Estudo de Casos e Discussão

Todas as funções de base nos casos apresentados a seguir foram construídas com o auxílio de técnicas evolucionárias. A função objetivo a ser minimizada é a energia correspondente a função de onda de cada sistema. Utilizando o calculada pelo programa GAUSSIAN (G03). Para os átomos de camada fechada, a energia foi obtida através de cálculos de Hartree-Fock restrito (RHF); já para átomos de camada aberta, foi usado o Hartree-Fock aberto restrito (ROHF). São realizados experimentos preliminares que objetivam definir a metodologia a ser aplicada posteriormente na construção de funções de base para os átomos B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar.

Para que fosse possível realizar o estudo dos diversos casos propostos foi necessário implementar os *AEIQs* e a sua extensão co-evolucionária com os detalhes já mencionados anteriormente. Todas as otimizações realizadas com *AGs* clássicos utilizaram a biblioteca de Algoritmos Genéticos desenvolvida pelo Laboratório de Inteligência Computacional Aplicada (ICA) da PUC-Rio. Os estudos de casos presentes neste capítulo são:

- Análise de desempenho de AGs e de AEIQs aplicados à construção de funções de base;
- Aplicação de AEIQs à otimização simultânea de todas as gaussianas presentes em uma função de base;
- 3. Aplicação de neuro-evolução à síntese de funções de base;
- Aplicações de expansões em caos polinomial à síntese de funções de base;
- 5. Aplicação de expansões polinomiais à síntese de funções de base;
- Aplicações do modelo co-evolucionário com inspiração quântica à distribuição de primitivas gaussianas entre os orbitais;

 Aplicações do modelo co-evolucionário com inspiração quântica à resolução de problemas multiobjetivos na construção de funções de base.

5.1.

Síntese de funções de base por Algoritmos Genéticos convencionais e por Algoritmos Evolucionários com inspiração quântica

Foram expostos em (CRUZ, 2007) estudos de casos nos quais a aplicação de Algoritmos Evolucionários com Inspiração Quântica (AEIQs) se sobressaíram em relação aos demais. No entanto, não há provas que demonstrem que AEIQs apresentam, em todos os casos, desempenhos superiores aos algoritmos convencionais. Por isso, nesse estudo de caso, verificou-se o desempenho dos algoritmos em questão para construir funções de base, e escolheu-se o átomo de Ne para realização dos testes. Então, foi construída uma função de base com 20 e 11 gaussianas para representar os orbitais $s \in p$ (20s11p), respectivamente. Para que fosse realizada a construção de tal função de base a decodificação dos cromossomos utilizou polinômios de grau cinco segundo o modelo descrito na secção 4.2.4. A Figura 5-1 mostra as médias das curvas de evolução referentes a cinco execuções do AEIQ e do AG convencional com as parametrizações dadas pela Tabela 5-1, já a Figura 5-1 mostra a diferenca entre as melhores execuções dos algoritmos. As curvas presentes na Figura 5-1 e Figura 5-2 mostram a energia de correlação eletrônica durante a evolução dos algoritmos. O número de avaliações em todas as otimizações não foi mantido igual. O que diferencia uma execução de outra é o número de indivíduos avaliados em cada geração, conforme mostrado na Tabela 5-1.

Parâmetro	$AEIQ^{1}$	$AEIQ^2$	$AEIQ^3$	AG
Gerações	1000	1000	1000	1000
Tamanho da popopulação clássica	100	100	100	100
Tamanho da população quântica	2	2	3	-
Número de observações	2	5	5	-
Cruzamento Quântico	0.95	0.95	0.95	-
Cruzamento Clássico	0.95	0.95	0.95	0.95
Atualização a cada	10 g	10 g	10 g	-
Variação de largura	0.1	0.1	0.1	0.1
Gap	4	10	14	25

Tabela 5-1 Múltiplas configurações de algoritmos evolutivos.

Apesar das configurações diferentes de cada execução, é clara a eficiência dos Algoritmos Evolutivos com Inspiração Quântica (*AEIQs*) em relação aos *AGs*, pois as curvas de evolução dos *AEIQs* apresentam variações mais acentuadas ao longo da evolução que a apresentada pelo AG clássico. Independentemente da escolha das suas configurações, curvas dos *AEIQs* variam mais rápido que as dos *AGs* tradicionais. Além disso, em média, todas as execuções dos *AEIQs* apresentaram soluções de melhor qualidade. As curvas de evolução dos *AEIQs* e *AGs* estão na Figura 5-1. Cada otimização foi executada cinco vezes, e na figura 5.2 é mostrada a diferença entre as curvas de evolução das otimizações que resultaram nas melhores funções de base. Na Figura 5-2 também é mostrada a energia da melhor função de base 20s11p obtida em (JORGE & CASTRO, 1999).

Figura 5-1 Curvas de evolução do *AG* e do *AEIQ* aplicados à parametrizção da base 20*s*11*p* do *Ne*.

Figura 5-2 Melhores curvas de evolução do *AG* e *AEIQ* aplicados à construção da função de base 20s11p do *Ne* comparadas ao resultado apresentado em (JORGE & CASTRO, 1999).

5.1.1.Otimização simultânea de todos os expoentes

A otimização simultânea de todos os expoentes é um problema de programação não linear de dimensão igual ao número de termos utilizados na construção da base. Essa forma de parametrizar funções de base foi discutida na seção 4.21. A dimensionalidade é o grande problema dessa abordagem, mas a solução apresentada pode ser útil para calibração de outros modelos.

Essa metodologia foi aplicada à parametrização da função de base 20s11p do átomo de Ne. Foram executadas cinco otimizações. Os parâmetros do otimizador encontram-se na Tabela 5-2. Os resultados da aplicação do método estão na Tabela 5-1 e os cromossomos que representam as melhores soluções estão na Tabela 5-3. Na Figura 5-3 são mostradas na as primeiras 1500 gerações dos dois melhores experimentos.

Figura 5-3 Evolução do AEIQ aplicado para otimizar a base 20s11p do Ne

Pode ser visto na Figura 5-3 que, por volta da geração 900 a curva de evolução do algoritmo varia numa velocidade muito mais baixa do que nas gerações anteriores. A partir dessa geração o algoritmo está basicamente refinando a otimização, ou seja, já está em um mínimo local.

Passadas 6000 gerações, as soluções obtidas apresentam energias bem próximas do NHF (*Numerical Hatree-Fock*), aproximadamente nove *microhartrees*, conforme mostra a Tabela 5-4. No entanto, tal número de gerações pode ser considerado alto e exige uma grande quantidade de simulações de funções de base.

Número de gerações	6000
Tamanho da população clássica	100
Tamanho da população quântica	2
Número de observações	5
Cruzamento Quântico	0.95
Cruzamento Clássico	0.95
Intervalo de atualização a cada	10 gerações
Variação de largura	0.1

Tabela 5-2 Configuração do AEIQ aplicado para otimizar a base 20s11p do Ne.

Tabela 5-3 Cromossomos apresentados pelo AEIQ como melhores soluções paraa otimização da base 20s11p do Ne.

Prim	A	LEIQ ¹	Α	EIQ ²	ŀ	AEIQ ³	
	S	р	S	р	S	р	
1	0.217367	0.136899375	0.233608	0.138624254	0.243911	0.140438396	
2	2.23222	2.32440599	2.275846	2.326889753	2.319221	2.334509918	
3	2.166853	2.225536354	2.197924	2.223684563	2.229004	2.229972789	
4	2.135689	2.175121648	2.152194	2.172142923	2.149965	2.174756239	
5	2.130305	2.145786304	2.270446	2.143066501	1.99021	2.142829831	
6	1.952652	2.161277722	1.952279	2.158753156	1.991282	2.152688511	
7	1.941399	2.245025125	1.914662	2.242010607	1.943745	2.222145665	
8	1.960152	2.395748235	1.855231	2.389814934	1.913212	2.336107276	
9	1.998108	2.632175966	1.787787	2.620198267	1.957604	2.52202946	
10	2.056879	3.083650929	1.881551	3.06015922	2.090889	2.960301536	
11	2.141138	4.223749444	2.031392	4.173214308	2.238377	4.171686945	
12	2.248123		2.100558		2.365746		
13	2.37289		2.189945		2.435148		
14	2.520208		2.416874		2.154448		
15	2.708337		2.711783		1.980435		
16	2.931407		2.945923		2.818226		
17	3.058938		2.845289		2.920618		
18	3.280684		2.952465		2.198452		
19	4.215883		4.550163		3.672443		
20	2.897357		2.659987		2.852992		

* os números sobre-escritos representam a ordem dos experimentos

Tabela 5-4 Energias da função de base 20s11p do átomo Ne obtidas por três

execuções do AEIQ.

AEIQ ¹	AEIQ ²	AEIQ ³
-128.54708948	-128.5470870	-128.54708533

* os números sobre-escritos representam a ordem dos experimentos.

5.1.2. Aplicação de expansões polinomiais à construção de funções de base

A aplicação de expansões polinomiais à construção de funções de base foi feita pela primeira vez em (KLUBOWKOSKI, 1993). Essa metodologia trouxe grandes vantagens em relação às técnicas anteriormente utilizadas (KLUBOWKOSKI, 1993), (KLUBOWKOSKI, 1994). Em (KLUBOWKOSKI, 1993), as funções de base foram construídas com o uso de otimizadores clássicos e, neste trabalho investiga-se a aplicação de Algoritmos Evolucionários à parametrização de expansões polinomiais utilizados na obtenção de expoentes das primitivas gaussianas.

Uma das grandes barreiras enfrentadas para construir funções de base é o desconhecimento do menor intervalo que contém boas configurações de parâmetros, ou seja, o tamanho do espaço de busca. No entanto, é possível utilizar soluções conhecidas para inferir rapidamente a localização de bons parâmetros, ou seja, para definir o espaço de busca onde o AE vai atuar. Essa inferência pode ser feita por uma simples regressão dos logaritmos naturais dos expoentes das primitivas, obtidos por outra técnica, e as posições normalizadas dos termos na função de base.

Caso o ajuste do modelo de regressão seja bem sucedido, os expoentes dessa regressão serão fortes candidatos as soluções iniciais. Por exemplo, no caso do Ne, pode-se identificar esses expoentes através da decodificação do cromossomo apresentado na seção 5.1.1 na Tabela 5-3, seguida de uma regressão, como já dito. Para definir o espaço de busca, podem ser escolhidos intervalos arbitrários que contenham todos os expoentes. A essa altura, são possíveis diversas abordagens, por exemplo, efetuar variações de $\pm X\%$. Porém, é importante que essa variação não seja muito pequena, pois ainda há o risco do algoritmo ficar preso em falsos mínimos. Em contrapartida, se as variações forem muito grandes o algoritmo pode não conseguir achar uma boa solução com um número baixo de avaliações. É importante notar que a solução fornecida pelo outro modelo não é utilizada como solução, é usada apenas para definir o domínio onde se deseja encontrar uma boa solução.

A decodificação do primeiro cromossomo apresentado na Tabela 5-3 fornece a função de base presente na Tabela 5-5. A Figura 5-4 mostra as regressões polinomiais de ordem quatro entre os logaritmos naturais dos expoentes das primitivas e as suas posições normalizadas no conjunto de base. A partir disso, é possível coletar informações sobre o domínio onde os parâmetros dos polinômios estão contidos.

Prim	S	р	S	р	S	р
1	0.217367	0.136899	0.233607586	0.138624	0.243911	0.140438396
2	0.48521	0.31821	0.53165494	0.322563	0.565684	0.327854828
3	1.05138	0.708187	1.168537377	0.717279	1.260911	0.731107345
4	2.24542	1.540394	2.514919552	1.558033	2.710915	1.58998026
5	4.783428	3.305355	5.709988193	3.338968	5.39529	3.407057131
6	9.340372	7.143791	11.14748882	7.208008	10.74355	7.334332742
7	18.13339	16.03799	21.34367747	16.16043	20.88271	16.29795571
8	35.54419	38.42299	39.59744494	38.62044	39.95306	38.07377292
9	71.02114	101.1361	70.79178874	101.1932	78.21225	96.02317695
10	146.0819	311.8683	133.1983837	309.6673	163.5332	284.2575582
11	312.7815	1317.254	270.5780714	1292.308	366.0488	1185.833545
12	703.1713		568.3650291		865.9785	
13	1668.548		1244.688042		2108.786	
14	4205.088		3008.253594		4543.27	
15	11388.8		8157.731986		8997.65	
16	33385.2		24032.04697		25357.41	
17	102123.2		68378.10915		74059.31	
18	335034.1		201883.9615		162815.8	
19	1412464		918605.0311		597931.9	
20	4092414		2443477.871		1705895	

 Tabela 5-5 Decodificação do cromossomo apresentado na Tabela 5-3.

Figura 5-4 Regressão polinomial de ordem quatro aplicada à contrução de funções de base.

Os coeficientes de determinação R^2 iguais a 0,999 e 1 apresentados na Figura 5-4, mostram que os polinômios se ajustam bem as soluções encontradas pelo AEIQ, o que os tornam uma ferramenta bastante útil para construir funções de base. Como apenas é preciso procurar os coeficientes do polinômio que se ajustam bem a uma solução desconhecida, isso reduz drasticamente a complexidade da busca a ser realizada, pois a dimensão do espaço de busca é igual ao número de coeficientes da regressão. A avaliação da qualidade do ajuste segue o esquema apresentado na seção 4.2.5. Também é possível a adequação de modelos não polinomiais a esse tipo de problema, como apresentado na seção 4.2.6 e visto mais adiante.

Na Tabela 5-6 e Tabela 5-7 são mostrados os melhores resultados da execução do modelo discutido e comparados aos resultados apresentados em (CASTRO & JORGE, 1999). São feitas cinco otimizações para cada caso apresentado, na tabela 5.3 são mostrados os resultados apenas das energias das melhores funções de base obtidas, mas todos os resultados e os cromossomos correspondentes seguem no anexo 3. As funções de base propostas pela melhor execução do AEIQ possuem sempre qualidade superior propostas em (CASTRO & JORGE, 1999). A diferença entre os modelos propostos e a técnica AGBS aumenta sistematicamente de acordo com o número atômico.

Tabela 5-6 Diferenças entre a energia em *hartrees* obtida pelo AEIQ, AGBS e oNHF em microhartrees resultantes da aplicação do modelo polinomial de grau

Ζ	Átomo	Multip	Base	AGBS	QEIA ¹	AGBS - QEIA ¹
5	В	^{2}P	20s11p	3.66	1.18	2.48
6	С	³ P	20s11p	6.82	1.30	5.52
7	N	⁴ S	20s11p	11.78	2.81	8.97
10	Ne	¹ S	20s11p	46.40	9.07	37.33
11	Na	2 S	18s11p	340.40	81.39	259.01
12	Mg	^{1}S	18s11p	383.30	102.95	280.35
14	Si	³ P	18s13p	541.70	92.38	449.32
15	Р	⁴ S	18s13p	618.00	128.05	489.95
16	S	³ P	18s13p	732.20	0.02	732.18
17	Cl	^{2}P	18s13p	847.90	0.00	847.9
18	Ar	¹ S	18s13p	970.50	214.57	755.93
19	K	2 S	20s13p	1336.70	315.53	1021.17
20	Ca	¹ S	21s13p	951.30	272.00	679.3

cinco.

Tabela 5-7 Diferenças entre a energia em *hartrees* obtida pelo AEIQ, AGBS e oNHF em microhartrees resultantes da aplicação do modelo polinomial de grau

Ζ	Átomo	Multip	Base	AGBS	QEIA1	AGBS - QEIA1
5	В	2P	20s11p	3.66	1.29	2.37
6	С	3P	20s11p	6.82	1.62	5.2
7	N	4S	20s11p	11.78	2.18	9.6
10	Ne	1 S	20s11p	46.40	9.96	36.44
11	Na	2S	18s11p	340.40	86.64	253.76
12	Mg	1 S	18s11p	383.30	97.35	285.95
14	Si	3P	18s13p	541.70	63.15	478.55
15	Р	4S	18s13p	618.00	130.98	487.02
16	S	3P	18s13p	732.20	0.01	732.19
17	Cl	2P	18s13p	847.90	0.00	847.9
18	Ar	1S	18s13p	970.50	176.78	793.72
19	K	2S	20s13p	-	-	-
20	Ca	1 S	21s13p	-	-	-

quatro.

Tabela 5-8 Diferenças entre a energia em *hartrees* obtida pelo AEIQ e o NHF em*microhartrees* da aplicação do modelo polinomial de ordem cinco.

Ne	QEIA1	QEIA2	QEIA3	QEIA4	QEIA5	NHF
10s4p	56362	56424	56473	63844	77188	55145

11s5p	20024	21088	24403	33802	45251	13871
12s6p	5280	6726	7798	9766	10858	3725
13s7s	404	424	2151	2287	4927	1078
14s8p	390	426	576	998	1137	341
15s9p	422	425	588	869	1697	116
16s10p	46	57	58	99	345	42
17s11p	17	26	35	129	386	16
18s12p	6	9	16	328	722	7

Tabela 5-9 Diferenças entre a energia em hartrees obtida pelo AEIQ e o NHF em

microhartrees da aplicação do modelo polinomial de ordem quatro.

Ne	QEIA1	QEIA2	QEIA3	QEIA4	QEIA5	NHF
10s4p	57278	58228	58293	59776	89931	55145
11s5p	14228	14418	18426	19773	57830	13871
12s6p	4361	5404	6286	11277	18100	3725
13s7s	1161	1472	1530	5662	7734	1078
14s8p	356	362	419	573	2012	341
15s9p						116
16s10p	42	43	55	57	69	42
17s11p	17	17	17	19	27	16
18s12p	7	7	7	7	8	7

A melhor dentre as expansões é a de ordem quatro, pois na grande maioria dos experimentos favoreceu ao otimizador encontrar melhores funções de base para diversos átomos, além disso, também evolui mais rápido do que a outra expansão. Na Figura 5-5 são mostradas as curvas de evolução dos modelos que apresentaram melhores funções de base para o átomo de Ar para a configuração 18s13p.

Figura 5-5 Curvas médias de evolução para otimização da função de base 18s13p para o átomo de Ar.

Pode ser mostrado que esse modelo consegue viabilizar a obtenção do limite Hartree-Fock numérico. É feita a otimização de um conjunto de funções de base grande, configuração 25s15p. O melhor resultado da otimização é um conjunto de base com energia -128.5470983470 *hartrees*. Os cromossomos resultantes de todas as otimizações estão em anexo na Tabela 7-2.

5.1.3. Aplicação de neuro-evolução à construção de funções de base

A aplicação de Redes Neurais à construção de conjuntos de funções de base pode ser uma ferramenta extremamente útil, pois todas as análises feitas para ajustar polinômios à uma boa solução partem de proposições empíricas. Assim, é importante que sejam feitos testes com essa técnica, pois polinômios poderiam não ser capazes de aproximar a dinâmica dos expoentes tão bem quanto uma rede neural. Nesse estudo de caso é aplicada a neuro-evolução de um modelo *feedfoward* de uma camada escondida com dois neurônios para construir a função de base 20s11p para o *Ne*.

Duas redes são treinadas ao mesmo tempo durante os ciclos evolutivos para modelar as séries que geram os expoentes das primitivas empregadas para modelar o orbital s e p

É importante notar que, nessa abordagem, não é necessária nenhuma informação sobre o comportamento de boas soluções. Durante a evolução, o algoritmo tem total liberdade para testar várias possibilidades, inclusive polinomiais, pois uma rede neural consegue também aproximar polinômios. O espaço de busca é muito grande, porque a rede aproxima uma grande quantidade de funções, e o algoritmo evolucionário tenta encontrar uma dentre muito grande possibilidades. Na Figura 5-6, são mostradas cinco curvas de evolução do AEIQ na neuro-evolução do modelo *feedfoward* aplicado à construção da função de base 20s11p. Na Tabela 5-10 estão os parâmetros utilizados para a configuração do AEIQ.

Analisando as curvas de evolução, pode-se concluir que tendem a não ocorrer mudanças significativas na evolução do AEIQ a partir da geração 300. Essa informação pode ser útil para aplicações futuras do modelo.

Na Tabela 5-11, estão os resultados das cinco evoluções apresentadas. Esses resultados podem ser considerados bons resultados, pois há uma diferença de no máximo dois *milihartrees* em relação ao NHF para a pior execução do algoritmo. Os cromossomos resultantes da otimização estão no anexo 5.

Tabela 5-10 Configurações do AEIQ aplicado à evolução de uma rede *feedfoward*para o problema de construir funções de base.

Número de gerações	500
Tamanho população clássica	100
Tamanho da população quântica	2
Número de observações	5
Crossover Quântico	0.95
Crossover Clássico	0.95
Intervalo de atualização a cada	10 gerações
Variação de largura	0.1

Tabela 5-11 Melhores resultados da aplicação do modelo neuro-evoutivo em

relação ao NFH.

QEIA ¹	QEIA ²	QEIA ³	QEIA ⁴	QEIA ⁵
0.0000632	0.0000427	0.0025696	0.0001418	0.0001863

* os números sobre-escritos representam a ordem dos experimentos.

5.1.4. Aplicações de expansões em caos polinomial à síntese de funções de base

A utilização desta técnica tem objetivos semelhantes aos da aplicação de Redes Neurais, pois, também busca encontrar uma função que aproxime a série que gera os expoentes das primitivas gaussianas. Essa série desconhecida é uma função que pode ser aproximada por uma sequência de polinômios que sejam ortogonais uns em relação aos outros.

Neste estudo de caso, são feitas parametrizações de combinações lineares de polinômios ortogonais, conforme discutido na seção 4.2.4. A qualidade da parametrização é mensurada através da energia do conjunto de base construído, como já mencionado. São utilizados polinômios de *Hermite*, *Legendre* e *Lagerre* para construir a função 20s11p para o átomo de *Ne*.

São mostradas na Figura 5-7 as curvas médias de cinco experimentos da evolução do algoritmo aplicado às três expansões das séries geradoras de expoentes.

Figura 5-7 Expansões em caos de *Hermite*, *Legendre* e *Laguerre* aplicadas à construção da função 20s11p do Ne.

As curvas apresentadas mostram que as expansões em caos de *Legendre*, *Laguerre* são mais adequadas do que as de Hermite são adequadas para resolver o problema de parametrização de primitivas gaussianas. Ou seja, pode-se se dizer que a série que gera o conjunto de parâmetros para primitivas gaussianas não pode ser bem aproximada com poucos termos quando é utilizada uma base de Hermite.

A utilização dessa técnica possibilita o algoritmo evolutivo encontrar uma energia de correlação eletrônica da ordem de 10^{-5} com 100 ciclos evolutivos, o que pode ser considerado excelente para algumas aplicações. Na Tabela 5-12, as energias de correlação em *hartrees* resultantes da otimização e no anexo 6 os cromossomos das cinco execuções do AEIQ.

Tabela 5-12 Melhores resultados das expansões em caos para a base 20s11p doNe em relação ao NFH.

Hermite	Legendre	Laguerre
0.00056257	4.6254E-05	4.6254E-05

5.1.5. Comparação entre modelos de parametrização

As técnicas discutidas até agora apenas possibilitam parametrizar as primitivas gaussianas. Mas, também é necessário realizar a distribuição dessas primitivas entre os orbitais atômicos a fim de descrever da melhor forma possível o comportamento da função de onda para um certo átomo. Para isso, é necessário que a parametrização seja feita da melhor forma possível. Assim, foram comparados os melhores modelos propostos anteriormente, analisando-se as curvas médias de evolução do modelo neuro-evolutivo, das expansões de Laguerre e da expansão em polinômios de ordem quatro,como mostra a Figura 5-8.

Figura 5-8 Comparação entre a neuro-evolução, expansões polinomiais de ordem quatro e expansões de Laguerre.

O modelo neuro-evolutivo revelou-se a abordagem menos recomendada para realizar a parametrização das funções de base. Já os modelos de expansões de Laguerre e polinomiais de ordem 4 se destacaram.

Ao observar as curvas de evolução das expansões polinomiais e de Laguerre, é visto que a velocidade de convergência do modelo baseado em caos polinomial é muito maior. No entanto, esse modelo facilita a convergência do AEIQ para mínimos locais, e como pode ser observado, o modelo baseado em polinômios de grau quatro, pode-se ultrapassar mínimo local encontrado pelo modelo que otimiza todos os coeficientes, com facilidade. Conclui-se então que o modelo baseado em polinômios de ordem quatro é mais adequado para a parametrização de funções de base e encontrou, em média, um valor de energia cinco vezes menor do que o baseado em caos. Assim, os polinômios de grau quatro são escolhidos para atuar em conjunto com os AEIQs para parametrizar as primitivas gaussianas.

Algumas explicações podem justificar o insucesso do modelo neuroevolutivo. Primeiro, ele possui mais parâmetros do que os outros. Uma rede com apenas dois neurônios, possui sete parâmetros associados. Como são necessárias duas redes para representar um função de base composta de simetrias s e p, são 14 parâmetros contra 10 das parametrizações feitas por polinômios de ordem 4. Além disso, um modelo baseado em redes neurais consegue aproximar uma quantidade maior de funções do que um baseado em polinômios de baixo grau. Ainda que possua apenas dois neurônios, isto implica em uma busca em espaço bem maior, pois esses modelos buscam classes de equivalências⁷ de funções polinomiais e não-polinomiais. É importante frisar que as ferramentas aqui discutidas podem ser empregadas para resolver diversos tipos problemas do gênero, mas o desempenho de uma ou outra ferramenta pode variar de acordo com a característica do problema em questão. Para o caso especifico de parametrização de funções de base, a otimização de todos os expoentes deu a indicação de que um polinômio se ajustaria bem a solução, conforme discutido em seções anteriores.

⁷ Em matemática, dado um conjunto X com uma relação de equivalência ~, a classe de equivalência de um elemento $\alpha \in X$ é o subconjunto de todos os elementos de que são equivalentes a α . Simbolicamente é descrita uma classe de equivalência como: $[\alpha] = \{x \in X \mid x \sim \alpha\}$.

5.1.6. Aplicações do modelo co-evolucionário com inspiração quântica à distribuição e parametrização de primitivas gaussianas

A construção de funções de base para elementos da tabela periódica exige a utilização de um poderoso sistema de otimização. Mas, como já mencionado, é necessário executar duas tarefas simultâneas, uma é relacionada à distribuição ótima de primitivas utilizadas como funções de base entre os orbitais atômicos, e a outra tem relação com a qualidade dos parâmetros das primitivas. Logo, é necessário que o algoritmo de otimização seja capaz de lidar com esses dois tipos de problema simultaneamente, isto é, consiga fornecer a melhor configuração X*s* Y*p* para a base e a sua parametrização. Para este estudo de caso foi aplicado o modelo co-evolucionário discutido na seção 4.3 ao projeto de funções de base para com diversas distribuições de primitivas entre os orbitais *s* e *p* para os átomos: B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar.

O algoritmo co-evolucionário é constituído de três populações, sendo que as espécies um e dois são responsáveis pela parametrização das primitivas gaussianas e a espécie três é responsável pela especificação da quantidade de primitivas em cada orbital. Para que seja possível a aplicação do modelo é necessário especificar o número máximo de primitivas a ser utilizado.

As formas de decodificar os cromossomos das espécies um e dois foram feitas com base na análise de desempenho das metodologias apresentadas anteriormente para a parametrização de primitivas gaussianas. Como mencionado, dentre os modelos estudados o que apresentou melhor desempenho foi o modelo de expansões polinomiais de grau quatro. Esse modelo possui poucos parâmetros e contribuiu de forma significativa para que o otimizador encontrasse boas parametrizações para as funções de base testadas. Já para a decodificação da espécie três, são utilizados os seguintes procedimentos:

- a) Escolhe-se um número entre zero e um; esse número é atribuído a uma variável x;
- b) Computa-se um valor y pela equação y = 1 x;
- c) O número de primitivas a ser utilizados nos orbitais s e p calcula-se através da multiplicação dos números x e y pelo total de primitivas escolhidos previamente.

Dessa forma, é conseguida a variação da quantidade de primitivas para representar cada orbital. A forma com que é computado o valor y permite que o número de primitivas especificado pelo usuário se mantenha sempre constante ao longo da evolução. A dependência entre os valores x e y pode influenciar na evolução, porém, para resolver o problema de dependência, podem ser utilizadas também outras abordagens, como por exemplo, multiplicadores de Lagrange, ou qualquer metodologia para solução de problemas de otimização com restrições, já que, nesse caso, a otimização é condicionada ao número de termos que o usuário especifica. A grande vantagem dessa técnica é que a solução que decorre do modelo sempre será uma solução que satisfaz as restrições impostas pelo usuário. O modelo co-evolucionário é apenas aplicado aos átomos que possuem simetria *s* e *p*, por uma questão de simplicidade, mas o mesmo modelo também poderia ser aplicado aos átomos que possuem simetria *d*.

A Figura 5-9 mostra como é montada a solução fornecida pelo modelo coevolutivo.

Figura 5-9 Decodificação da solução apresentada pelo modelo co-evolutivo

Para cada átomo foram construídas cinco funções de base com N_t termos, e na construção de cada função de base o algoritmo co-evolucionário foi executado cinco vezes. Na Tabela 5-13 e Tabela 5-14 as energias mais baixas provenientes da execução do modelo, que utiliza polinômios de ordem quatro, para os átomos B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar. No anexo 6 nas tabelas Tabela 7-6 eTabela 7-7 são apresentadas as energias referentes às execuções mais bem sucedidas dos modelos que utilizam os polinômios de grau cinco. No anexo 4 são mostrados na Tabela 7-4 são mostrados os parâmetros encontrados pelo ao algoritmo genéticos que reproduzem os resultados expostos nas Tabela 5-13 e Tabela 5-14.

Tabela 5-13 Diferenças de energia de correlação eletrônica em *microhartrees* obtidas pelo AEIQ co-evolutivo com polinômios de ordem quatro e as de (KLUBOKOWKI, 1994) para os átomos: B, C, Ne, N, O, F, Na, Mg.

		В					F				
Nt	а	b	ΔE_{ab}	λ_{ab}	Nt	а	b	ΔE_{ab}	λ_{ab}		
14	2051.027	2080	29.0	1.4%	14	16773.31	21382	4608.7	21.6%		
18	199.8403	200	0.2	0.1%	18	404.4489	1490	1085.6	72.9%		
22	29.2853	30	0.7	2.4%	22	0.0046	148	148.0	100.0%		
24	4.654	6	1.3	22.4%	24	0.0092	20	20.0	100.0%		
26	1.3653	2	0.6	31.7%	26	0.0673	3	2.9	97.8%		
		С					Ne				
Nt	a	b	ΔE_{ab}	λ_{ab}	Nt	а	b	ΔE_{ab}	λ_{ab}		
14	3643.289	5401	1757.7	32.5%	14	20196.36	55145	34948.6	63.4%		
18	439.9151	428	-11.9	- 2.8%	18	2065.299	3725	1659.7	44.6%		
22	51.9571	52	0.0	0.1%	22	277.745	341	63.3	18.5%		
24	8.2728	8	-0.3	-3.4%	24	41.831	42	0.2	0.4%		
26	1.37775	2	0.6	31.1%	26	6.188	7	0.8	11.6%		
		Ν					Na				
Nt	а	b	ΔE_{ab}	λ_{ab}	Nt	а	b	ΔE_{ab}	λ_{ab}		
14	11281.9	11242	-39.9	- 0.4%	20	2762.289	16188	13425.7	82.9%		
18	741.7347	813	71.3	8.8%	24	495.002	2163	1668.0	77.1%		
22	00 E1E1										
24	00.5151	88	-0.5	- 0.6%	28	76.52	340	263.5	77.5%		
	12.8778	88 13	- 0.5 0.1	-0.6% 0.9%	28 32	76.52 16.779	340 57	263.5 40.2	77.5% 70.6%		
26	12.8778 2.1749	88 13 2	-0.5 0.1 -0.2	- 0.6% 0.9% - 8.7%	28 32 36	76.52 16.779 3.934	340 57 12	263.5 40.2 8.1	77.5% 70.6% 67.2%		
26	12.8778 2.1749	88 13 2 0	-0.5 0.1 -0.2	-0.6% 0.9% -8.7%	28 32 36	76.52 16.779 3.934	340 57 12 Mg	263.5 40.2 8.1	77.5% 70.6% 67.2%		
26 N _t	ac.3131 12.8778 2.1749 a	88 13 2 0 b	-0.5 0.1 -0.2 ΔΕ _{αk}	-0.6% 0.9% -8.7% λ _{ab}	28 32 36 N t	76.52 16.779 3.934 a	340 57 12 Mg b	263.5 40.2 8.1 ΔΕ _{αδ}	77.5% 70.6% 67.2% λ _{αb}		
26 N _t 14	a 12.8778 2.1749 a 7592.52	88 13 2 0 b 35806	-0.5 0.1 -0.2 ΔΕ _{αδ} 28213.5	-0.6% 0.9% -8.7% λ _α ξ 78.8%	28 32 36 N t 20	76.52 16.779 3.934 a 3165.176	340 57 12 Mg b 16188	263.5 40.2 8.1 ΔΕ_{αδ} 13022.8	77.5% 70.6% 67.2% λ _{αb} 80.4%		
26 N _t 14 18	a a 7592.52 0.0088	88 13 2 0 b 35806 2448	-0.5 0.1 -0.2 ΔE _a 28213.5 2448.0	-0.6% 0.9% -8.7% λ _α δ 78.8% 100.0%	28 32 36 N t 20 24	76.52 16.779 3.934 a 3165.176 583.464	340 57 12 Mg b 16188 2163	263.5 40.2 8.1 ΔΕ_{αδ} 13022.8 1579.5	77.5% 70.6% 67.2% λ_αξ 80.4% 73.0%		
26 N _t 14 18 22	a 12.8778 2.1749 a 7592.52 0.0088 0.011	88 13 2 0 5806 2448 231	-0.5 0.1 -0.2 28213.5 2448.0 231.0	-0.6% 0.9% -8.7% λ _α ξ 78.8% 100.0% 100.0%	28 32 36 N t 20 24 28	76.52 16.779 3.934 a 3165.176 583.464 89.553	340 57 12 Mg b 16188 2163 340	263.5 40.2 8.1 ΔΕ_{αδ} 13022.8 1579.5 250.4	77.5% 70.6% 67.2% λ_{αb} 80.4% 73.0% 73.7%		
26 N _t 14 18 22 24	a 7592.52 0.0011 0.0028	88 13 2 0 35806 2448 231 30	-0.5 0.1 -0.2 28213.5 2448.0 231.0 30.0	-0.6% 0.9% -8.7% λ _α ξ 78.8% 100.0% 100.0%	28 32 36 N t 20 24 28 32	76.52 16.779 3.934 a 3165.176 583.464 89.553 20.904	340 57 12 Mg 16188 2163 340 57	263.5 40.2 8.1 ΔΕ_aε 13022.8 1579.5 250.4 36.1	77.5% 70.6% 67.2% λ_αξ 80.4% 73.0% 73.7% 63.3%		

a: valores de energia apresentados pelo AEIQ co-evolutivo;

b: valores de energia apresentados em (KLUBOKOWKI, 1994);

 $\Delta E_{\alpha,b}$: diferença entre os valores a e b;

 $\lambda_{\alpha b}$: diferença percentual entre os valores a e b.

Em vermelho estão resultados que são apresentaram uma diferença percentual negativa.

Tabela 5-14 Diferenças de energia de correlação eletrônica em *microhartrees* obtidas pelo AEIQ co-evolutivo com polinômios de ordem quatro e as de (KLUBOKOWKI, 1994) para os átomos: Al, Si, P, S, Cl, O, Ar.

		Al					Cl					
Nt	а	b	$\Delta E_{\alpha b}$	λ_{ab}	Nt	а	b	$\Delta E_{\alpha b}$	λ_{ab}			
20	10565.55	16188	5622.4	34.7%	20	18477.84	39404	20926.2	53.1%			
24	1578.059	2163	584.9	27.0%	24	2167.246	4329	2161.8	49.9%			
28	288.135	340	51.9	15.3%	28	0.01	584	584.0	100.0%			
32	19.013	57	38.0	66.6%	32	0.002	93	93.0	100.0%			
36	0	12	12.0	100.0%	36	0.012	18	18.0	99.9%			
		Si	•				Ar					
Nt	а	b	ΔE_{ab}	λ_{ab}	N_t	а	b	ΔΕ _{αb}	λ_{ab}			
20	12225.18	22019	9793.8	44.5%	20	21772.56	45972	24199.4	52.6%			
24	1781.558	2545	763.4	30.0%	24	3069.466	5035	1965.5	39.0%			
28	299.147	380	80.9	21.3%	28	558.89	666	107.1	16.1%			
32	7.125	62	54.9	88.5%	32	104.531	105	0.5	0.4%			
36	0	12	12.0	100.0%	36	18.39	20	1.6	8.0%			
		Р					К					
Nt	а	b	$\Delta E_{\alpha b}$	λ_{ab}	Nt	а	b	$\Delta E_{\alpha b}$	λ_{ab}			
20	13987.54	27116	13128.5	48.4%	20	48508.34	-	-	-			
24	2062.325	2968	905.7	30.5%	24	-	-	-	-			
28	390.99	426	35.0	8.2%	28	1498.912 -		-	-			
32	68.217	69	0.8	1.1%	32	319.895	-	-	-			
36	12.921	14	1.1	7.7%	36	67.805	-	-	-			
		S					Ca					
Nt	а	b	$\Delta E_{\alpha b}$	λ_{ab}	N_t	а	b	$\Delta E_{\alpha b}$	λ_{ab}			
20	15651.94	33204	17552.1	52.9%	20	52379.05	-	-	-			
24	1461.223	3645	2183.8	59.9%	24	8778.483	-	-	-			
28	0.025	505	505.0	100.0%	28	1579.263	-	-	-			
32	0.012	81	81.0	100.0%	32	332.889	-	-	-			
36	0.007	16	16.0	100.0%	36	-	-	-	-			

a: valores de energia apresentados pelo AEIQ co-evolutivo;

b: valores de energia apresentados em (KLUBOKOWKI,1994);

 $\Delta E_{\alpha b}$: diferença entre os valores a e b;

 $\lambda_{\alpha b}$: diferença percentual entre os valores a e b.

A aplicação do modelo co-evolucionário na construção de funções de base apenas não foi muito bem sucedida para cinco casos. Na Tabela 5-13 estão destacados os casos nos quais o algoritmo não conseguiu superar as otimizações apresentadas em (KLUBOKOWKI, 1994). No entanto, as diferenças percentuais entre os piores valores obtidos e os apresentados por Klubokowki, calculados pela Equação (5-1), não é superior a 8,7%, que pode ser considerado uma diferença muito pequena. Para esses casos, é possível que o número de ciclos evolutivos utilizados pelo algoritmo tenha sido insuficiente.

$$\lambda_{ba}(\%) = \frac{(\mathbf{b}-\mathbf{a})}{\mathbf{b}} \mathbf{100}$$
(5-1)

onde:

 λ_{ba} (%) é a diferença percentual entre os valores; b é a energia apresentada em Klubokowki;

a é energia apresentada neste trabalho.

Para que seja possível uma avaliação geral do desempenho do AEIQ são mostradas as curvas de frequência acumulada relativa (FAR) e o histograma das diferenças percentuais obtidas pela execução do modelo na Figura 5-10. A partir da curva de densidade de probabilidade acumulada empírica, que é a mesma FAR, é possível predizer que a probabilidade do algoritmo encontrar valores com diferença até 5%, em cinco execuções, em relação aos métodos já publicados é de aproximadamente 10%. Pode-se inferir pela mesma análise que é de aproximadamente 75% a probabilidade de o algoritmo encontrar uma diferença de mais de 10% dos valores publicados em (KLUBOKOWKI, 1994).

Figura 5-10 Histograma e frequência acumulada relativa das diferenças percentuais entre os valores obtidos pelo AEIQ e (KLUBOKOWKI, 1994).

As bases construídas pelo AEIQ co-evolutivo possuem qualidade superior as apresentadas em (KLUBOKOWKI, 1994) com exceção de cinco estudos já destacados que apresentaram valores de energias praticamente iguais aos já publicados. A parametrização do algoritmo utilizado em todos os casos está na Tabela 5-15. Na Figura 5-11 é exibida a dinâmica de evolução de três populações do AEIQ co-evolutivo para construir uma função de base com 30 termos para o átomo de Ne. A eficiência da técnica empregada pode ser notada quando é observada a energia de correlação após alguns ciclos evolutivos, pois o algoritmo parte de um conjunto solução que está a pouco mais de 100 *hartrees* da meta préestabelecida, e no decorrer dos ciclos, reduz a energia de correlação eletrônica a 0,000001 *hartrees*. Na Tabela 5-16 são mostradas as distribuição de primitivas realizadas pelo o AEIQ co-evolutivo.

Tabela 5-15 Configurações do AEIQ co-evolutivo utilizado para construir funções de base para os átomos B, N, O, F, Ne, Na, Mg, Al, Si, S, Cl, Ar.

Número de gerações	600
Número de populações	3
Tamanho população clássica	100
Tamanho da população quântica	2
Número de observações	5
Cruzamento Quântico	0.95
Cruzamento Clássico	0.95

Intervalo de atualização	10 gerações
Variação de largura dos pulsos	0.1

Figura 5-11 Evolução do AEIQ co-evolucionário utilizado para construir uma função de base com 30 termos para o átomo de Ne.

	TO	1	E	ste traba	lho			Т	01	E	ste traba	lho			Т	01	E	ste traba	lho		ТР	Т	01	1	Este traba	alho	
В	Xs	Yp	Ns(%)	Np(%)	Xs	Yp	F	Nts	Ntp	Ns(%)	Np(%)	Xs	Yp	Al	Xs	Yp	Ns(%)	Np(%)	Xs	Yp	Ar	Xs	Yp	Ns(%)	Np(%)	Xs	Yp
14	10	4	70.10%	29.90%	10	4	14	10	4	56.89%	43.11%	8	6	20	13	7	55.83%	44.17%	11	9	20	13	7	60.21%	39.79%	12	8
18	12	6	64.70%	35.30%	12	6	18	12	6	62.51%	37.49%	11	7	24	15	9	58.54%	41.46%	14	10	24	15	9	56.70%	43.30%	14	10
22	14	8	65.41%	34.59%	14	8	22	14	8	59.92%	40.08%	13	9	28	17	11	57.82%	42.18%	16	12	28	17	11	58.48%	41.52%	16	12
26	16	10	63.80%	36.20%	17	9	26	16	10	52.23%	47.77%	14	12	32	19	13	58.52%	41.48%	19	13	32	19	13	55.93%	44.07%	18	14
30	18	12	59.36%	40.64%	18	12	30	18	12	54.14%	45.86%	16	14	36	21	15	55.67%	44.33%	20	16	36	21	15	55.78%	44.22%	20	16
С	T0 1	1		AEIQ			Ne	T	01		AEIQ			Si	Т	01		AEIQ			K	Т	01		AEIQ		
14	10	4	63.42%	36.58%	9	5	14	10	4	65.83%	34.17%	9	5	20	13	7	58.87%	41.13%	12	8	20	13	7	57.81%	42.19%	12	8
18	12	6	59.47%	40.53%	11	7	18	12	6	61.26%	38.74%	11	7	24	15	9	57.81%	42.19%	14	10	24	15	9	60.48%	39.52%	15	9
22	14	8	63.04%	36.96%	14	8	22	14	8	59.79%	40.21%	13	9	28	17	11	57.62%	42.38%	16	12	28	17	11	59.29%	40.71%	17	11
26	16	10	57.07%	42.93%	15	11	26	16	10	63.16%	36.84%	16	10	32	19	13	58.17%	41.83%	19	13	32	19	13	59.56%	40.44%	19	13
30	18	12	59.51%	40.49%	18	12	30	18	12	60.09%	39.91%	18	12	36	21	15	57.94%	42.06%	21	15	36	21	15	61.52%	38.48%	22	14
Ν	T0 1	1		AEIQ			Na	T	01		AEIQ			Si T01			AEIQ										
14	10	4	74.40%	25.60%	10	4	14	13	7	64.47%	35.53%	9	5	20	13	7	58.27%	41.73%	12	8	-	-	-	-	-	-	-
18	12	6	61.11%	38.89%	11	7	18	15	9	61.48%	38.52%	11	7	24	15	9	58.03%	41.97%	14	10	-	-	-	-	-	-	-
22	14	8	62.06%	37.94%	14	8	22	17	11	64.44%	35.56%	14	8	28	17	11	55.89%	44.11%	16	12	-	-	-	-	-	-	-
26	16	10	61.31%	38.69%	16	10	26	19	13	62.80%	37.20%	16	10	32	19	13	53.91%	46.09%	17	15	-	-	-	-	-	-	-
30	18	12	62.83%	37.17%	19	11	30	21	15	62.70%	37.30%	19	11	36	21	15	59.12%	40.88%	21	15	-	-	-	-	-	-	-
0	TO	1		AEIQ			Mg	T	01		AEIQ			Cl	Т	01		AEIQ									
14	10	4	59.18%	40.82%	8	6	20	13	7	64.23%	35.77%	13	7	20	13	7	60.89%	39.11%	12	8	-	-	-	-	-	-	-
18	12	6	59.08%	40.92%	11	7	24	15	9	62.51%	37.49%	15	9	24	15	9	60.31%	39.69%	14	10	-	-	-	-	-	-	-
22	14	8	60.56%	39.44%	13	9	28	17	11	62.77%	37.23%	18	10	28	17	11	56.47%	43.53%	16	12	-	-	-	-	-	-	-
26	16	10	60.45%	39.55%	16	10	32	19	13	62.97%	37.03%	20	12	32	19	13	58.68%	41.32%	19	13	-	-	-	-	-	-	-
30	18	12	59.78%	40.22%	18	12	36	21	15	61.78%	38.22%	22	14	36	21	15	53.68%	46.32%	19	17	-	-	-	-	-	-	-
	T01: distribuição de primitivas apresentada em (Klubokowki, 1994); Ns: percentual utilizado do total primitivas especificado para representar o orbital s; Np: percentual utilizado																										

Tabela 5-16 Distribuição de primitivas gaussianas encontradas pelo AEIQ comparadas com os resultados apresentados em(KLUBOKOWKI, 1994).

do total primitivas especificado para representar o orbital p; valores em vermelho indica que as configurações achadas são idênticas a presentes em (Klubokowki, 1994).

PUC-Rio - Certificação Digital Nº 0721364/CA

Algumas das soluções apresentadas pelos AEIQ co-evolutivos na Tabela 5-16 coincidem com as apresentadas em (KLUBOKOWKI, 1994), e são destacadas na mesma tabela. No entanto, em grande parte das soluções propostas, o algoritmo apresentou configurações de funções de base mais adequadas à representação da função de onda.

A execução do algoritmo indica que uma opção de se aproveitar o potencial de representatividade de uma função de base com N termos é utilizar a seguinte configuração:

$0.6 \text{Ns} \ 0.4 \text{Np}$ (5-2)

Essa equação surge de forma empírica com base média das soluções apresentadas, pois o algoritmo sugeriu em média essa forma de se distribuir os termos. No entanto, isso não significa que essa configuração é a ideal. Na Figura 5-12, são mostrados o histograma das soluções fornecidas pelo AIEQ co-evolutivo para representar o orbital s e a curva de frequência acumulada relativa.

A informação revelada pela curva de frequência acumulada relativa indica que, em aproximadamente em 90% das execuções, o algoritmo reserva um número de termos entre 0.5N e 0.6N para representar o orbital s.

Figura 5-12 Histograma percentuais sugeridos pelo AIEQ co-evolutivo para representar o orbital *s*

5.1.7. Aplicações do modelo co-evolucionário com inspiração quântica à resolução de problemas multiobjetivos na construção de funções de base

Uma vez desenvolvidas as metodologias propostas para construir e distribuir primitivas gaussianas, restou verificar a possibilidade de se minimizar o custo computacional associado à grande quantidade de termos presentes nos conjuntos de funções de base. Neste estudo de caso foram então construídas seis diferentes conjuntos de base para o átomo de Ne com o número mínimo de termos e energias de correlação eletrônica dadas pela segunda coluna da Tabela 5-17.

Para esta abordagem é necessária a especificação do número máximo de termos a serem utilizados, pois, para que se possa executar a otimização, o algoritmo requisita a especificação do espaço de busca. No entanto, o número de termos não se mantém constante ao longo da evolução, o que torna o problema muito mais difícil de ser resolvido.

Neste caso, não é possível utilizar as formas de decodificar os cromossomos que fazem referência à quantidade de orbitais utilizados para representar uma simetria s ou p, descritas anteriormente. Esses valores são representados em termos de partes percentuais do número máximo especificado e são evoluídos de forma independente.

Para este estudo, fez-se uso da informação obtida nos estudos anteriores: 90% dos bons conjuntos de base encontrados possuem o número de termos para descrever o orbital *s* entre zero e 60%. Como, não foram 100% das soluções, foi deixada então uma margem de segurança de 10%. Assim, o intervalo de busca foi o intervalo [0 0.7] para o percentual do total do número de termos escolhidos para representar o orbital s e [0 0.3] para representar o orbital p. Foram utilizados os mesmos critérios aplicados na seção anterior para decodificação dos cromossomos que representam os expoentes das primitivas usadas para representar s e p.

 Tabela 5-17 Valores de energia de correlação eletrônica requisitados para o Ne com base mínima.

	requisitada	Obtida	Energia da base	Ns	Np
Caso1	0.01	0.0101468	-128.5369512	15	9
Caso2	0.001	0.000132	-128.546966	12	9
Caso3	0.0001	0.0005226	-128.5465754	11	9
Caso4	0.00001	0.0001995	-128.5468985	13	8

Ns, Np são os números de termos mínimimos encontrados pelo o algoritmo.

Neste estudo de caso é aplicada a agregação de objetivos, feita segundo a Equação (4-13), apesar de ser possível utilizar outras.

Os resultados presentes na Tabela 5-17 demonstram que o algoritmo procura a solução que mais se adéqua a solicitação do usuário, muito embora não seja sempre possível atende-las. São mostrados na Tabela 7-5 em anexo os cromossomos que fornecessem as energias de correlação apresentadas. As configurações do modelo evolutivo estão na Tabela 5-18. São mostradas as curvas de evolução das três espécies na Figura 5-13 para o caso 4. Observa-se que as curvas evoluem rápido e que, de fato, configurações aleatórias estão muito distantes das metas pré-estabelecidas, mas ao final o algoritmo propõe soluções que minimizam o critério estabelecido.

Número de gerações	1000
Tamanho população clássica	100
Tamanho da população quântica	2
Número de observações	2
Cruzamento Quântico	0.95
Cruzamento Clássico	0.95
Intervalo de atualização	10 gerações
Variação de largura	0.1
Número máximo de termos	30
Forma de agregar os objetivos	Equação (4-9)

Tabela 5-18 Configuração do AIEQ co-evolutivo multiobjetivo.

O algoritmo consegue evoluir e diminuir o número máximo de termos em todos os casos, como pode ser visto na Tabela 5-17. Porém, o ideal seria efetuar uma re-otimização das configurações propostas, com o número de termos encontrados, com AEIQ co-evolucionário, quando os objetivos especificados não são atingidos.

Figura 5-13 Evolução de três espécies no modelo AIEQ co-evolutivo para otimização multiobjetivo