4

Teoria de Circuitos Elétricos

4.1

Introdução

Neste capítulo apresenta-se uma revisão de conceitos necessários para o desenvolvimento deste trabalho, onde são determinadas as bases para a análise de circuitos em sistemas de potência, desenvolvendo ferramentas que abrangem conceitos, definições e procedimentos.

4.2 Cálculo de Corrente na Carga

Tipicamente, a matriz de admitâncias Y^{Barra} de um sistema de potência de grande porte e interconectado, tem uma composição simples devido à sua esparsidade. Conseqüentemente, para obter a matriz de impedância Z^{Barra} é mais simples inverter a matriz Y^{Barra} ; a matriz impedância tem características importantes de todo o sistema, sendo amplamente usada em estudos relacionados à rede de sistemas de potência.

Com a finalidade de evitar confusões, deve-se mencionar que a matriz impedância Z^{Barra} usada em [Conejo, 2001] considera somente as impedâncias das linhas de transmissão. Por outro lado, a matriz impedância usada em [Stevenson, 1995] considera tanto as impedâncias de linha como também as impedâncias equivalentes das cargas. Portanto, a fim de esclarecer estas diferenças adota-se como referência a matriz Z^{Barra} apresentada em [Conejo, 2001]. Assim, a matriz impedância apresentada em [Stevenson, 1995] pode ser considerada como a matriz Z^{Barra} modificada pela inclusão das impedâncias equivalentes das cargas. Esta nova matriz pode ser simbolizada por \hat{Z}^{Barra} .

Considere um circuito elétrico, onde as cargas são modeladas como impedância constante e são alimentadas por fontes de corrente. Com a informação da matriz impedância \hat{Z}^{Barra} pode-se determinar a participação das fontes de corrente em cada carga, mediante a aplicação do princípio de superposição.

Do ponto de vista teórico, o ponto de operação de um circuito elétrico é obtido ao resolver-se (4.1):

$$V = \widehat{Z}^{Barra}I \tag{4.1}$$

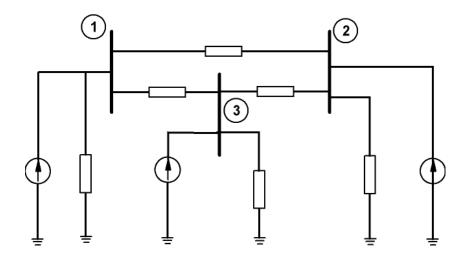


Figura 4.1 - Circuito de 3 Barras

Deve-se lembrar que quando se utiliza a matriz \hat{Z}^{Barra} , V e I são vetores coluna das tensões de barra e correntes injetadas, respectivamente. Expandindo (4.1) para o circuito de 3 barras apresentado na Figura 4.1, extraída de [Stevenson, 1995], tem-se:

$$V_1 = \hat{Z}_{11}I_1 + \hat{Z}_{12}I_2 + \hat{Z}_{13}I_3 \tag{4.2}$$

$$V_2 = \hat{Z}_{21}I_1 + \hat{Z}_{22}I_2 + \hat{Z}_{23}I_3 \tag{4.3}$$

$$V_3 = \hat{Z}_{31}I_1 + \hat{Z}_{32}I_2 + \hat{Z}_{33}I_3 \tag{4.4}$$

O elemento \hat{Z}_{22} da matriz \hat{Z}^{Barra} pode ser determinado fazendo-se o circuito aberto das fontes de corrente nas barras 1 e 3 e injetando a corrente I_2 da fonte da barra 2, resolvendo em seguida (4.3):

$$\hat{Z}_{22} = \frac{V_2^2}{I_2} \bigg|_{I_2 = I_2 = 0} \tag{4.5}$$

Portanto, podem ser determinadas também as impedâncias \hat{Z}_{12} e \hat{Z}_{32} , quando as fontes de corrente 1 e 3 estão abertas. Reduzindo (4.2) e (4.4) temse:

$$\hat{Z}_{12} = \frac{V_1^2}{I_2} \bigg|_{I_1 = I_3 = 0} \tag{4.6}$$

$$\hat{Z}_{32} = \frac{V_3^2}{I_2} \bigg|_{I_1 = I_3 = 0} \tag{4.7}$$

onde:

 V_j^k : tensão na barra j, quando a fonte de corrente da barra k injeta corrente e as demais estão em circuito aberto.

Baseando-se nestes conceitos, (4.2), (4.3) e (4.4) podem ser reescritas como:

$$V_1 = V_1^1 + V_1^2 + V_1^3 (4.8)$$

$$V_2 = V_2^1 + V_2^2 + V_2^3 (4.9)$$

$$V_3 = V_3^1 + V_3^2 + V_3^3 \tag{4.10}$$

Pode-se afirmar que a tensão numa barra é igual ao somatório das contribuições de tensão na barra devido às injeções independentes de cada

fonte de corrente. Portanto, dividindo-se a tensão na barra pela impedância da carga, obtém-se a corrente da carga:

$$I_{ZC1} = \frac{V_1}{ZC1} = \frac{\hat{Z}_{11}I_1}{ZC1} + \frac{\hat{Z}_{12}I_2}{ZC1} + \frac{\hat{Z}_{13}I_3}{ZC1}$$
(4.11)

$$I_{ZC2} = \frac{V_2}{ZC2} = \frac{\hat{Z}_{21}I_1}{ZC2} + \frac{\hat{Z}_{22}I_2}{ZC2} + \frac{\hat{Z}_{23}I_3}{ZC2}$$
(4.12)

$$I_{ZC3} = \frac{V_3}{ZC3} = \frac{\hat{Z}_{31}I_1}{ZC3} + \frac{\hat{Z}_{32}I_2}{ZC3} + \frac{\hat{Z}_{33}I_3}{ZC3}$$
(4.13)

onde:

ZCi: impedância da carga i;

 I_{ZCi} : corrente que chega à impedância da carga i.

Observa-se que as correntes que fluem através das cargas são uma função linear das fontes de corrente.

4.3

Cálculo da Potência Consumida pelas Cargas

Obtidas as correntes que fluem pelas cargas, as potências consumidas nas barras, que são funções não-lineares das fontes de corrente, podem ser facilmente calculadas. O procedimento para o cálculo da potência consumida na carga *ZC3* é:

$$S_{ZC3} = (I_{ZC3})\overline{(I_{ZC3})}ZC3$$
 (4.14)

$$S_{ZC3} = \left(\frac{\hat{Z}_{31}I_1}{ZC3} + \frac{\hat{Z}_{32}I_2}{ZC3} + \frac{\hat{Z}_{33}I_3}{ZC3}\right) \boxed{\frac{\hat{Z}_{31}I_1}{ZC3} + \frac{\hat{Z}_{32}I_2}{ZC3} + \frac{\hat{Z}_{33}I_3}{ZC3}}$$
 (4.15)

Decompondo as fontes de corrente em componentes real e imaginária, tem-se:

$$S_{ZC3} = \left(\frac{\hat{Z}_{31}}{ZC3}(I_{1r} + jI_{1i}) + \frac{\hat{Z}_{32}}{ZC3}(I_{2r} + jI_{2i}) + \frac{\hat{Z}_{33}}{ZC3}(I_{3r} + jI_{3i})\right) \bullet$$

$$\left(\frac{\hat{Z}_{31}}{ZC3}(I_{1r} + jI_{1i}) + \frac{\hat{Z}_{32}}{ZC3}(I_{2r} + jI_{2i}) + \frac{\hat{Z}_{33}}{ZC3}(I_{3r} + jI_{3i})\right) ZC3$$
(4.16)

onde:

$$I_k = I_{kr} + jI_{ki}$$

 I_k : corrente injetada na barra k;

 I_{kr} : componente real da corrente injetada na barra k;

 I_{ki} : componente imaginária da corrente injetada na barra k.

Para um sistema de potência com *NC* cargas e *NF* fontes de corrente, o consumo total de potência é o somatório do consumo de potência de todas as cargas, função não-linear das fontes de corrente:

$$S_{con} = \sum_{i=1}^{j=NC} S_{ZCj}(I_{1r}, I_{1i}, ..., I_{NFr}, I_{NFi})$$
(4.17)

onde:

NC: número total de cargas;

NF: número total de fontes de corrente.

4.4

Cálculo da Potência Fornecida pelos Geradores

A potência fornecida para uma rede pode ser escrita de forma matricial como:

$$S_{For} = I^T \hat{Z}^{Barra} \overline{I}$$
 (4.18)

Desenvolvendo (4.18) para o sistema de 3 barras apresentado na Figura 4.1, tem-se:

$$S_{For} = \begin{bmatrix} I_1 & I_2 & I_3 \end{bmatrix} \begin{bmatrix} \hat{Z}_{11} & \hat{Z}_{12} & \hat{Z}_{13} \\ \hat{Z}_{21} & \hat{Z}_{22} & \hat{Z}_{23} \\ \hat{Z}_{31} & \hat{Z}_{32} & \hat{Z}_{33} \end{bmatrix} \begin{bmatrix} \bar{I}_1 \\ \bar{I}_2 \\ \bar{I}_3 \end{bmatrix}$$
(4.19)

Realizando as operações em (4.19), a expressão transforma-se em:

$$S_{For} = \bar{I}_1 \Big[I_1 \hat{Z}_{11} + I_2 \hat{Z}_{21} + I_3 \hat{Z}_{31} \Big]$$

$$+ \bar{I}_2 \Big[I_1 \hat{Z}_{12} + I_2 \hat{Z}_{22} + I_3 \hat{Z}_{32} \Big]$$

$$+ \bar{I}_3 \Big[I_1 \hat{Z}_{13} + I_2 \hat{Z}_{32} + I_3 \hat{Z}_{33} \Big]$$

$$(4.20)$$

Explicitando as componentes reais e imaginárias das fontes de corrente, tem-se:

$$S_{For} = [I_{1r} - jI_{1i}] \Big[(I_{1r} + jI_{1i}) \hat{Z}_{11} + (I_{2r} + jI_{2i}) \hat{Z}_{21} + (I_{3r} + jI_{3i}) \hat{Z}_{31} \Big]$$

$$+ [I_{2r} - jI_{2i}] \Big[(I_{1r} + jI_{1i}) \hat{Z}_{12} + (I_{2r} + jI_{2i}) \hat{Z}_{22} + (I_{3r} + jI_{3i}) \hat{Z}_{32} \Big]$$

$$+ [I_{3r} - jI_{3i}] \Big[(I_{1r} + jI_{1i}) \hat{Z}_{13} + (I_{2r} + jI_{2i}) \hat{Z}_{32} + (I_{3r} + jI_{3i}) \hat{Z}_{33} \Big]$$

$$(4.21)$$

4.5

Conclusões

Neste capítulo foi apresentada uma revisão de conceitos básicos de teoria de circuitos elétricos, os quais serão utilizados nos métodos propostos.