

Eduardo de Britto Perez

Processo de revestimento por extrusão: efeito da oscilação da fresta na uniformidade da espessura do filme

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Mecânica.

Orientador: Prof. Márcio da Silveira Carvalho

Rio de Janeiro Agosto de 2009

Eduardo de Britto Perez

Processo de revestimento por extrusão: efeito da oscilação da fresta na uniformidade da espessura do filme

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Márcio da Silveira Carvalho

Orientador

Departamento de Engenharia Mecânica - PUC-Rio

Prof. Francisco A. M. Gomes Neto
IMECC – UNICAMP

Prof. Roney Leon Thompson

Departamento de Eng. Mecânica - Universidade Federal Fluminense

Prof. Luiz Fernando A. Azevedo

Departamento de Engenharia Mecânica – PUC-Rio

Prof. Angela O. Nieckele

Departamento de Engenharia Mecânica – PUC-Rio

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 17 de Agosto de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Eduardo de Britto Perez

Graduou-se em Engenharia de Produção Mecânica pela Universidade de São Paulo, Campus de São Carlos, em 1995 e obteve grau de Mestre em Engenharia Mecânica pela PUC-Rio em 2004. Trabalha na 3M do Brasil Ltda desde 1996, atuando como Engenheiro de Projetos nas áreas de revestimento, polimerização, secagem e corte de fitas adesivas diversas.

Ficha Catalográfica

Perez, Eduardo de Britto

Processo de revestimento por extrusão : efeito da oscilação da fresta na uniformidade da espessura do filme / Eduardo de Britto Perez ; orientador: Márcio da Silveira Carvalho. – 2009.

240 f.: il. (color.); 30 cm

Tese (Doutorado em Engenharia Mecânica)—Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

Engenharia mecânica – Teses. 2. Revestimento por extrusão.
 Oscilação da fresta de revestimento.
 Resposta em frequência.
 Simulação numérica.
 Otimização.
 Carvalho, Márcio da Silveira.
 Pontifícia Universidade Católica do Rio de Janeiro.
 Departamento de Engenharia Mecânica.
 III. Título.

CDD: 621

Para minha esposa, Simoni, eterno amor da minha vida.

Agradecimentos

A Deus.

Ao meu orientador Professor Márcio da Silveira Carvalho pelo apoio e parceria na realização deste trabalho.

Ao CNPq e a PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

À 3M do Brasil, pela oportunidade de desenvolver este trabalho.

À minha querida esposa, Simoni, pelo amor, carinho e apoio em todas as horas.

Aos meus pais, Sr. João e D. Nadir, que sempre lutaram pelo meu sucesso e foram vencedores.

Aos professores que participaram da banca examinadora.

Aos meus irmãos, amigos e familiares que contribuíram e que de alguma forma me incentivaram.

Resumo

Perez, Eduardo de Britto; Carvalho, Márcio da Silveira. **Processo de** revestimento por extrusão: efeito da oscilação da fresta na uniformidade da espessura do filme. Rio de Janeiro, 2009. 240p. Tese de Doutorado — Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O processo de revestimento por extrusão (slot coating) é muito utilizado em produtos que requerem alta uniformidade de espessura. Sua janela de operação em regime permanente já foi plenamente estudada, mas o entendimento completo do processo requer a análise da sua sensibilidade a pequenas variações nos parâmetros operacionais. Neste trabalho é feita uma análise transiente (por simulação numérica) do efeito de uma variação periódica conhecida da fresta de revestimento na uniformidade da espessura do líquido revestido. Várias geometrias de barras de revestimento e parâmetros de processo são testados e os respectivos fatores de amplificação determinados em função da frequência de oscilação da fresta de revestimento. O ajuste inicial da fresta e o nível de vácuo aplicado a montante da barra de revestimento são duas variáveis básicas de processo, pois podem ser rapidamente ajustadas. Gráficos de contorno do fator de amplificação no espaço da fresta de revestimento contra o nível de vácuo são mostrados e surgem conclusões interessantes sobre a condição ótima de ajuste para minimização do fator de amplificação. Um algoritmo de otimização é utilizado com o objetivo de determinar pontos de mínimo no campo do fator de amplificação no espaço da fresta de revestimento contra o nível de vácuo. O líquido é considerado Newtoniano a as simulações são feitas a baixos números de capilaridade e Reynolds.

Palavras-chave

Revestimento por extrusão; oscilação da fresta de revestimento; resposta em frequência; simulação numérica; otimização.

Abstract

Perez, Eduardo de Britto; Carvalho, Márcio da Silveira. **Slot coating process: effect of gap oscillation on the coating thickness uniformity.** Rio de Janeiro, 2009. 240p. D.Sc. Thesis – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Slot coating is one of the preferred methods when high precision is required and several studies focusing on its steady state analysis were made to determine the operating window of the process. However, full understanding of coating flows requires not only the two-dimensional, steady state solution of the governing equations, but also the sensitivity of those flows to small upsets. An effort to understand the impact of the coating gap periodic oscillation on down web thickness variation is made using computer aided simulation. Different slot die lip geometries and process conditions are tested and the respective amplification factors as a function of gap oscillation frequencies are reported. Coating gap and the vacuum level are particulary important process variables because are easily changed by the process engineer. Two dimensional contour plots of the amplification factor in the space of coating gap against vacuum level are reported for some geometries, and interesting results show up about their optimal adjusts. In the last chapter an optimization algorithm is used to find minimum values of the amplification factor of gap oscillation in the space of coating gap against vacuum level. The liquid is assumed Newtonian and computations are made at low capillary (up to 1.6) and Reynolds numbers. The transient free surface flow with appropriate boundary conditions is solved by the Galerkin/finite element methods, with time integration by a predictor-corrector algorithm. The set of non-linear algebraic equations for the finite element basis functions coefficients is solved by Newton's method.

Keywords

Slot coating; gap oscillation; frequency response; computer-aided simulation; optimization.

Sumário

1. Introdução	23
1.1. Escoamento com superfície livre	26
1.2. Escoamento de revestimento	28
1.3. Barras de revestimento	30
1.4. Importância da geometria dos lábios da barra de revestimento	35
1.5. Métodos numéricos de otimização	39
2. Modelo matemático do processo de revestimento por	
extrusão em regime transiente	41
2.1. Formulação de problemas de escoamento com superfície livre	46
2.2. Método para solução do escoamento transiente com superfície	
livre	49
2.3. Implementação das condições de contorno da equação da	
conservação da quantidade de movimento	64
2.4. Implementação das condições de contorno da equação de	
geração da malha	66
3. Simulação numérica do processo de revestimento por	
extrusão em regime transiente	70
3.1. Robustez do método numérico	71
3.2. Características da variação de espessura em decorrência da	
oscilação da fresta de revestimento	74
3.3. Resposta em frequência do fator de amplificação	87
3.3.1. Sensibilidade do fator de amplificação ao ajuste da fresta de	
revestimento	91
3.3.2. Sensibilidade do fator de amplificação ao ajuste da fresta do	
lábio à montante	93
3.3.3. Sensibilidade do fator de amplificação ao ajuste do nível de	
vácuo à montante	98
3.3.4. Sensibilidade do fator de amplificação em relação ao	
comprimento do lábio à jusante	100

Sumário (continuação)

3.3.5. Sensibilidade do fator de amplificação ao ajuste da fresta de	
alimentação do líquido	103
3.3.6. Sensibilidade do fator de amplificação em relação ao	
ângulo de convergência do lábio à jusante	105
3.3.7. Sensibilidade do fator de amplificação à mudança no	
número de capilaridade	106
3.3.8. Sensibilidade do fator de amplificação ao ajuste de	
velocidade do substrato	107
4. Análise dimensional para determinação da frequência e	
fator de amplificação do pico máximo	110
4.1. Relação entre os parâmetros adimensionais	119
4.1.2. Relação entre os parâmetros adimensionais na frequência	
de pico máximo	119
4.1.3. Relação entre os parâmetros adimensionais e o fator de	
amplificação no pico máximo	125
5. Fator de amplificação em função das variáveis de processo:	
Determinação da condição ótima de operação	128
5.1. Fator de amplificação em função da fresta de revestimento	
e o nível de vácuo	129
5.2. Fator de amplificação em função da fresta de revestimento	
e o nível de vácuo para velocidade do substrato em 12 m/min	135
5.3. Fator de amplificação em função da fresta de revestimento	
e o nível de vácuo para outras geometrias	139
6. Obtenção da condição ótima de operação utilizando o	
algoritmo de minimização com restrição tipo caixa	147
6.1. Teoria da otimização não linear com restrição tipo caixa	149
6.1.1. Validação do algoritmo de minimização de quadráticas	151
6.1.1.1. Matriz Hessiana definida positiva	152

Sumário (continuação)

6.1.1.2. Matriz Hessiana definida negativa	160
6.1.1.3. Matriz Hessiana indefinida	162
6.1.1.4. Matriz Hessiana semi-definida positiva	163
6.1.2. Validação do algoritmo para minimização de uma função	
geral	165
6.2. Aplicação do algoritmo de minimização em caixa para	
otimização do processo de revestimento por extrusão	169
7. Considerações finais	174
Referências bibliográficas	176
Apêndice: Programa de minimização de funções com	
restrição tipo caixa	179

Lista de figuras

Figura 1 – Barra de revestimento por extrusão	24
Figura 2 – Seção de uma barra de revestimento por extrusão	
Mostrando a nomenclatura e as regiões com escoamento sem	
superfície livre (A) e com escoamento com superfície livre (B)	27
Figura 3 – Método de revestimento com vazão pré-fixada (Coating	
fundamentals, University of Minnesota, Jun 2003)	29
Figura 4 – Método de revestimento com vazão pós-fixada (Coating	
fundamentals, University of Minnesota, Jun 2003)	29
Figura 5 – Método de revestimento por extrusão	
(Kistler, S., Liquid film coating, 1997)	31
Figura 6 – Método de revestimento por extrusão sobre substrato	
tensionado (Kistler, S., <i>Liquid film coating</i> , 1997)	32
Figura 7 – Método de revestimento por cascata (Kistler, S., Liquid	
film coating, 1997)	32
Figura 8 – Método de revestimento por cortina (Kistler, S., Liquid	
film coating, 1997)	33
Figura 9 – Visão lateral do método de revestimento por extrusão	35
Figura 10 – Janela de operação de uma configuração específica	
de barra de revestimento (Sartor, 1990)	36
Figura 11 – Janela de operação de uma configuração específica	
de barra de revestimento (Sartor, 1990)	36
Figura 12 – Janela de operação de uma configuração específica	
de barra de revestimento (Sartor, 1990)	37
Figura 13 – Patentes de barras de revestimento mostrando	
diferentes geometrias externas (Romero, 2003)	38
Figura 14 – Patentes de barras de revestimento mostrando	
diferentes geometrias externas (Park, 2005)	38
Figura 15 – Variáveis geométricas de uma barra de revestimento	
por extrusão	40

Figura 16 – Dominio fisico do escoamento de revestimento	
por extrusão	41
Figura 17 – Mapeamento entre domínio físico e de referência	
(Carvalho, 1995) Romero & Carvalho (2005)	47
Figura 18 – Elemento quadrangular	60
Figura 19 – Mapeamento do contorno do domínio	67
Figura 20 – Distribuição de nós em contorno	68
Figura 21 – Distribuição de nós em contorno	69
Figura 22 – Malhas com 256, 328 e 384 elementos	72
Figura 23 – Geometria para validação do número de elementos	
da malha e do passo de tempo utilizado	72
Figura 24 – Geometria utilizada na simulação numérica para	
comparação entre a oscilação da fresta de revestimento e a	
variação da espessura	75
Figura 25 – Campo de pressão e linhas de corrente na fresta de	
revestimento em alguns instantes durante um ciclo de oscilação	76
Figura 26 – Oscilação da fresta de revestimento na frequência	
de 6 Hz e variação da espessura de revestimento correspondente	76
Figura 27 – Oscilação da fresta de revestimento na frequência de	
10 Hz e variação da espessura de revestimento correspondente	77
Figura 28 – Oscilação da fresta de revestimento na frequência de	
30 Hz e variação da espessura de revestimento correspondente	77
Figura 29 – Oscilação da fresta de revestimento na frequência de	
50 Hz e variação da espessura de revestimento correspondente	78
Figura 30 – Oscilação da fresta de revestimento na frequência de	
100 Hz e variação da espessura de revestimento correspondente	78
Figura 31 – Oscilação da fresta de revestimento na frequência de	
500 Hz e variação da espessura de revestimento correspondente	79
Figura 32 – Geometria utilizada na simulação numérica para	
comparação entre a oscilação da fresta de revestimento e a	
variação da espessura	79

Figura 33 – Oscilação da fresta de revestimento na frequência de	
6 Hz e variação da espessura de revestimento correspondente	80
Figura 34 – Oscilação da fresta de revestimento na frequência de	
10 Hz e variação da espessura de revestimento correspondente	81
Figura 35 – Oscilação da fresta de revestimento na frequência de	
30 Hz e variação da espessura de revestimento correspondente	81
Figura 36 – Oscilação da fresta de revestimento na frequência de	
50 Hz e variação da espessura de revestimento correspondente	82
Figura 37 – Oscilação da fresta de revestimento na frequência de	
100 Hz e variação da espessura de revestimento correspondente	82
Figura 38 – Oscilação da fresta de revestimento na frequência de	
500 Hz e variação da espessura de revestimento correspondente	83
Figura 39 – Geometria utilizada na simulação numérica para	
comparação entre a oscilação da fresta de revestimento e a	
variação da espessura	83
Figura 40 – Oscilação da fresta de revestimento na frequência de	
6 Hz e variação da espessura de revestimento correspondente	84
Figura 41 – Oscilação da fresta de revestimento na frequência de	
10 Hz e variação da espessura de revestimento correspondente	85
Figura 42 – Oscilação da fresta de revestimento na frequência de	
30 Hz e variação da espessura de revestimento correspondente	85
Figura 43 – Oscilação da fresta de revestimento na frequência de	
50 Hz e variação da espessura de revestimento correspondente	86
Figura 44 – Oscilação da fresta de revestimento na frequência de	
100 Hz e variação da espessura de revestimento correspondente	86
Figura 45 – Oscilação da fresta de revestimento na frequência de	
500 Hz e variação da espessura de revestimento correspondente	87
Figura 46 – Geometria base para comparação da resposta em	
freguência do fator de amplificação	88

Figura 47 – Resposta em frequência do fator de amplificação para	
a geometria da fig. (46), parâmetros de processo da tab. (9),	
amplitude de oscilação da fresta de revestimento de 0,010 mm e	
espessura de revestimento de 0,050 mm	89
Figura 48 – Resposta em frequência do fator de amplificação para	
a geometria da fig. (49), parâmetros de processo da tab. (10),	
amplitude de oscilação da fresta de revestimento de 0,001 mm e	
espessura de revestimento de 0,050 mm	90
Figura 49 – Exemplo de geometria de um dos casos que não	
apresentou crescimento monotônico do fator de amplificação	
com a frequência	91
Figura 50 – Geometrias utilizadas para simulação numérica da	
sensibilidade do fator de amplificação ao ajuste da fresta de	
revestimento	92
Figura 51 – Resposta em frequência do fator de amplificação	
para as geometrias da fig. (50) e parâmetros de processo da tab. (9)	93
Figura 52 – Geometrias utilizadas para simulação numérica da	
sensibilidade do fator de amplificação ao ajuste da fresta à	
montante	94
Figura 53 – Resposta em frequência do fator de amplificação	
para as geometrias da fig. (52) e parâmetros de processo da tab. (9)	95
Figura 54 – Geometria tipo "faca raspadora" utilizada para	
comparação com as geometrias <i>underbite</i> e <i>overbite</i>	95
Figura 55 – Resposta em frequência do fator de amplificação para	
a geometria da fig. (54)	96
Figura 56 – Geometrias com menor característica de "faca raspadora"	
que a geometria da fig. (54)	97
Figura 57 – Resposta em frequência do fator de amplificação para	
as geometrias das fig. (54) e (56)	98

Figura 58 – Diferentes posições da superfície livre à montante	
utilizadas para simulação numérica da sensibilidade do fator de	
amplificação ao ajuste do nível de vácuo à montante	99
Figura 59 – Resposta em frequência do fator de amplificação para	
diferentes níveis de vácuo à montante	100
Figura 60 – Geometrias utilizadas para simulação numérica da	
sensibilidade do fator de amplificação ao comprimento do lábio	
à jusante	102
Figura 61 – Resposta em frequência do fator de amplificação para	
as geometrias da fig. (60) e parâmetros de processo da tab. (9)	102
Figura 62 – Geometrias utilizadas para simulação numérica da	
sensibilidade do fator de amplificação ao ajuste da fresta de	
alimentação do líquido	104
Figura 63 – Resposta em frequência do fator de amplificação para	
as geometrias da fig. (62) e parâmetros de processo da tab. (9)	104
Figura 64 – Geometrias utilizadas para simulação numérica da	
sensibilidade do fator de amplificação ao ângulo de convergência	
do lábio à jusante	105
Figura 65 – Resposta em frequência do fator de amplificação para	
as geometrias da fig. (64) e parâmetros de processo da tab. (9)	106
Figura 66 – Resposta em frequência do fator de amplificação para	
as geometrias da fig. (46) e parâmetros de processo da tab. (11)	107
Figura 67 – Resposta em frequência do fator de amplificação para	
a geometria da fig. (46), viscosidade, densidade, tensão superficial	
da tab. (9) e velocidade do substrato conforme tab. (12)	108
Figura 68 – Geometria base para análise dimensional	112
Figura 69 – Pressão sob a fresta de alimentação para a frequência	
de oscilação da fresta de revestimento em 50 Hz, amplitude de	
0,010 mm, geometria da fig. (68) e parâmetros de processo da	
tab. (14)	114

Figura 70 – Pressão sob a fresta de alimentação para a frequência	
de oscilação da fresta de revestimento em 3 Hz, amplitude de	
0,010 mm, geometria da fig. (68) e parâmetros de processo da	
tab. (14)	115
Figura 71 – Pressão sob a fresta de alimentação para a frequência	
de oscilação da fresta de revestimento em 320 Hz, amplitude de	
0,010 mm, geometria da fig. (68) e parâmetros de processo da	
tab. (14)	116
Figura 72 – Geometria base para determinação do campo do fator	
de amplificação	129
Figura 73 – Campo do fator de amplificação para a geometria da	
fig. (72), parâmetros de processo da tab. (23), frequência e	
amplitude de oscilação da fresta de revestimento de 3 Hz e	
0,010 mm	130
Figura 74 – Campo do fator de amplificação para a geometria da	
fig. (72), parâmetros de processo da tab. (23), frequência e	
amplitude de oscilação da fresta de revestimento de 10 Hz	
e 0,010 mm	131
Figura 75 – Campo do fator de amplificação para a geometria da	
fig. (72), parâmetros de processo da tab. (23), frequência e	
amplitude de oscilação da fresta de revestimento de 30 Hz	
e 0,010 mm	132
Figura 76 – Campo do fator de amplificação para a geometria da	
fig. (72), parâmetros de processo da tab. (23), frequência e	
amplitude de oscilação da fresta de revestimento de 50 Hz	
e 0,010 mm	133
Figura 77 – Campo do fator de amplificação para a geometria da	
fig. (72), parâmetros de processo da tab. (23), frequência e	
amplitude de oscilação da fresta de revestimento de 500 Hz	
e 0,010 mm	134

Figura 78 – Campo do fator de amplificação para a geometria da	
fig. (72), parâmetros de processo da tab. (25), frequência e	
amplitude de oscilação da fresta de revestimento de 30 Hz	
e 0,010 mm	136
Figura 79 – Campo do fator de amplificação para a geometria da	
fig. (72), parâmetros de processo da tab. (25), frequências e	
amplitude de oscilação da fresta de revestimento de 50 Hz, 100 Hz	
e 0,010 mm	137
Figura 80 – Campo do fator de amplificação para a geometria da	
fig. (72), parâmetros de processo da tab. (25), frequência e	
amplitude de oscilação da fresta de revestimento de 500 Hz	
e 0,010 mm	138
Figura 81 – Geometria para determinação do campo do fator de	
amplificação	139
Figura 82 – Campo do fator de amplificação para a geometria da	
fig. (81), parâmetros de processo da tab. (28), frequências e	
amplitude de oscilação da fresta de revestimento de 3 Hz, 10 Hz	
e 0,010 mm	140
Figura 83 – Campo do fator de amplificação para a geometria da	
fig. (81), parâmetros de processo da tab. (28), frequências e	
amplitude de oscilação da fresta de revestimento de 30 Hz, 50 Hz	
e 0,010 mm	141
Figura 84 – Campo do fator de amplificação para a geometria da	
fig. (81), parâmetros de processo da tab. (28), frequência e	
amplitude de oscilação da fresta de revestimento de 500 Hz	
e 0,010 mm	142
Figura 85 – Geometria para determinação do campo do fator de	
amplificação	143

Figura 86 – Campo do fator de amplificação para a geometria da	
fig. (85), parâmetros de processo da tab. (30), frequências e	
amplitude de oscilação da fresta de revestimento de 3 Hz, 10 Hz,	
30 Hz, 50 Hz, 500 Hz e 0,010 mm	146
Figura 87 – Curvas de nível de f e indicação do ponto ótimo em	
um domínio compacto	147
Figura 88 – Variáveis geométricas para otimização da função	
objetivo	149
Figura 89 – Hessiana definida positiva, caso 1	152
Figura 90 – Hessiana definida positiva, caso 2	153
Figura 91 – Hessiana definida positiva, caso 3	153
Figura 92 – Hessiana definida positiva, caso 4	154
Figura 93 – Hessiana definida positiva, caso 5	155
Figura 94 – Hessiana definida positiva, caso 6	155
Figura 95 – Hessiana definida positiva, caso 7	156
Figura 96 – Hessiana definida positiva, caso 8	156
Figura 97 – Hessiana definida positiva, caso 9	157
Figura 98 – Hessiana definida positiva, caso 10	157
Figura 99 – Hessiana definida positiva, caso 11	158
Figura 100 – Hessiana definida positiva, caso12	159
Figura 101 – Hessiana definida positiva, caso 13	159
Figuras 102 – Hessiana definida negativa, caso 1	162
Figuras 103 – Hessiana definida negativa, caso 2	161
Figuras 104 – Hessiana definida negativa, caso 3	161
Figuras 105 – Hessiana indefinida, caso 1	162
Figuras 106 – Hessiana indefinida, caso 2	163
Figuras 107 – Hessiana semi-definida positiva, caso 1	164
Figuras 108 – Hessiana semi-definida positiva, caso 2	164
Figuras 109 – Função geral para validação do método	
Numérico, caso 1	165

Figuras 110 – Função geral para validação do método	
Numérico, caso 2	167
Figuras 111 – Função geral para validação do método	
Numérico, caso 3	168
Figura 112 – Esquema numérico para estimativa do gradiente	
e da hessiana no ponto (x,y)	169
Figura 113 – Iterações do algoritmo de minimização em caixa	171
Figura 114 – Iterações do algoritmo de minimização em caixa	172

Lista de tabelas

Tabela 1 – Parâmetros de processo para validação do número de	
elementos da malha e do passo de tempo utilizado	72
Tabela 2 – Fator de amplificação para cada frequência e malha.	
Diferença % entre 2 malhas para a mesma frequência	73
Tabela 3 – Tempo de execução da simulação numérica para quatro	
ciclos completos de oscilação da fresta de revestimento	73
Tabela 4 – Fator de amplificação para cada frequência e malha.	
Diferença % entre 2 malhas para a mesma frequência	74
Tabela 5 – Tempo de execução da simulação numérica para um	
ciclo completo de oscilação da fresta de revestimento e diferentes	
passos de tempo	74
Tabela 6 – Parâmetros de processo utilizados na simulação	
numérica para comparação entre a oscilação da fresta de	
revestimento e a variação da espessura	75
Tabela 7 – Parâmetros de processo utilizados na simulação	
numérica para comparação entre a oscilação da fresta de	
revestimento e a variação da espessura	80
Tabela 8 – Parâmetros de processo utilizados na simulação	
numérica para comparação entre a oscilação da fresta de	
revestimento e a variação da espessura	84
Tabela 9 – Parâmetros de processo base para comparação da	
resposta em frequência do fator de amplificação	88
Tabela 10 – Parâmetros de processo relativos a resposta em	
frequência da fig. (53)	91
Tabela 11 – Números de capilaridade utilizados na simulação	
numérica	107
Tabela 12 – Velocidade do substrato utilizadas para simulação	
numérica e faixa de frequência onde se encontra o pico máximo	
do fator de amplificação	108
Tabela 13 – Convenção baseada na observação da curva do	
fator de amplificação da fig. (67)	109

Lista de tabelas (continuação)

Tabela 14 – Parâmetros de processo para análise adimensional	112
Tabela 15 – Diferentes simulações numéricas com o valor da	
frequência do pico máximo e o fator de amplificação correspondente	120
Tabela 16 – Opções para os comprimentos característicos L e H	120
Tabela 17 – Parâmetros do problema calculados com as dimensões	
características L=L _d e H=H _d	122
Tabela 18 – Resumo da análise estatística para L=Ld e H=Hd	123
Tabela 19 – Resumo da qualidade do ajuste para todas as	
dimensões características testadas	123
Tabela 20 – Resumo da análise estatística para L=L _d +X _{dcl} e	
$H=min\{H_d, H_u\}$	125
Tabela 21 – Resumo da qualidade do ajuste para todas as	
dimensões características testadas	125
Tabela 22 – Resumo da análise estatística para L=Ld e H=Hu	127
Tabela 23 – Parâmetros de processo do caso base seção 3.3.8	130
Tabela 24 – Sugestão de ajustes para redução do fator de	
amplificação dentro do domínio considerado	134
Tabela 25 – Parâmetros de processo para simulações da seção 5.2	135
Tabela 26 – Classificação das faixas de frequência, seção 3.3.8	135
Tabela 27 – Sugestão de ajuste para redução do fator de	
amplificação dentro do domínio considerado	138
Tabela 28 – Parâmetros de processo para determinação do	
campo do fator de amplificação	139
Tabela 29 – Sugestão de ajustes para redução do fator de	
amplificação dentro do domínio considerado	142
Tabela 30 – Parâmetros de processo para determinação do	
campo do fator de amplificação	143
Tabela 31 – Sugestão de ajustes para redução do fator de	
amplificação dentro do domínio considerado	146

Lista de tabelas (continuação)

Tabela 32 – Resumo do desempenho do algoritmo de minimização	
para função da fig. (109)	166
Tabela 33 – Resumo do desempenho do algoritmo de minimização	
para função da fig. (110)	167
Tabela 34 – Resumo do desempenho do algoritmo de minimização	
para função da fig. (111)	168
Tabela 35 – Domínio das variáveis de projeto	170
Tabela 36 – Resumo das iterações do algoritmo de minimização	
em caixa aplicado ao campo da fig. (113). Parâmetro de redução	
aceitável para a função objetivo, ρ = 0,3	171
Tabela 37 – Resumo das iterações do algoritmo de minimização	
em caixa aplicado ao campo expandido da fig. (113). Parâmetro de	
redução aceitável para a função objetivo, ρ = 0,3	172
Tabela 38 – Resumo das iterações do algoritmo de minimização	
em caixa aplicado ao campo da fig. (114). Parâmetro de redução	
aceitável para a função objetivo, $\rho = 0.06$	173
Tabela 39 – Resumo das iterações do algoritmo de minimização	
em caixa aplicado ao campo expandido da fig. (114)	173