

Javier Paúl Montalvo Andia

Remoção de Boro de Águas e Efluentes de Petróleo por Adsorção

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais da PUC-Rio.

Orientador: Prof. Luiz Alberto Cesar Teixeira

Co-orientadora: Prof.^a Lidia Yokoyama

Rio de Janeiro, 6 de abril de 2009

Javier Paúl Montalvo Andia

Remoção de Boro de Águas e Efluentes de Petróleo por Adsorção

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Dr. Luiz Alberto Cesar Teixeira

Orientador Departamento de Engenharia Metalúrgica – PUC - Rio

Dra. Lídia Yokoyama

Co-orientadora EQ/UFRJ

Dr. Helio Marques Kohler Consultor

Dra. Márcia Walquíria de Carvalho Dezotti COPPE/UFRJ

> Dra. Juacyara Carbonelli Campos EQ/UFRJ

Dra. Ana Cláudia Figueiras Pedreira de Cerqueira CENPES - Petrobrás

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 6 de abril de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Javier Paul Montalvo Andia

Graduou-se em Engenharia Química na UNSA (Universidade Nacional de San Agustín) em Arequipa, Perú

Ficha Catalográfica

Montalvo Andia, Javier Paúl

Remoção de boro de águas e efluentes de petróleo por adsorção / Javier Paúl Montalvo Andia ; orientador: Luiz Alberto Cesar Teixeira; co-orientador: Lidia Yokoyama. – 2009.

138 f. : il. (color.) ; 30 cm

Tese (Doutorado em Engenharia de Materiais)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009. Inclui bibliografia

1. Engenharia de materiais – Teses. 2. Remoção de boro. 3. Adsorção. 4. MgO. 5. Tratamento de efluentes de petróleo. I. Teixeira, Luiz Alberto Cesar. II. Yokoyama, Lidia. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia de Materiais. IV. Título.

CDD:620.11

PUC-Rio - Certificação Digital Nº 0412179/CA

A minha Família, e muito especialmente aos meus pais Constantino e Marcela, e a Ana Christina S. Wimmer.

Agradecimentos

Aos meus orientadores: professores Luiz Alberto Cesar Teixeira e Lidia Yokoyama pela amizade, paciência, apoio e confiança depositados durante a realização deste trabalho.

Ao CNPq e a PUC-Rio, pelo apoio financeiro e oportunidade para a realização do curso de doutorado.

Ao CENPES/PETROBRÁS pelo auxilio financeiro concedido.

À Professora Maria Isabel Pais da Silva do Departamento da Química da PUC-Rio, pelas análises de área superficial do MgO.

Ao Professor Norbert Miekeley do Departamento da Química da PUC-Rio, pelas análises de boro por Plasma Indutivamente Acoplado a Espectrometria de emissão Ótica (IC-POES).

Aos meus irmãos Jesús, Sandra, Rildo e Joselo, pelo carinho, amizade e apoio de sempre.

À minha amiga Mariana De Oliveira Lima Serrao pela amizade e ajuda incondicional na parte experimental.

Aos meus colegas da PUC-Rio, aos professores, pesquisadores e funcionários do Programa de Engenharia de Materiais e de Processos Químicos e Metalúrgicos da PUC-Rio, pelos ensinamentos e valiosas sugestões durante a realização deste trabalho.

Resumo

Montalvo, Javier Paul; Teixeira, Luiz Alberto. **Remoção de Boro de Águas e Efluentes de Petróleo por Adsorção.** Rio de Janeiro, 2009. 138p. Tese de Doutorado - Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

A presença de boro nas águas em geral tem se incrementado de forma contínua e paralela ao desenvolvimento industrial. Da mesma forma, os efeitos prejudiciais aos organismos vivos tem aumentado, especialmente sobre as plantas onde a faixa entre a deficiência e a toxicidade é muito curta. No presente trabalho foi investigado o efeito das diferentes variáveis de operação, na cinética e na termodinâmica de um processo de adsorção de boro com MgO a partir de águas e efluentes gerados na produção de petróleo. Os resultados obtidos mostram que o processo de adsorção é viável, e alcança eficiências em torno de 80% (em pH = 10; concentração de MgO-500 = 40 g.L⁻¹ (área superficial = 1259 m2), temperatura = 25°C, agitação =150 rpm e tempo = 60 min.). O processo é fortemente influenciado pelo pH, e também pela área superficial (tamanho de partícula) do adsorvente, concentração inicial do boro, salinidade da solução, e pela a presença de outros íons na solução. A temperatura também tem um efeito positivo no processo. A remoção de boro com MgO foi quantitativamente avaliada usando isotermas de adsorção.. Verificou-se que o processo se ajusta melhor à isoterma de Freundlich. A constante da isoterma de Freundlich, K_{ad} $(mg.g^{-1}) = 0,57$ foi maior em comparação a outras K_{ad} obtidas na adsorção de boro com outros adsorventes. Finalmente, os parâmetros cinéticos e termodinâmicos do processo calculados indicam que o processo acontece de forma espontânea e é cineticamente bem representado por um modelo de pseudo segunda ordem.

Palavras-chave

Remoção de boro, Adsorção, MgO, Tratamento de efluentes de petróleo.

Abstract

Montalvo, Javier Paul; Teixeira, Luiz Alberto (Advisor). **Boron Removal from Oil Production Wastewater and Effluents by Adsorption.** Rio de Janeiro, 2009. 138p. Doctoral Thesis - Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

The presence of boron in waters has increased continually and in parallel to the industrial development. And also, the harmful effects to the organisms and living creatures has increased as well, especially on plants, where the gap between the deficiency and the toxicity is very short. In the present work it was investigated the effects of different operating variables in, the kinetics and in the thermodynamics of a process of boron adsorption with MgO from wastewaters generated in the production of oil. The results show that the adsorption process is feasible, and reaches efficiencies around 80%, in the following conditions: pH = 10; MgO-500 concentration = 40 g.L⁻¹ (surface area: 1259 m²); temperature: = 25° C; stirring = 150 rpm and time = 60 min. The process is strongly influenced by pH, and also by the superficial adsorbent area (particle size), initial concentration of boron, salinity of the solution, and the presence of others ions in the solution. The temperature also has a positive effect in the process. The removal of boron with MgO was evaluated quantitatively using adsorption isotherms. It was shown that the process is better adjusted by the Freundlich isotherm. The constant of the Freundlich isotherm, K_{ad} (mg.g⁻¹) = 0,57 was bigger in comparison to other K_{ad} gotten in the adsorption of boron with other adsorbents. Finally, the kinetic and thermodynamic parameters of the process indicate that the process is spontaneous, and is kinetically well represented by a pseudo second-order model.

Keywords

Boron removal, Adsorption, MgO, Wastewater treatment from oil production.

Sumário

1 INTRODUÇÃO	15
2 OBJETIVOS	19
2.1. Objetivos específicos	19
3 REVISÃO BIBLIOGRÁFICA	20
3.1. Boro	20
3.1.1. Propriedades Físicas e Atômicas do Boro	20
3.1.2. Propriedades Químicas	22
3.1.3. Fontes ambientais do Boro	24
3.1.4. Toxicologia do Boro	26
3.1.4.1. Microorganismos e organismos aquáticos.	27
3.1.4.2. Plantas	28
3.1.4.3. Animais	29
3.1.4.4. Humanos	30
3.2. Processos de Tratamento para Remoção de Boro.	31
3.2.1. Adsorção	31
3.2.2. Precipitação	32
3.2.3. Troca Iônica	35
3.2.4. Filtração por Membranas	38
3.3. Tratamento de Águas de Produção de Petróleo Contendo Boro	40
4 ADSORÇÃO	42
4.1. Processos de Adsorção	42
4.2. Isotermas de Adsorção	44
4.2.1. Modelo da Isoterma de Langmuir	47
4.2.2. Modelo da Isoterma de Freundlich	50
4.2.3. Modelo de Isoterma de Dubinin-Radushkevich	50
4.3. Cinética	51
4.3.1. Modelo de pseudo-primeiro ordem	52
4.3.2. Modelo de pseudo-segundo ordem	54

4.3.3. Difusão Intrapartícula	55
4.3.4. Considerações sobre a cinética do processo de adsorção	57
5 MATERIAIS E METODOS	58
5.1. Preparação da solução contendo boro	58
5.2. Oxido de Magnésio	59
5.2.1. Propriedades gerais	59
5.2.2. Propriedades termodinâmicas	61
5.2.3. Características do MgO escolhido	65
5.3. Experimentos de Adsorção	66
5.3.1. Efeito do pH	66
5.3.2. Efeito da área superficial do MgO	67
5.3.3. Efeito da concentração inicial de boro	68
5.3.4. Efeito do tamanho de partícula	69
5.3.5. Efeito da temperatura	70
5.3.6. Efeito da salinidade	70
5.3.7. Isotermas de adsorção	71
5.3.8. Cinética de adsorção	72
5.4. Técnicas Analíticas	72
5.4.1. Difração de raios X	73
5.4.1.1 Geração de raios X	73
5.4.2. Plasma Indutivamente Acoplado a Espectrometria de Emissão Ótica	
(ICPOES).	73
5.4.3. Microscopia eletrônica de varredura.	74
5.4.4. Distribuição do tamanho de partícula	75
6 RESULTADOS E DISCUSSÃO	77
6.1. Efeito do pH	77
6.2. Efeito da área superficial	82
6.3. Efeito da concentração inicial de boro	84
6.4. Efeito do tamanho de partícula do MgO	86
6.5. Efeito da temperatura	86
6.6. Efeito da salinidade	93
6.7. Isotermas de adsorção	95
6.7.1. Modelos de isotermas de adsorção	96
6.8. Análise Cinética	102
6.8.1. Determinação do tempo de equilíbrio	104

6.8.2. Modelos cinéticos	105
6.9. Termodinâmica do processo	112
6.10. Considerações Mecanísticas	115
7 CONCLUSÕES	116
8 RECOMENDAÇÕES PARA TRABALHOS FUTUROS	119
9 REFERÊNCIAS	120

Lista de figuras

Figura 3.1 - Gráfico de distribuição de H_3BO_3 e $B(OH)_4^-$ em função do pH,	
com uma concentração total de boro de 0,025M como H_3BO_3 , em três	
diferentes salinidades (Choi e Chen, 1979).	24
Figura 3.2 - Distribuição dos principais produtores de boro a nível mundial	
(Okay, 1985).	26
Figura 3.3 – Influência da T na remoção de B. Concentração de cal =	
45 g.L ^{₋1} . (Remy <i>et al,</i> 2005)	34
Figura 3.4 – Dependência da concentração de B em água após um	
tratamento hidrotérmico a 130 °C : [B] _{inicial} = 500mg.L ⁻¹ de B;	
$Ca(OH)_2 = 3.0 \text{ g}; H_3PO_4 = 1.5 \text{ g}$ (Itakura, 2005)	34
Figura 3.5 – Efeito da concentração das resinas na remoção	
de boro de água residuais de uma planta geotermal (Kabay, 2004).	38
Figura 3.6 – Tratamento convencional de águas de produção de petróleo	
(Montalvo, 2009).	41
Figura 4.2 - Representação de algumas isotermas de adsorção,	
Oscik(1982).	45
Figura 5.1- Domínios de estabilidade de MgO e o Mg(OH) ₂	
na água pura à 25°C	64
Figura 5.2 – Esquema dos experimentos de remoção de boro por	
adsorção em MgO.	67
Figura 6.1 – Diagrama de predominância do sistema B-H ₂ O a 25°C,	
0,001M.	78
Figura 6.3 - Remoção de boro com respeito ao pH.	
(Variáveis: [MgO] = 40gL ⁻¹ ; agitação = 150 rpm, 60 min;	
temperatura = 25°C, volume da solução = 500mL.; pH = 1 a 14)	79
Figura 6.3 – Porcentagem de boro total na sua forma neutra	
como função do pH e força iônica (Bush <i>et. al</i> , 2003)	80
Figura 6.4 - Remoção de boro com respeito à concentração do adsorvente.	
(Variáveis: pH = 10; agitação = 150 rpm, 60 min; temperatura = 25°C;	
volume da solução = 500mL.; baixa concentração inicial de boro	
(30mgL ⁻¹) = [MgO] de 0,5 a 5 gL ⁻¹ , concentração inicial media de boro	
$(350 \text{mgL}^{-1}) = [\text{MgO}] \text{ de 8 a 64 gL}^{-1}.$	83
Figura 6.5 - Remoção de boro com respeito à concentração inicial.	

(Variáveis: [MgO] = 40 gL ⁻¹ ; pH = 10; agitação = 150 rpm, 60 min;	
temperatura = 25°C; volume da solução = 500mL; concentração inicial	
de B = 30 a 700 mgL ⁻¹ (SSAD: solução sintética de água destilada,	
SSAM: solução sintética de água de mar, SSAG: solução sintética	
de água geotermal)	85
Figura 6.6 - Remoção de boro com respeito a diferentes tamanhos	
de partícula (Variáveis: [MgO] = 8 a 64gL ⁻¹ ; pH = 10; agitação = 150 rpm,	
60 min; temperatura = 25°C; volume da solução = 500mL; concentração	
inicial de B = 350 mgL ⁻¹). Diámetro de partícula ao 90%: 11,85 μ m,	
21,87 μ m e 54,65 μ m para o MgO-500, MgO-325 e MgO-200	
respetivamente.	86
Figura 6.7 – Distribuição granulométrica do MgO-500.	88
Figura 6.8 - Distribuição granulométrica do MgO-325.	88
Figura 6.9 - Distribuição granulométrica do MgO-200.	89
Figura 6.10 – Remoção de boro com respeito a Temperatura	
(Variáveis: pH = 10; agitação = 150 rpm, 60 min; volume da solução	
= 500mL; concentração inicial media boro (350 mgL ⁻¹) = [MgO] 40 gL ⁻¹ ,	
Alta concentração inicial de boro $(700 \text{mgL}^{-1}) = [\text{MgO}] 96 \text{ gL}^{-1};$	
temperatura = 5 a 50° C)	90
Figura 6.11 - pK_b do boro vs temperatura em diferentes forças	
iônicas (Bush, 2003)	91
Figura 6.12 – Dependência do pK _w da água com respeito a	
temperatura. (Butler, 1998).	92
Figura 6.13 - Remoção de boro com respeito à salinidade.	
(Variáveis: [MgO] = 40 gL ⁻¹ ; pH = 10; agitação = 150 rpm, 60 min;	
temperatura = 25°C; volume da solução = 500mL; concentração	
inicial de B = 30 mgL ⁻¹ (SSAD: solução sintética de água destilada,	
SSAM: solução sintética de água de mar, SSAG: solução	
sintética de água geotermal)	94
Figura 6.14 – Isotermas de adsorção para a adsorção de boro com	
MgO a 25°C, 40°C e 50°C.	95
Figura 6.15 – Ajuste dos dados das isotermas de adsorção para	
o modelo de Langmuir, a temperaturas de 25°C, 40°C e 50°C.	
Concentração inicial de boro = 350 mg.L ⁻¹ , velocidade de	
agitação = 150 rpm, pH = 10, t = 240 min.	97
Figura 6.16 - Ajuste dos dados das isotermas de adsorção para	

o modelo de Freundlich, a temperaturas de 25°C, 40°C e 50°C.	
Concentração inicial de boro = 350 mg.L ⁻¹ , velocidade de agitação	
= 150 rpm, pH = 10, t = 240 min.	98
Figura 6.17 - Ajuste dos dados das isotermas de adsorção para o	
modelo de Dubinin e Radushkevich, a temperaturas de 25°C,	
40°C e 50°C. Concentração inicial de boro = 350 mg.L ⁻¹ , v	
elocidade de agitação = 150 rpm, pH = 10, t = 240 min.	98
Figura 6.18 – Microfotografias do Microscópio Eletrônico de	
Varredura do MgO-500 antes do processo de adsorção. (a) 20 μm	
e (b) 8 <i>µm</i>	101
Figura 6.19 - Microfotografias do Microscópio Eletrônico de Varredura	
do MgO-500 após o processo de adsorção. (c) 20 μm e (d) 8 μm .	101
Figura 6.20 - Composição elementar do adsorvente (A) antes e (B)	
após o contato com o boro na solução. pH do meio aquoso: 10,	
concentração do MgO-500: 40 g.L ⁻¹ , tempo de contato de 240 min.	102
Figura 6.21 – Perfil do tempo de adsorção do boro em função da	
temperatura. Concentração de boro = 350 mg.L ⁻¹ , pH = 10,	
concentração do MgO = 40g.L ⁻¹ , agitação 150 rpm.	105
Figura 6.22 – Aplicação dos resultados cinéticos ao modelo de	
pseudo primeira ordem para as temperaturas de 25°C, 40°C e 50°C.	
Concentração de boro = 350 mg.L ⁻¹ , pH = 10, concentração do MgO =	
40g.L ⁻¹ , agitação 150 rpm.	107
Figura 6.23 - Ajuste dos dados de adsorção ao modelo de	
pseudo primeira ordem a 25ºC. Concentração de boro = 350 mg.L ⁻¹ ,	
pH = 10, concentração do MgO = 40g.L ⁻¹ , agitação 150 rpm.	107
Figura 6.24 - Ajuste dos dados de adsorção ao modelo de pseudo	
segunda ordem a 25°C, 40°C e 50°C. Concentração de boro =	
350 mg.L ⁻¹ , pH = 10, concentração do MgO = 40 g.L ⁻¹ , agitação 150 rpm.	109
Figura 6.25 - Variação de Ink vs 1/T	112
Figura 6.26 - Equação de Van't Hoff para a adsorção de boro em MgO.	113

Lista de tabelas

Tabela 3.1 - Propriedades Físico-químicas do boro (Smallwood, 2001)	23
Tabela 3.2. Análise de boratos presentes em solos argilados.	
[Winkler 1907]	25
Tabela 3.3 – Toxicidade aguda do boro para peixes (96 h, LC_{50})	
(Howe, 1998).	27
Tabela 3.4 - Rejeição de boro no tratamento de águade mar por um	
sistema de OR em função do pHde alimentação (Wilf, 2005).	39
Tabela 4.1 – Comparação entre o processo de quimiosorção e fisiosorção	
(Israelachvili, 1991; Masel, 1996; Bruch 1997; Do 1998)	44
Tabela 5.1 – Composição química das soluções sintéticas de água de mar	
e solução sintética de água geotermal (Choi e Chen, 1979, Valenti, 2002).	59
Tabela 5.2 -Entalpias e entropias padrão a 25ºC.	62
Tabela 5.3 – Características do MgO-200.	65
Tabela 5.4 - Características do MgO-325	65
Tabela 5.5 - Características do MgO-500	65
Tabela 5.6 – Condições experimentais na remoção de boro com MgO	
em função do pH.	66
Tabela 5.7 – Condições experimentais na remoção de boro com MgO	
em função da área superficial do MgO	68
Tabela 5.8 - Condições experimentais na remoção de boro com MgO em	
função da concentração inicial de boro	69
Tabela 5.9 - Condições experimentais na remoção de boro com MgO em	
função do tamanho de partícula, para MgO-200, MgO-325 e MgO-500.	69
Tabela 5.10 - Condições experimentais na remoção de boro com MgO	
em função do temeperatura.	70
Tabela 5.11 - Condições experimentais na remoção de boro com MgO,	
para solução sintética de água destilada, SSAD (0% de salinidade);	
solução sintética de água de mar, SSAM (33% de salinidade) e	
solução sintética de água geotermal, SSAG (37% de salinidade).	71
Tabela 5.12 - Condições experimentais para determinar as isotermas	
de adsorção de boro com MgO.	71
Tabela 5.13 - Condições experimentais para determinar a cinética de	
adsorção de boro com MgO.	72

Tabela 5.14 - Condições operacionais utilizadas na determinação de	
boro por IC-POES.	74
Tabela 6.1 - Remoção de boro com respeito ao pH (Variáveis: [MgO] =	
40gL ⁻¹ ; agitação = 150 rpm, 60 min; temperatura = 25°C, volume da	
solução = 500mL.; pH = 1 a 14)	79
Tabela 6.2 – Remoção de boro com respeito à área superficial	
$(B = 30 mg L^{-1}).$	83
Tabela 6.3 - Remoção de boro com respeito à área superficial	
$(B = 350 \text{mg L}^{-1}).$	83
Tabela 6.4 - Remoção de boro para diferentes concentrações inicias.	
(SSAD: solução sintética de água destilada, SSAM: solução sintética	
de água de mar, SSAG: solução sintética de água geotermal).	85
Tabela 6.5 – Remoção de boro para diferentes tamanhos de partícula	87
Tabela 6.6 – Remoção de boro para diferentes temperaturas.	90
Tabela 6.7 – Remoção de boro com respeito à salinidade.	94
Tabela 6.8 – Parâmetros obtidos para os modelos das isotermas de	
Langmuir, Freundlich e Dubinin - Radushkevich nas temperaturas de	
25°C, 40°C e 50°C, respectivamente. Concentração inicial de boro	
= 350 mg.L ⁻¹ , velocidade de agitação = 150 rpm, $pH = 10$, $t = 240$ min.	99
Tabela 6.9 – Constantes da isoterma de Freundlich (K_{ad} , n) para a	
adsorção de boro em diferentes adsorventes	100
Tabela 6.10 - Parâmetros cinéticos para a adsorção de boro com	
MgO a 25°C, 40°C e 50°C. Concentração de boro = 350 mg.L ⁻¹ ,	
pH = 10, concentração do MgO = 40g.L ⁻¹ , agitação 150 rpm.	109
Tabela 6.11 - Parâmetros termodinâmicos para a adsorção de boro	
em MgO a 25°C, 40°C e 50°C. Concentração de boro = 350 mg. L^{-1} ,	
pH = 10, concentração do MgO = 40 g.L ⁻¹ , agitação 150 rpm,	
tempo 240 min.	114