
Boa [estratégia].	131
Figura 4.68. Metas refinadas com a adição da meta	
flexível Boa [estratégia].	132
Figura 4.69. Diagramas IP Joga Rodada de Ações e Tratamento	
de Problema com a adição da meta flexível Boa [estratégia].	134
Figura 4.70. Diagramas IP Inspeção de Artefato e Correção	
de Artefato com a adição da meta flexível Boa [estratégia].	135
Figura 4.71. Diagramas IP Joga Rodada de Conceitos com	
a adição da meta flexível Boa [estratégia].	136
Figura 4.72. Diagrama SR Joga Rodada de Ações modificado.	137
Figura 4.73. Diagrama SR Inspeção de Artefato modificado.	138
Figura 4.74. Diagrama SR Correção de Artefato modificado.	138
Figura 4.75. Diagrama SR Joga Rodada de Conceitos modificado.	139
Figura 4.76. Diagrama SR Tratamento de Problema modificado.	139

Figura 4.77 – Descrição da SDsituation Joga Rodada de Inicio	
antes e depois da correção.	140
Figura 4.78 – Descrição da SDsituation Joga Rodada de Ações	
antes e depois da correção.	141
Figura 4.79 – Descrição da SDsituation Construção de Artefato	
antes e depois da correção.	142
Figura 4.80 – Descrição da SDsituation Inspeção de Artefato	
antes e depois da correção.	143
Figura 4.81 – Descrição da SDsituation Correção de Artefato	
antes e depois da correção.	144
Figura 4.82 – Descrição da SDsituation Joga Rodada de Conceitos	
antes e depois da correção.	145
Figura 4.83 – Descrição da SDsituation Tratamento de Problemas	
antes e depois da correção.	146
Figura 4.84 – Grafo NFR para Boa [estratégia].	147
Figura 4.85 – Novo cenário Joga Rodada de Inicio (transformado).	148
Figura 4.86 – Novo cenário Joga Rodada de Ações (transformado).	148
Figura 4.87 – Novo cenário Construção de Artefato (transformado).	149
Figura 4.88 – Novo cenário Inspeção de Artefato (transformado).	149
Figura 4.89 – Novo cenário Correção de Artefato (transformado).	150
Figura 4.90 – Novo cenário Joga Rodada de	
Conceitos (transformado).	150
Figura 4.91 – Novo cenário Tratamento de	
Problema (transformado).	151

Lista de tabelas

Tabela 3.1 – Regras gerais para definição de símbolos [18].	41
Tabela 3.2 – Regras para definição de dependências estratégicas	49