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4.  
Trajectory Determination: Evolutionary Optimization 

Determining the minimal time trajectory is not a simple task, especially 

when considering all the variables involved. The growing demand on autonomous 

driving systems stimulates research towards new technologies.  

Iterative optimization methods have been applied to solve the path 

determination problem. As a first attempt a classical method based on the 

gradient descent was used by Carrera in [11], also implemented with the Matlab® 

Optimization Toolbox [16]. This optimization procedure is organized in a block 

diagram as shown in Figure 4.1.  
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Figure 4.1 – Classic Optimization Block Diagram. 

  

This chapter proposes, analyzes and describes the implementation of an 

optimization technique based on genetic algorithms, also known as evolutionary 

computation. In a few words, its approach consists of evolving a set of 

acceleration profiles which takes the car through the minimum time trajectory of a 

previously specified track. 

 

4.1. Presentation and Description 

Similarly to other computational intelligence techniques, genetic 

algorithms are inspired on nature. The problem’s solution is treated as an 
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individual among a population of other possible solutions. Inspired on natural 

selection, the technique consists of analyzing each individual’s capacity of 

attending the natural requisites to reproduce and pass its genetic characteristics 

to the next generations. 

In nature, the better the physical conditions one has, the better the 

chances of survival. Moreover, the more one reproduces, the higher the 

probability of passing on the genetic material. This fitness of the natural individual 

is translated to the solution population as the value of a function to be optimized. 

This genetic material is a codification of the possible solution relevant 

characteristics, and those should be changed by reproduction and recombination 

in order to find a better solution in the generation changes, Figure 4.2 shows the 

conceptual block diagram.  

 

Parameters
and

Variables 
Initialization

SIMULATOR
Simulink/Matlab

Oriented Particle Vehicle 

Individual Evaluation
&

Constraints Determination 
Penalized Fitness Function

 Testing
 Convergence

Minimum Time?

Maximum Iterations?
No

Yes

Optimal
Trajectory

Trajectory, Attitude
& Time

Acceleration
Parameters

Decodification

OPTIMIZATOR
Matlab Genetic Algorithm Toolbox

Nonlinear minimization function w/ constrains

Codification

ElitismCrossover

Mutation

Reproduction 
Roulete 

Recombination Selecion

Next Generation
Composition

Best Individuals

 
Figure 4.2 – Genetic Algorithm Optimization Block Diagram. 

 

4.1.1. Initial Estimative Determination: Center Line Trajectory 

As any heuristic optimization method, genetic algorithms can achieve 

better results if an initial estimation is given. A good initial estimation, called 

seeding, is important for convergence, especially in problems with a vast domain. 

Considering the car trajectory, a natural seed is the center line trajectory, 

since the random acceleration profiles would hardly take the vehicle to the track 

end correctly. Acceleration profiles that result in the center line trajectory can be 

easily obtained by analytical calculations of the car’s speed (VMax) on a curve 

stretch i, the curve radius (R) and maximum lateral acceleration (aLMax). The 
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profile parameter NOa  for this track stretch i is shown in Equation (4.1). Figure 

4.3 shows an example of a center line trajectory and Figure 4.4 shows the 

acceleration profiles for this trajectory. 
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Figure 4.3 – Center Line Trajectory. 
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Figure 4.4 – Correspondent Acceleration Profiles. 

 

4.1.2. Chromosome Codification 

As mentioned before, although an optimal trajectory is the main goal here, 

optimization variables are actually the acceleration profiles. Consequently, 
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chromosomes should contain any relevant information on the parameterization of 

those profiles, as seen in Figure 4.5 and detailed in Chapter 2. 
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Figure 4.5 – Acceleration Profiles. 

 

Codification of the acceleration profiles into a chromosome can be seen in 

Figure 4.6, where the 2-D array is lined up as a 1-D vector for an easier 

implementation of genetic operators. 
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Figure 4.6 – Chromosome Codification. 

 

4.1.3. Genetic Operators Definition 

Considering the chromosome as an array with different parameters values 

for each track stretch, each operator must preserve the domain aspects within 

the array sectors. Figure 4.7 shows those sectors for a single track stretch with its 

respective features. The parameter lTP(i) is the length of the i
th

 track stretch. 
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Figure 4.7 – Chromosome Sectors’ domains.  

 

4.1.3.1. Reproduction Selection 

The reproduction selection operator considered here is the fitness roulette 

wheel. It introduces some random factor also existing in the natural process, but, 

instead of having equal probabilities, the roulette slices are proportional to the 

fitness function value of each individual in a generation. Therefore, the fittest 

solution has more chance to reproduce and consequently pass on its genetic 

material. Figure 4.8 illustrates the concept of fitness roulette wheel, where 

percentages represent the chances of each individual to be selected for 

reproduction.  
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Figure 4.8 – Fitness Roulette Wheel. 
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4.1.3.2. Crossover 

The natural process consists of joining half of the genetic material from 

each parent randomly divided to generate the descendant’s DNA. This 

composition is like a mix of genetic code parts. In the computational 

recombination, several methods are used to mime the same effect, concerning 

chromosome structure and data format. 
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Figure 4.9 – Scattered Crossover Algorithm. 

 

4.1.3.3. Mutation 

The natural mutations happen randomly and introduce unexpected 

changes to one or more genetic characteristics of an individual. Mutation is 

important for recovering genetic variability in a saturated population. Likewise, the 

computational mutation method has the same purpose. Its algorithm randomly 

chooses some of the generated individuals to change some part of their 

chromosome also randomly chosen. The mutation rate mR controls the 

percentage of the population submitted to mutation. 

 

4.1.4. Restrictions and Multi-Objective Fitness Function 

In the presented problem, the variable to be minimized is the vehicle lap 

time from the start to the end of the defined path. Each individual should follow 

some accelerations constraints in order to be faithful to the vehicle kinematics 

and to guarantee that the obtained trajectory can be followed. Track limits are 

clear constraints that must also be respected. 

In addition, each car has a set of acceleration limits above which it slides. 

Those critical lateral and longitudinal accelerations are defined by the car’s 

Friction Ellipse, presented in [9] and detailed in Chapter 2. 

Classical optimization methods usually define existing restrictions as 

inequalities. Methods based on Genetic Algorithms usually present faster 

convergence by modeling restrictions as penalties in the final value of the fitness 
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functions. This approach can also be considered as a multi-objective fitness 

function problem. 

In the proposed representation, the first part of the fitness function is a 

dynamic simulation of the vehicle digital model. Since a great number of 

repetitive dynamic simulations are calculated throughout the evolution process, 

the oriented particle vehicle model detailed in Chapter 2 is used..  

The trajectory and speed information compose the fitness function 

calculation. The distance achieved before the car leaves the track limits is called 

dAcc and the entire track distance is dT. The percentage of the track distance 

travelled along a specific trajectory is called d%.  

Another relevant constraint also obtained through simulation is the 

achieved acceleration in relation to the Friction Ellipse. Once the car model 

exceeds the Ellipse’s acceleration limits, PFE assumes a true boolean value, 

which lessens the fitness of that individual. 

 The weights used in the fitness function had to be tuned through several 

tests. The fitness function to be minimized is defined in Equation (4.2), where V is 

the vehicle’s longitudinal speed, aN is the lateral acceleration array and n is its 

length. 
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The determination of the best values for each genetic algorithm 

parameters depends especially on the chromosome model chosen. However, it is 

also affected by the characteristics of the system being optimized. All parameters 

used in the genetic optimization are shown in Table 4.1. 
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Table 4.1 – Genetic Optimization Initial Parameters. 

Population 1000 -

Generations 300 -

Selection
Normalized 

Roulette
-

Reproduction
Scattered 

Crossover
Uniform Rate: 80%

Mutation
Random 

Number
Uniform Rate:  50%

Steady-State Elitism GAP: 10%

Initial 

Population

Seed + Random Variation 

joined with Intact Seed
 

 

4.2. Validation Tests 

The validation tests for the developed genetic algorithm consist of running 

the optimization method for a small track stretch. In order to create a 

representative and yet simple track for the test, an “S” curve preceded and 

followed by straight lines was defined. This small route creates both right and left 

acceleration profiles, allowing a detailed analysis of the optimization output 

trajectory regarding the center line seed trajectory.  

Therefore, with the aim of correctly evaluating the output gain, the seed 

trajectory is shown in Figure 4.10. 
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Figure 4.10 – Center Line Seed Trajectory. 

 

A randomly created population is created from this seed – much of it with 

higher lap times or smaller accomplished distances. The complete optimization 

process is as computationally expensive as any other iterative method. In a non-

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA



74 
 

 

parallel processing unit, a track of a hundred meters and four track stretches 

implies about two hours of computational processing. After some tests, it is 

possible to tune the crossover and mutation rates for a faster convergence.   

Some results can be seen in Figure 4.11. Besides a lap time reduction of 

about 20%, the resulting trajectory indicates atendency of chasing the curve’s 

tangents. Resulting acceleration profiles are shown in Figure 4.12 
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Figure 4.11 – GA Optimization 1

st
 Validation Test: Optimized Trajectory. 
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Figure 4.12 – GA Optimization 1

st
 Validation Test: Acceleration profiles 

 

In the applications’ chapter, other analyses on the optimized trajectories 

will be detailed. 
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