3.1 Metodologia de análise e processamento de dados

Inicia-se o estudo com a identificação das condições operacionais das estações de redução de pressão do sistema dutoviário da PETROBRAS.

O levantamento de dados foi referente ao período de 1 de janeiro a 31 de dezembro de 2008. Estes dados foram obtidos a partir da base histórica de dados do sistema supervisório da empresa transportadora, no caso a TRANSPETRO. Muito embora haja um sistema computacional para obtenção das leituras dos instrumentos de campo, ocorreram algumas dificuldades no levantamento de dados, tais como:

- (i) Nem todas as estações de redução de pressão são monitoradas (um percentual mínimo);
- (ii) Poucas estações não dispunham de registro de temperatura de entrada (buscou-se um ponto mais próximo possível);
- (iii) Algumas ocorrências de dados espúrios (erro na comunicação de dados, erro do instrumento ou manutenção do instrumento);
- (iv) Por causa de erro na lógica do sistema de sumarização de dados históricos, as médias referentes aos meses de fevereiro e outubro de 2008 não foram geradas. Acredita-se que este erro ocorre em função da alternância do horário de verão.

Após terem sido adequadas as informações do banco de dados chegou-se a um universo de 34 estações de redução de pressão de gás natural, que formam a amostragem do estudo. Lamentavelmente, por falta de registro confiáveis, ficaram de fora do levantamento 2 estações de redução de pressão que alimentam usinas térmelétricas e outras 2 estações que interligam gasodutos, todas com demanda elevada.

Apesar de se tratar de instalações existentes, para efeito de estudo serão atribuídas denominações fictícias a essas estações, que doravante serão codificadas por três letras.

Quando deseja-se calcular o trabalho realizado durante um certo período de tempo a partir de um histórico de potência elétrica gerada ou a transferência de calor a partir da potência térmica requerida é necessário realizar uma integração temporal, ou seja:

$$_{1}W_{2} = \int_{1}^{2} \overset{\bullet}{W} dt$$
 (43)

$$_{1}Q_{2} = \int_{1}^{2} \dot{Q} dt$$
 (44)

Para realizar as integrações é necessário conhecer o perfil de variação da potência elétrica e da potência térmica. Por exemplo, se estes variam de modo suave, o trabalho e a transferência de calor podem ser calculados por:

$${}_{1}W_{2} = \int_{1}^{2} \overset{\bullet}{W} dt = \overset{\bullet}{W}_{m\acute{e}dio} \Delta t \tag{45}$$

$$_{1}Q_{2} = \int_{1}^{2} \dot{Q} dt = \dot{Q}_{m\acute{e}dio} \Delta t$$
 (46)

Num sistema em que há variação de pressão, temperatura e vazão, o cálculo da potência elétrica média do mesmo permite avaliar a energia elétrica gerada ao longo de um determinado período. Sendo que a potência elétrica média é aquela que representa uma potência equivalente como se o equipamento estivesse em regime permanente ao longo do período estudado.

Para determinação da potência térmica requerida no aquecedor de gás e da potência elétrica gerada pelo expansor em cada estação de redução foi necessário o levantamento de dados referente à vazão, pressão de entrada, pressão de saída, temperatura de entrada e temperatura de saída, os quais variam no curso do dia e dos meses.

3.1.1 Teste realizado

Como já visto nas Eq. (45) e Eq. (46) o trabalho e a transferência de calor podem ser calculados a partir dos valores médios de potência elétrica gerada e a potência térmica requerida desde que estes tenham um perfil de comportamento suave. Com base nessa assertiva e com o auxílio de uma planilha eletrônica realizou-se um teste com a estação de redução CAP, entre os meses de janeiro

a abril de 2008, para se verificar o desvio nos resultados do cálculo da potência térmica requerida no aquecedor $(\overset{\bullet}{Q})$, da temperatura de entrada no expansor (T_C) e a potência elétrica gerada pelo expansor $(\overset{\bullet}{W})$, de acordo com as seguintes amostras:

- (i) Com base nos valores médios diários de vazão, pressão e temperatura, calcularam-se os valores diários de $\overset{\bullet}{Q}$, T_{C} e $\overset{\bullet}{W}$ e em seguida computou-se a média mensal dos valores diários de $\overset{\bullet}{Q}$, T_{C} e $\overset{\bullet}{W}$;
- (ii) Com base na média mensal dos valores médios diários de vazão, pressão e temperatura, calculou-se o valor de $\stackrel{\bullet}{Q}$, T_C e $\stackrel{\bullet}{W}$;
- (iii) Com base nos valores médios mensais de vazão, pressão e temperatura, obtidas pelo sistema de sumarização de dados históricos, calculou-se o valor de $\stackrel{\bullet}{O}$, $T_{\rm C}$ e $\stackrel{\bullet}{W}$.

O lapso de tempo da amostra (i) é de apenas um dia, que a caracteriza como a amostra mais precisa, enquanto que os das amostras (ii) e (III) são intervalos de um mês. Visando quantificar o percentual de desvio nos cálculos dos valores de $\stackrel{\bullet}{Q}$, $T_{\rm C}$ e $\stackrel{\bullet}{W}$ da primeira amostra com as outras duas, elaborou-se um quadro comparativo com os resultados obtidos em cada uma das três amostras. A Tabela 2 apresenta o resultado da comparação entre as amostras.

Tabela 2 – Quadro comparativo entre as três amostras

Α	В	C	D	E	F	G	H		J	K		M
8		Vazão	Pentrada	Psaída	Tentrada	Tsaída	Aquecedor	Ехра	ansor	Desvio % em relaçã		lação
C	AP	(m³/d)	(kgf/cm²)	(kgf/cm²)	(°C)	(°C)	ė (kW)	T _c (°C)	. ₩ (kW)	а	amostra (j)
Mês	amostra	Média	Média	Média	Média	Média	Média	Média	Média	Q.	T _c	w
JAN	(i)		8 3		£ 2		2821,3	58,1	2181,6		i 8	
	(ii)	3441278	37,0	17,4	18,6	17.2	2914,8	58,7	2255,0	3,3%	0,9%	3,4%
	(iii)	3433141	37,0	17,4	18,6	17.2	2907,9	58,7	2249,6	3,1%	0,9%	3,1%
	(i)		Ç.		7 9	7	2836,9	52,5	2130,5			
FEV	(ii)	3927181	33,4	17,5	17,6	17,8	2896,1	52,9	2179,8	2,1%	0,7%	2,3%
	(iii)	4048277	33,2	17,4	17,5	18,5	3049,5	53,6	2252,1	7,5%	2,0%	5,7%
MAR	(i)	etrapetrosono vens	N SICHELY	y yantoka	de Overense	/ /// /// /// // // // // // // // // /	2828,5	52,4	2089,7	V.)	7 NO 1	ACCRESSION
	(ii)	3977066	32,6	17,4	17,9	18,8	2893,7	52,8	2147,1	2,3%	0,7%	2,7%
	(iii)	4037229	31,8	17,4	17,8	20,2	2937,4	52,8	2097,3	3,8%	0,7%	0,4%
ABR	(i)						2645,6	50,2	1864,9			
	(ii)	3887650	30,6	17,3	17,1	19,7	2674,6	50,3	1896,2	1,1%	0,3%	1,7%
	(iii)	3889156				19,7	2659,3	50,1	1885,1	0,5%	-0,1%	1,1%

A coluna A dispõe das células com os nomes dos meses de janeiro a abril. Cada mês apresenta três linhas com os valores das amostras. Como na amostra (i) foram realizados cálculos diários, os resultados tornariam a tabela bem maior e perderia o sentido de ser uma tabela resumo, assim, os valores calculados da amostra (i) são apresentados no Apêndice 1.

Observa-se na Tabela 2 que o maior desvio encontrado na amostra (ii) em relação à amostra (i) foi de 3,3% e o menor foi de 0,3%, que se configuram percentuais muito baixos. O maior desvio encontrado na amostra (iii) em relação à amostra (i) foi de 7,5% e o menor foi de -0,1%, que também são percentuais aceitáveis.

Diante desses resultados pode-se afirmar que o teste serve para avaliar que a metodologia de cálculo aplicada na amostra (iii) é válida tanto para esta estação quanto para as demais.

Assim, o procedimento para cálculo da potência térmica requerida no aquecedor, da temperatura de entrada no expansor e da potência elétrica gerada pelo expansor para todas as 34 estações de redução de pressão terá como base os valores médios mensais de vazão, pressão e temperatura obtidos pelo sistema de sumarização de dados históricos da TRANSPETRO, que doravante serão denominados de valores mensais sumariados.

3.2 Procedimento adotado

O procedimento tem como objetivo obter para cada uma das 34 estações de redução o gasto com energia para aquecer o gás natural (consumo de gás combustível anual) e a quantidade de energia que o expansor irá gerar em forma de trabalho (energia elétrica gerada por ano), para o sistema aquecedor-expansor operando em regime permanente ao longo do ano de 2008.

Dessa maneira, devem ser seguidos, para cada estação de redução de pressão, os seguintes passos:

- 1º. Elaborar um modelo de simulação numérica no HYSYS, conforme definido no sub-capítulo 2.3.3;
- 2º. Levantar os valores mensais sumariados de cada variável operacional, em conformidade com o sub-capítulo 3.1.1;
- 3º. Levantar a composição média anual e o poder calorífico superior médio anual do gás natural que alimenta cada uma das estações de

redução de pressão;

4º. Executar a simulação no HYSYS com os dados levantados no 2º passo e a composição média anual levantada no 3º passo para cada mês do ano de 2008, excetuando-se os meses de fevereiro e outubro, que não foram sumariados. Obter para cada mês a potência térmica requerida no aquecedor, a temperatura na entrada do expansor e a potência elétrica gerada pelo expansor e registrar em uma planilha eletrônica;

- 5°. Calcular a média dos 10 meses dos valores mensais obtidos no 4° passo, considerando-a como média anual.
- 6º. Calcular o consumo anual de gás combustível do aquecedor, a eletricidade gerada pelo expansor e o consumo específico de combustível conforme se segue:

3.2.1 Consumo anual de gás combustível ($C_{\scriptscriptstyle g}$)

Como premissas, foi considerado o aquecedor queimando o próprio gás natural, eficiência térmica do queimador (η_q) igual a 0,75 (valor de referência em projetos da Petrobras) e poder calorífico superior do gás natural igual ao valor levantado no 3º passo.

A partir da média anual da potência térmica requerida no aquecedor em termos de kW, converte-se para kcal/h, divide-se pela eficiência térmica do queimador, divide-se pelo poder calorífico superior do gás em kcal/m³, multiplica-se por 24 horas, multiplica-se por 366 dias (total de dias do ano de 2008). C_g é expresso em m³/ano.

$$C_g = Q_{m\acute{e}dia} \cdot (3600/4,1868) \cdot 24 \cdot 366/(\eta_q \cdot PCS_{m\acute{e}dio})$$
 (47)

3.2.2 Energia elétrica gerada por ano (E_e)

Como premissa, foi considerada uma eficiência do gerador ($\eta_{_g}$) igual a 0,90 (valor de referência em projetos da Petrobras).

A partir da média anual da potência elétrica gerada pelo expansor, multiplica-se pela eficiência do gerador, multiplica-se por 24 horas, multiplica-se

por 366 dias (total de dias do ano de 2008). E_e é expresso em kWh/ano.

$$E_e = W_{m\acute{e}dia} \cdot \eta_g \cdot 24.366 \tag{48}$$

3.2.3 Consumo específico de combustível (CEC)

Trata-se do consumo específico de gás natural para geração de energia elétrica pelo sistema aquecedor-expansor, obtido pela relação entre as Eq. (47) e Eq. (48), em termos de m³/kWh, que pode ser comparado com o consumo específico de outros sistemas de geração de energia elétrica, como por exemplo: grupos geradores à óleo diesel.

$$CEC = \frac{C_g}{E_e} \tag{49}$$

3.3 Análise de sensibilidade

A partir de um modelo de simulação numérica do HYSYS, de acordo com que foi definido no sub-capítulo 2.3.3, realizou-se estudo de sensibilidade em relação aos parâmetros operacionais do sistema aquecedor-expansor.

Para verificar a influência de cada variável operacional no cálculo da potência térmica requerida no aquecedor e da potência elétrica gerada no expansor, simulou-se um modelo padrão para a estação de redução PAC com os seguintes parâmetros:

- Vazão = 45.600 m³/d (condição de referência: 1 atm e 20 °C)
- Pressão de entrada = 57,0 kgf/cm²
- Pressão de saída = 10,2 kgf/cm²
- Temperatura de entrada = 32,0 °C
- Temperatura de saída = 23,0 °C

Assim, foram realizadas simulações individuais alterando-se em 50%, para mais ou para menos, os valores originais dos parâmetros operacionais do modelo padrão. A partir daí observou-se o que cada alteração acarretava na

potência térmica requerida no aquecedor e na potência elétrica gerada no expansor, quando foram obtidos os resultados apresentados na Tabela 3:

Tabela 3 – Análise de sensibilidade

Variável	Alteração (%) no	O que ocorreu com a potência?				
operacional	valor da variável	<i>Q</i> (%)	· W (%)			
Vazão	+ 50	+ 50,0	+ 49,9			
P entrada	+ 50	+ 37,0	+ 27,5			
P saída	- 50	+ 39,9	+ 43,2			
T entrada	- 50	+ 17,9	0,0			
T entrada	+ 50	- 18,1	0,0			
T saída	+ 50	+ 14,6	+ 4,1			
T saída	- 50	- 14,5	- 4,2			
Relação Pentr/Psaída	- 50	- 37,9	-38,9			

Tais resultados são totalmente esperados e podem ser corroborados a partir da análise do diagrama de pressão *versus* entalpia da mistura gasosa, partindo-se do estado termodinâmico inicial e atingindo o estado final para cada mudança de estado proposta.