
45

3.
Error Generation Procedures

Most controllers are designed to follow a reference signal or to minimize

the error between the desired value of a variable and the one obtained by some

measuring method. Considering that this research is entirely based on simulation

results, it is necessary to define how to model the sensor system perception of

the current position related to the reference trajectory.

The chosen control reference is the vehicle’s desired path, which is stored

as detailed in [15]. Two different error definitions are introduced in this section:

the present-based trajectory error and the future-based trajectory error. Both are

detailed and tested.

3.1. Track Construction Model

3.1.1. Presentation and Description

The defined track model [15] is stored as a matrix, represented in

Equation (3.1) and describing the track as a combination of straight lines and

circle arcs. The columns store information about corresponding road parts. Null

values in the second line of column i means that the current stretch is a straight

line. The first line of that column is the stretch’s length, given by the variable L(i).

On the other hand, for a curve stretch represented in column j, the first line

shows the curve’s radius and the second line defines its angle, –R(j) and �(j)

respectively.

() () () ()
() () �

�

�
�

�

−

−
=

0120

1 21

n

nLnRRL
Track

αα �

�

(3.1)

Each column information of the track matrix can be used to obtain the

positions and orientations of the starting point for each track stretch i, named

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

46

(xT(i),yT(i)) and �(i) respectively. Therefore, (xT(1),yT(1)) are the coordinates of

the first track stretch and �(1) is its angle with the horizontal.

In order to obtain the coordinates of the subsequent track stretches, the

track construction algorithm developed uses simple geometric relations, as

shown in Figure 3.1. Equations (3.2) and (3.3) detail these calculations, for

straight lines and curves respectively.

()i-1

()i

 () ()()1, 1 ++ iyix TT

R i()

() ()()iyix TT ,

R i()

()i

L i(-1)

B

Figure 3.1 - Track stretch Coordinate Calculus.

() () () ()()
() () () ()()

() ()
{ } 32 ;

1

1sin11

1cos11

,...,n,ifor

ii

iiLiyiy

iiLixix

TT

TT

=
�
�

�
�

�

−=

−⋅−+−=

−⋅−+−=

ββ

β

β

(3.2)

() () ()()

() () () ()

() () () ()

() () ()

{ } 32 ;

11

2

1
1sin1

2

1
1cos1

1cos1212
2

,...,n,ifor

iii

i
iBiyiy

i
iBixix

iiRiRB

TT

TT

=

�
�
�
�

�

�
�
�
�

�

�

−+−=

�
�

�
�
	

 −
+−⋅+−=

�
�

�
�
	

 −
+−⋅+−=

−⋅−⋅−−⋅=

αββ

α
β

α
β

α

(3.3)

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

47

For all vehicle models, the defined track is completely planar, allowing a

2–dimentional representation from center line trajectory. However, is assumed a

simplification hypothesis that the whole track has a single lane width: lw.

3.1.2. Validation Tests

The validation test for the track model is simple and should enable the

construction of a graphical representation of any track directly from its data

matrix. For example, in Table 3.1 all the information of a sample track is detailed.

The curve lengths, L(2) and L(4), are calculated by multiplying the curve angle in

radians and the curve radius in meters.

Table 3.1 – Detailed Track Information.

Track Part Type R [m] � [˚] L [m] l w [m]

1 Straigth Line - - 100 8

2 Right Curve 20 180 62.8 8

3 Straigth Line - - 100 8

4 Right Curve 20 180 62.8 8

The respective data matrix is defined in Equation (3.4). Note that the signs

in R(2), R(4), �(2) and �(4) indicate the side of the curve. According to the

alignment of the positive X axis with the car front, a left curve is positive and a

right curve is negative. Figure 3.2 shows the representation for that matrix and

the gray arrow indicates the track starting point and orientation.

�
�

�
�

�

−−

−−
=

ππ 00

20100 02100
Track

(3.4)

-20 0 20 40 60 80 100 120

-50

-40

-30

-20

-10

0

10
→→→→

X (m)

Y
 (

m
)

→→→→→→→→→→→→→→→→

Figure 3.2 – Track Model Validation Test: Oval Circuit.

Although the center line information can be written as a combination of

straight lines and arcs of circle, the trajectory itself is treated as a sequence of

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

48

points where the car center of mass should move along. The car’s path is

obtained by iterations of the vehicle model directly commanded or as a result of

the optimization process.

In the error generation procedure the reference signal is the global

coordinate of a desired path along time. This implies in keeping much

information, but allows the direct connection between the optimization and

controller simulation blocks, increasing modularity.

3.2. Traveled Track Distance Correction

3.2.1. Presentation and Description

An important calculation is the travelled track distance correction. This

distance represents the center line projection of any point on the track. It can be

better visualized in Figure 3.3.

Figure 3.3 – Graphic Representation of the Traveled Track Distance Correction.

In order to adopt a pattern in the track representation, all figures respect

the same color scheme shown in the legend of Figure 3.3. Human drivers do not

use the elapsed time to locate themselves on the path. Instead, they use visual

information to identify, for example, that they are at the end of a curve or getting

close to a straight line.

Initially, the current car position must be related to a specific track stretch

to enable its center line recognition. Therefore, to identify on which track stretch

the car position should be projected, the track side limits must be calculated.

Maintaining the same discretization of the coordinates of the track stretch

position, (xT(i),yT(i)), and orientation, �(i), the track limits for the left and right

sides of the road are shown in Equations (3.5) and (3.6), respectively.

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

49

()
() () () ()

() () () ()�
�
�
�

�

�
�
�
�

�

�

+⋅�
�

�
�
	

++⋅�

�

�
�
	

+

+⋅�
�

�
�
	

++⋅�

�

�
�
	

+

=

1sin
2

1sin
2

1cos
2

1cos
2

 lim

i
l

iyi
l

iy

i
l

ixi
l

ix

i
w

T

w

T

w

T

w

T

Left

ββ

ββ

(3.5)

()
() () () ()

() () () ()�
�
�
�

�

�
�
�
�

�

�

+⋅�
�

�
�
	

−+⋅�

�

�
�
	

−

+⋅�
�

�
�
	

−+⋅�

�

�
�
	

−

=

1sin
2

1sin
2

1cos
2

1cos
2

lim

i
l

iyi
l

iy

i
l

ixi
l

ix

i
w

T

w

T

w

T

w

T

Right

ββ

ββ

(3.6)

Once the (x,y) point is located inside the track it can be projected,

generating the center line corresponding position of the car, (xC,yC). This

projection, which consists, for the straight parts of the track, of finding the

interception point between lines r and p, is graphically represented in Figure 3.4.

Notice that r is the track stretch center line and p is a line perpendicular to r that

contains the point (x,y).

r

p

()CC yx ,

()iβ

() ()()iyix TT ,

 () ()()1, 1 ++ iyix TT

Figure 3.4 – Straight Line’s Projection Procedure.

The implemented algorithm begins by identifying on which track stretch

the car (x,y) is located. Since the car always starts from the first stretch, this

search consists of analyzing the current vehicle position; if it is outside the limits

of stretch i, the stretch counter is incremented.

If the identified track stretch is a straight line, the angular and linear

coefficients of the center line equation are calculated. The variables r1 and r2, are

given below, where the line r equation is defined by yr = r1.xr + r2 :

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

50

() ()
() ()

xryr

iyiy

ixix
r

TT

TT

⋅−=

�
�
�

�
�
�
	

+��
�

�
��
	

−+

−+
=

12

1
21

1
arctantan

π

The same calculation is repeated for the line p equation, shown in gray in

Figure 3.4. This line must be perpendicular to the r line and the car position (x,y)

must be a point of p. The line p equation is yp = p1.xp + p2, and the coefficients p1

and p2 are determined by:

()

xpyp

rp

⋅−=

�
�

�
�
	

+=

12

11
2

arctantan
π

The projected point that corresponds to the vehicle position is (xC,yC),

calculated from the interception between lines r and p. The length of each track

stretch j, L(j) has already been calculated analytically. The corrected Travelled

Track Distance of (x,y), d(x,y) is then obtained through Equation (3.7).

21

11

22

pxpy

pr

rp
x

CC

C

+⋅=

−

−
=

() ()() ()() ()�
−

=

+−+−=
1

1

22
,

i

j

TCTC jLiyyixxyxd

(3.7)

If the track stretch is a curve, the center line perpendicular projection must

be calculated in another way. Instead, the radius line that crosses the car position

(x,y) should be used, maintaining the orthogonal characteristic of this operation.

Considering that all curves are arcs of circle, polar coordinates are used

in the projection calculation. Some auxiliary variables, especially angles, are

necessary and defined below.

The angle between the global X-axis and the first point radial line is �.

That angle is easily obtained from the orientation of the track stretch first point,

�(i), and the sign of the curve angle, �(i):

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

51

() ()()
2

sign
π

αβ ⋅−=∆ ii

The point (Cx,Cy) is the center of curvature of the track stretch i and is

defined by using the inverse polar transform. Hence, using the curve radius, R(i),

the arc angle �, and the coordinates of the previous stretch starting point’s (xT(i–

1),yT(i–1)), the transform can be written as:

()
()

()
()��

�
�

�

−

−
+�

�

�
�

�

∆⋅

∆⋅
=�

�

�
�

�

1

1

sin

cos

iy

ix

iR

iR

C

C

T

T

y

x

The orientation of the desired radius line that crosses the car position,
, is

obtained from the vertical and horizontal variation between the center of

curvature and the vehicle position, �x and �y. Finally, the corrected traveled track

distance, d(x,y), is obtained as shown in Equation (3.8). The graphical

representation of the curve path algorithm can be seen in Figure 3.5.

()() ��
�

�
��
	

∂

∂
⋅+∆−=

−=∂

−=∂

x

y

yy

xx

i

Cy

Cx

arctansign απγ

() () ()�
−

=

+⋅=
1

1

,
i

j

jLiRyxd γ
 (3.8)

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

52

∆

γ

()iα

() ()()iyix TT ,

()CC yx ,

()
yx

CC ,
 () ()()1, 1 ++ iyix TT

R i()

Figure 3.5 – Curve’s Projection Procedure.

3.2.2. Validation Tests

To validate the procedure, the track defined in Table 3.1 was implemented

in the Simulink® environment. A test trajectory, tangent to the second curve of

this track, is defined manually. This trajectory does not coincide with the lane

center line and, in order to generate the acceleration profile input, the correct

travelled track distance should be calculated.

In Figure 3.6, the lane center line, the trajectory performed by the vehicle

and the corrected center line projection are plotted together. The track travelled

distance of the last point indicated by a black “x” in the same figure is 196.20 m.

Comparing it to the analytical distances showed in Table 3.1 and considering

that the car is approximately in the first third of the second straight line, the

corrected distance should be: d = 100 + 20	 + 100/3 � 196.16.

-20 0 20 40 60 80 100 120

-70

-60

-50

-40

-30

-20

-10

0

10

X (m)

Y
 (
m

)

→→→→

Lane Center Line

Realized Trajectory

Corrected Traveled Distance Projection

Figure 3.6 – Traveled Distance Correction Validation Test: Projection Procedure.

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

53

3.3. Present-based Trajectory Error Definition

3.3.1. Presentation and Description

As mentioned before, two different error generation methods were

developed with the purpose of understanding and modeling how humans identify

a deviation from a desired path. The first one, detailed in this section, consists of

comparing the instant car position and orientation to desired values of those

variables on the closest point in the reference trajectory.

Human are able to perform this task automatically. However, in the case

of a computational search for the trajectory’s closest point, much information

must be stored and computed. As the car initial position is always the first point,

this is surely the closest point to the reference, therefore creating the base for the

recursive calculation.

The index of the closest point is icp, which is represented in Figure 3.7. A

region around this point is also stored in order to minimize the search domain in

the next iteration. The vehicle’s reference system (XC,YC) appears in gray and it

is placed on the vehicle center of mass. The track reference system is placed on

the closest point and is represented by the axes in black (XP,YP). The car’s yaw

angle is �, and the angle between the trajectory tangents at the icp point and the

global X-axis is �.

�

Figure 3.7 – Present-based Trajectory Error: Graphic Representation.

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

54

The closest point index calculation is repeated throughout the iterations;

before updating icp, the previous iteration index value is stored in the variable ilast.

The region is stored as the array of the points indexes, areg, which generally

contains the closest point index itself and some points after and before.

The ideal gaps are symmetrical around the closest point and may be

changed manually by the variable ngap. Its determination must consider the

vehicle speed and simulation time. The algorithm must treat some situations

where the number of points after and before the closest point is not the same.

The first contour condition is when ilast is equal or smaller than ngap, and the

region is defined as in Equation (3.9).

{ }
gaplastgaplastlastreg niniia ++= , 1- , , , , 2 , 1 ��

(3.9)

Another special situation is when the vehicle approaches the end of the

trajectory. If ilast plus ngap are equal or higher than the trajectory array length ltraj,

the region array is written as in Equation (3.10).

{ }
trajtrajlastgaplastgaplastreg llininia , 1 , , , , 1 , −+−−= ��

(3.10)

It is generally possible to map a complete search region with the number

of elements, determined by 2.ngap+1. The region of possible closest points is then

updated recursively as shown in Equation (2.3).

{ } , , , , gaplastlastgaplastreg niinia +−= ��
(3.11)

The closest point is the point in the region array with minimum Euclidean

distance to the car’s center of mass, (x,y). Equations (3.12) show the

implementation of this calculation and also the icp determination.

() ()() ()()

()�
�

�
�

�

=

∈⇔−+−=

regcp

regtrajtrajreg

di

aiyiyxixid

min

22

(3.12)

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

55

Calculating the car’s position and orientation regarding the trajectory is the

last step for obtaining the error components. The strict changes from global

coordinates (X,Y) to local reference coordinates, (XP,YP) and (XC,YC), are shown

in Equations (3.13) and (3.14).

�
�

�
�

�

−
=

λλ

λλ

cossin

sincos
PG R

(3.13)

�
�

�
�

�

−
=

θθ

θθ

cossin

sincos
CG R

(3.14)

By multiplying (x,y) by the rotation matrix GRP the car position can be

referred to the local system. Hence, as shown in Equations (3.15), the position

error, EP, is equal to the yP component with the opposite sign. This sign change

intends to automatically indicate if the car is too much to the left or to the right

side.

()
()

�
�

�
�

�

=

�
�

�
�

�
+�
�

�
�

�
⋅=�

�

�
�

�

PP

cptraj

cptraj

PG

P

P

yE

iy

ix

y

x
R

y

x

(3.15)

Considering that the treated tracks can be closed circuits, � and � may

assume values in other quadrants as well. The matrices described in Equations

(3.13) and (3.14) can be used to express the rotation between the track’s and

vehicle’s local reference systems. The matrix manipulation is:

() ()
 Orthogonal is

11

111

T

PGPGCGCGPGCP

CPCGPGCPPGPGCGPG

CPPGCG

RRRRRR

RIRRRRRRR

RRR

=⇔∴⋅=

⋅=⋅→⋅⋅=⋅

⋅=

−−

−−−

Therefore, the orientation error, Ea, can be obtained from the rotational

matrix PRC. As seen in Equation (3.16), all the matrix positions are known

trigonometric functions of Ea.

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

56

�
�

�
�

�

−
=⋅=

aa

aa

CG

T

PGCP
EE

EE
RRR

cossin

sincos

(3.16)

Both error components calculated here were used by the controller

developed in Chapter 5. They are sufficient to guarantee that any controller has

the information not only to follow the track center, but also to perform it with the

correct orientation.

3.3.2. Validation Tests

The error generation procedure is directly applied to a predefined

trajectory and to the car’s condition. Tests shown here intend to confirm the

expected error behavior in specific conditions, and are not related to any real

application or vehicle model.

The primary and most important test consists of evaluating the model

response. The algorithm is submitted to known inputs and then it is checked

whether the error calculated components represent those inputs properly. The

Simulink® Block Diagram used in this test is shown in Figure 2.13. The car global

displacement is represented by x, y and �.

Car Global

Displacement

x

y

theta

AngError1

AngError

PosError

x

y

theta

Test Values

Global Position

Position Error

Angle Error

Present Basis Trajectory Error

DesiredTrajectory

Figure 3.8 – Present-based Trajectory Error Validation 1

st
 Test: Simulink Block Diagram.

The car displacement for this test is defined as a straight line with

constant speed. In the block diagram, x is a ramp function, and y and � are

constants defined here as 0. This and the desired trajectorycan be seen in Figure

3.9. The output error components are shown in Figure 3.10.

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

57

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

1.5

X [m]

Y
 [m

]

Realized Trajectory

Desired Trajectory

Figure 3.9 – Present-based Trajectory Error Validation 1

st
 Test: Inputs.

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

E
p

[m
]

Distance [m]

0 1 2 3 4 5 6
-50

0

50

E
a

[º
]

Distance [m]

Figure 3.10 – Present-based Trajectory Error Validation 1

st
 Test: Outputs.

It can be seen in Figure 3.10 that the test response is coherent with the

given inputs. Notice that the position error, Ep, does not repeat a sinusoidal

profile. The orientation error, Ea, varies from –45º to 45º in accordance with the

same sinusoidal inclination angles.

An important point is to analyze the responses when the trajectory is a

closed circuit. As the error reference system follows the trajectory, it is interesting

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

58

to see how a full turn affects the error values. Another relevant matter is whether

the error keeps close to zero when the car manages to chase the trajectory.

This final experiment will test both situations simultaneously. The

Simulink® Block Diagram is modified so that it submits the error algorithm to a

circular trajectory and a similar car displacement.

The defined inputs can be seen in Figure 3.11. Visually, they are exactly

the same. However, the circle equation is graphically represented in a numeric

environment by a polygon with a finite number of faces. Therefore, as these two

data sets were created separately, the polygons are not identical.

-3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

X [m]

Y
 [m

]

Realized Trajectory

Desired Trajectory

Figure 3.11 – Present-based Trajectory Error Validation 2

nd
 Test: Inputs.

As shown in Figure 3.12, the position error, Ep, does not present

significant values throughout the trajectory. Nevertheless, the orientation error

Ea, is more susceptible to it.

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

59

0 2 4 6 8 10 12

-1

-0.5

0

0.5

1

E
p

[m
]

Distance [m]

0 2 4 6 8 10 12
-50

0

50

E
a

[º
]

Distance [m]

Figure 3.12 – Present-based Trajectory Error Validation Second Test: Outputs.

Despite the small numeric disturbance, this test confirms the expectations.

It shows that when the car follows a trajectory, the error signal remains close to

zero. In addition, it can be observed that the error generation procedure is suited

to closed circuits.

3.4. Future-based Trajectory Error Definition

3.4.1. Presentation and Description

The error analysis presented above represents the perception of a driver

in a car “without windows and with a small hole on the floor”. That driver is able to

notice deviations just after they occur, and only then react to them.

Differently from the present-based trajectory error, the future-based

trajectory error considers road information ahead, which is more representative of

the way human beings drive.

As the previous method, the car initial position is always the first point of

the trajectory. A region of possible closest points is also kept stored to minimize

the search domain, and two local reference systems are again placed on the

car’s center of mass and on the closest point.

Instead of getting error information only from icp, a number of forward

steps, nFS, are also analyzed. Those forward positions may be collected

sequentially or by ignoring some intermediate data. The step size is defined by

variable �i. A schematic procedure is illustrated in Figure 3.13.

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

60

�

Figure 3.13 – Future-based Trajectory Error: Graphic Representation.

Once more, the closest point index calculations are repeated throughout

the iterations and the previous iteration index value is stored in ilast. The areg array

is determined by the algorithm described in Equations (3.9), (3.10) and (2.3); the

closest point, icp, is the same as shown in Equation (3.12).

The new algorithm begins by looking at the present trajectory information

regarding the vehicle. In the present-based trajectory error, the car position, (x,y),

considered the track’s reference system. Here the rotation matrix GRC, detailed in

Equation (3.14), is used for expressing the track points with respect to the car’s

local reference system. From icp and for all the desired forward steps, that

calculation is detailed in Equation (3.17).

()
()

()
()

{ }

�
�

�
�

�

+=

⋅+=

=

⇔�
�

�
�

�
+�
�

�
�

�
⋅=�

�

�
�

�

1

, ... , 2 , 1 , 0

kj

kii

nk

y

x

iy

ix
R

jy

jx
icp

FS

traj

traj

CG

C

C δ

(3.17)

The main idea is to consider the influence of all points in the

errorcalculation. A natural method is to compute the mean value among the yC

components of all track information obtained above. However, in order to add

more flexibility to the model, the array wFS is defined to calculate the position

error as a weighted average, as shown in (3.18).

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

61

()�
+

=

⋅−
+

=
1

1

)()(
1

1 FSn

j

FSC

FS

p jwjy
n

E

(3.18)

It is very important to keep the convention that the positive error is related

to the car’s left. Therefore, yC is written negatively, because in this case the error

reference system is placed in the car.

The orientation error generation procedure implemented here also

considers the future information. It starts with the calculation of the CRP, CRP

matrix for each point j ahead. To calculate the contributions of each future point

to the orientation error, Ea(j), it is necessary to invert the trigonometric functions

in each rotation matrix. Those operations are detailed below and the error

definition appears in Equation (3.19).

() ()

() ()
() ()��

�
�

�

−
=⋅=

=⇔∴⋅=⋅

⋅⋅=⋅

⋅=

−−

−−

jEjE

jEjE
RRR

RRRRIRR

RRRRR

RRR

aa

aa

j

PG

T

CG

j

PC

T

PGPGCGCP

j

PGCG

j

PCCGCG

j

PCCG

j

PCCG

j

PG

cossin

sincos

 orthogonal is
11

11

Erro! Não é possível criar objetos a

partir de códigos de campo de

edição.

 (3.19)

3.4.2. Validation Tests

Tests shown here have the same structure as those in 3.3.2. One

evaluates if the responses are conceptually correct, and the other checks its

behavior in critical situations.

The Simulink® Block Diagram used in this validation analysis and in all

following tests is shown in Figure 3.14. Here the future-based trajectory error is

the tested block.

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

62

x

y

theta

AngError1

AngError

PosError

x

y

theta

Test Values

Car Global Position

Position Error

Angle Error

Future Basis Trajectory Error

DesiredTrajectory

Figure 3.14 – Future-based Trajectory Error Validation Tests: Simulink Block Diagram.

Again the car displacement is established as a straight line with constant

speed, x is a ramp function, y and � are constants set to 0. The desired trajectory

is plotted together with the car displacement in Figure 3.15.

As seen in the previous section, the future-based trajectory error algorithm

allows variations in the number of considered forward steps, nFS, and also in the

sample interval, �i. Different values for nFS and �i were tested for the same inputs

used above; results can be seen in Figure 3.16.

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

1.5

X [m]

Y
 [
m

]

Realized Trajectory

Desired Trajectory

Figure 3.15 – Future-based Trajectory Error Validation 1

st
 Test: Inputs.

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

63

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

Outputs

E
p

[m
]

Distance [m]

0 1 2 3 4 5 6
-50

0

50

E
a

[º
]

Distance [m]

n
FS

=5 ; δ
i
=1

n
FS

=15 ; δ
i
=1

n
FS

=15 ; δ
i
=2

n
FS

=20 ; δ
i
=5

n
FS

=5 ; δ
i
=1

n
FS

=15 ; δ
i
=1

n
FS

=15 ; δ
i
=2

n
FS

=20 ; δ
i
=5

Figure 3.16 – Future-based Trajectory Error Validation 1

st
 Test: Outputs.

The first case responses were very similar to those obtained through the

present-based trajectory error procedure. Knowing that, in simulation, the

intervals are of 0.001s, nFS = 5 and �i = 1, the error procedure considers

information from few centimeters ahead only.

In the next case, with nFS = 15 and �i = 1, the future information caused

some changes to Ep and Ea graphic shapes. However, as the step size between

the evaluated points was still one, the future information does not compensate

the computational effort in increasing the number of forward steps.

Relevant results were obtained in the next two cases. With the same nFS

but with a step size equal to two, fifteen points were evaluated; the thirtieth step

ahead was considered in error calculations. The graphs presented in Figure 3.16

clearly show how the error signals were influenced by future information.

Ep now grows faster while the trajectory is diverging from the car; when

the future distance is decreasing, the position error follows that path

asymptotically. Ea also presents this behavior of anticipating and smoothing the

sinusoidal transitions. It is important to remember that this response could

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

64

change drastically with the array’s weight wFS (defined uniformly here in order to

give the same importance to all points evaluated by error procedure).

The second test consists of applying a coincident trajectory and car

displacement inputs that should represent a closed contour. Therefore, a circular

trajectory was used and the car displacement was defined as a cosine in x, a sine

in y and a ramp in �. In Figure 3.17, the test inputs can be seen. Those are the

same inputs given in the second test of the present-based trajectory error

procedure.

-4 -3 -2 -1 0 1 2 3 4 5 6
0

1

2

3

4

X [m]

Y
 [m

]

Realized Trajectory

Desired Trajectory

Figure 3.17 – Future-based Trajectory Error Validation 2

nd
 Test: Inputs.

Calculated error outputs for different values of nFS and �i appear in Figure

3.18.

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

65

0 2 4 6 8 10 12

-1

-0.5

0

0.5

1

E
p
 [
m

]

Distance [m]

0 2 4 6 8 10 12
-50

0

50

E
a
 [
º]

Distance [m]

n
FS

=5 ; δ
i
=1

n
FS

=15 ; δ
i
=1

n
FS

=15 ; δ
i
=2

n
FS

=20 ; δ
i
=5

n
FS

=5 ; δ
i
=1

n
FS

=15 ; δ
i
=1

n
FS

=15 ; δ
i
=2

n
FS

=20 ; δ
i
=5

Figure 3.18 – Future-based Trajectory Error Validation 2

nd
 Test: Outputs.

Despite some small disturbance due to numerical difference between the

circular trajectory and the car displacement, this test confirms the expectations.

Although the car follows the trajectory, the position error increases with nFS and

�i. This occurs because a larger part of the circle ahead from the car’s position is

evaluated by the error procedure.

The orientation error repeats the same behavior. This was also expected,

once the trajectory is ending and the error procedure does not have more future

points to evaluate.

DBD
PUC-Rio - Certificação Digital Nº 0621322/CA

