Sergio Santiago Ribeiro

Optimal Trajectory Definition and Control for a Terrestrial Vehicle in a Closed Track

DISSERTAÇÃO DE MESTRADO

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

Postgraduate Program in Electric Engineering

Rio de Janeiro March 2009

Sergio Santiago Ribeiro

Optimal Trajectory Definition and Control for a Terrestrial Vehicle in a Closed Track

Dissertação de Mestrado

Dissertation presented to the Postgraduate Program in Electric Engineering of the Departamento de Engenharia Elétrica, PUC-Rio as partial fulfillment of the requirements for the degree of Mestre em Engenharia Elétrica.

> Adviser: Ricardo Tanscheit Co-Adviser: Mauro Speranza Neto

> > Rio de Janeiro, March 2009

Sergio Santiago Ribeiro

Determinação e Controle da Trajetória Ótima de um Veículo Terrestre em Traçado Fechado Pré-definido

Dissertação Apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico e Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Ricardo Tanscheit Orientador Departamento de Engenharia Elétrica - PUC-Rio

Prof. Mauro Speranza Neto Co-Orientador Departamento de Engenharia Mecânica - PUC-Rio

> Prof. Fernando Ribeiro da Silva IME

Prof. José Franco Machado do Amaral Departamento de Engenharia Eletrônica e de Telecomunicações - UERJ

> Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico e Científico

Rio de Janeiro, 25 de março de 2009

All reserved rights. Forbidden partial or complete reproduction without previous authorization of the university, the author and advisors.

Sergio Santiago Ribeiro

Undergraduate in Control and Automation Engineering by Pontifical Catholic University - PUC-Rio (Rio de Janeiro Brazil) in 2006.

Ficha Catalográfica

Ribeiro, Sergio

Determinação e Controle da Trajetória Ótima de um Veículo Terrestre em um Traçado Fechado Pré-Definido / Sergio Santiago Ribeiro; orientadores: Ricardo Tanscheit e Mauro Speranza Neto. – Rio de Janeiro: PUC, Departamento de Engenharia Elétrica. – 2009.

98 f.: il.(col.); 30 cm

Dissertação (Mestrado em Engenharia Elétrica) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2009.

Inclui referências bibliográficas.

1. Engenharia elétrica – Dissertações. 2. Trajetória ótima. 3. Controle de trajetória. 4. Lógica Nebulosa. 5. Algoritmos Genéticos. I. Tanscheit, Ricardo. II.Speranza Neto, Mauro. III. Pontifícia Universidade Católica. Departamento de Engenharia Elétrica.

CDD: 621.3

PUC-Rio - Certificação Digital Nº 0621322/CB

Dedicated to my parents, Stélio and Solange.

Acknowledgements

I would like to thank all the people that directly or not helped me to get here, specially:

My parents, brother and sister, for understanding my absence in parties and other family meetings.

My future wife Priscilla, for her organization, brilliant ideas and tenderness on tough moments.

My advisors Mauro Speranza Neto and Ricardo Tanscheit, for the support and involvement.

All my colleagues of the Vehicle Systems Simulation Group, for sharing the same passion.

CNPq and CAPES, for the financial support and belief.

Resumo

Ribeiro, Sergio; Tanscheit, Ricardo; Speranza Neto, Mauro. **Determinação** e Controle da Trajetória Ótima de um Veículo Terrestre em um Traçado Fechado Pré-Definido. Rio de Janeiro, 2009. 98p. Dissertação de Mestrado – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

A determinação de uma trajetória ótima não é uma tarefa simples, uma vez que ela é diretamente dependente dos limites de aceleração suportada por cada veículo. Essa pesquisa aborda um método de otimização baseado em algoritmos genéticos que identifica a trajetória que um carro deve percorrer para completar uma pista pré-definida no menor tempo. Considerando um modelo veicular de Partícula Orientada, o método otimiza os perfis de aceleração que levam o veículo a percorrer a trajetória de menor tempo. Adicionalmente, projeta-se um controlador fuzzy para emular o comportamento de um ser humano na direção do veículo ao longo da trajetória ótima. Para alimentar o controlador, foram testados dois métodos de geração de erro: o Erro Presente da Trajetória e o Erro Futuro da Trajetória (FBTE), que é a medida de posição do carro quanto a sua tendência de movimento. Resultados obtidos com controladors clássicos, como o PDD, são confrontados com os fornecidos pelo controlador fuzzy alimentado pelo procedimento de geração de Erro Futuro de Trajetória (FBTE).

Palavras-chave

Dinâmica Veicular. Modelos de Veículos Terrestres. Otimização. Trajetória Ótima. Controle Fuzzy. Algoritmos Genéticos. Ribeiro, Sergio; Tanscheit, Ricardo (Advisor); Speranza Neto, Mauro **Optimal Trajectory Definition and Control for a Terrestrial Vehicle in a Closed Track.** Rio de Janeiro, 2009. 98p. MSc. Dissertation – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

The definition of the minimum time trajectory in a track is not obvious, since it is directly dependent on the acceleration limits that the vehicle can withstand. This paper presents an optimization method based on Genetic Algorithms that identifies the path that a car must follow in order to complete a given circuit in minimum time. By considering an Oriented Particle model, the method optimizes the acceleration profiles that drive the vehicle along the trajectory in minimum time. In addition, a fuzzy controller is designed to emulate the behavior of a human driver controlling a high speed car along the optimized trajectory. Two different error generation procedures were tested as controller inputs: the Present Trajectory Error and the Future-based Trajectory Error (FBTE), which gives information on the car's tendency of movement. Results obtained with other controllers in the same application, such as the PDD, are compared to those provided by the fuzzy controller fed by the FBTE procedure.

Key Words

Vehicular Kinematics. Models of Terrestrial Vehicles. Optimization. Optimal Trajectory. Fuzzy Control. Genetic Algorithms.

Summary

1. Introduction	1
1.1. Objectives and Motivations	17
1.2. Literature Review	17
1.3. Methodology	19
2. Vehicular Models	20
2.1. Oriented Particle Vehicle Model	20
2.2. Stationary Kinematical Vehicle Model	36
3. Error Generation Procedures	45
3.1. Track Construction Model	45
3.2. Traveled Track Distance Correction	48
3.3. Present-based Trajectory Error Definition	53
3.4. Future-based Trajectory Error Definition	59
4. Trajectory Determination: Evolutionary Optimization	66
4.1. Presentation and Description	66
4.2. Validation Tests	73
5. Vehicle Control: Fuzzy Driver	75
5.1. Presentation and Description	75
5.2. Validation Tests	82
6. Applications	85
6.1. Trajectory Optimization Methods Comparison	85
6.2. Trajectory Error Calculation Comparison	88
6.3. Vehicle Controllers Comparison	90
6.4. Fuzzy Driver Applied To Genetic Optimized Trajectory	92
7. Conclusions	95
7.1. Final Considerations	95
7.2. Future Works Propositions	95
8. References	96

List of Symbols

A BMaz	Maximum Braking Acceleration
A LMax	Maximum Lateral Acceleration
a Max	Maximum Accelerations' array
a N	Normal Acceleration
a N0	Peak Turn Acceleration
ā N0(i)	Average Peak Lateral Acceleration for ith track strecth
A reg	Array of points indexes
ат	Tangent Acceleration
а то	Peak Traction Acceleration
a ti	Peak Braking Acceleration
a TMax	Maximum Traction Acceleration
a_y	Normal Acceleration
b d	Front axel size
b t	Rear axel size
d	Dinamic traveled track distance
d Acc	Accomplished distance before the car leaves the track limits
d_f	Loose gape of the Steering Wheel
d fb	Minimum braking distance
d ft	Distance where the maximum speed is achieved
d N0,1,2	Characteristic distances of the Normal Acceleration Profile
dт	Entire track distance
d	Characteristic distances of the Tangent Acceleration Profile
E a	Orientation Error
E_p	Position Error
і СР	Closest point index
i last	Previous iteration index
K d	Gain between Steering Wheel angle and acctual Wheel angle
l	Distance between the axles

L(i)	Straight Line Lenght for the ith track stretch
l d	Distance between front shaft and the vehicle's Center of Mass
l t	Distance between rear shaft and the vehicle's Center of Mass
l _w	Lane width
n FS	Number of forward steps considered
N gap	Number of points that compose the search gap
P FE	Friction Ellipse penalty
R(i)	Curve Radius for the ith track stretch
R t	Curve radius of rear shaft
t i	Time at the instant i
V	Linear Velocity
V x	Hiruzibtal Conponents of the velocity
Vy	Vertical Conponents of the velocity
W FS	Forward steps weights array
x	Horizontal position coordinate in a Local Reference System
xc(i)	Horizontal coordinate of the car on the Center Line reference system
x t(i)	Horizontal coordinate of starting point for the ith track stretch
У	Vertical position coodinates in a Local Reference System
yc(i)	Vertical coordinate of the car on the Center Line reference system
ут(i)	Vertical coordinate of starting point for the ith track stretch
$\alpha(i)$	Curve Angle for the ith track stretch
αv	Angle of Attack
$\beta(i)$	Orientarion of starting point for the ith track stretch
δ d	Right transformation of the steering wheel angle
δe	Left transformation of the steering wheel angle
δ_i	Step size
θ	Angle between the vehicle <i>x</i> -axis and the
ρ	Curve radius of the Center of Mass
τ	Decay constant of exponencial in Acceleration Profiles
ω	Angular Velocity

List of Figures

Figure 2.1 – Oriented Particle Model Representation.	21
Figure 2.2 – Simulink Block Diagram: Oriented Particle Vehicle Model.	
Compact Form (a) and Extended Form (b)	22
Figure 2.3 – MatLab Function Form Examples	22
Figure 2.4 – Tangent Acceleration Profiles.	23
Figure 2.5 – Normal Acceleration Profiles	24
Figure 2.6 – Friction Ellipse	25
Figure 2.7 – Oriented Particle Model 1 st Validation Test: Simulink Block Diagram	25
Figure 2.8 – Oriented Particle Model 1 st Validation Test: Inputs	26
Figure 2.9 – Oriented Particle Model 1 st Validation Test: Vehicle Speed	26
Figure 2.10 – Oriented Particle Model 1 st Validation Test: Performed Trajectory	27
Figure 2.11 – Oriented Particle Model 1 st Validation Test: Orientation Output	27
Figure 2.12 – Oriented Particle Model 1 st Validation Test: Friction Ellipse	28
Figure 2.13 – Acceleration Profiles Validation Tests: Simulink Block Diagram	29
Figure 2.14 – Oriented Particle Model 2 nd Validation Test: Inputs	29
Figure 2.15 – Oriented Particle Model 2 nd Validation Test: Trajectory	30
Figure 2.16 – Oriented Particle Model 2 nd Validation Test: Vehicle Orientation	30
Figure 2.17 – Oriented Particle Model 2 nd Validation Test: Fiction Ellipse	31
Figure 2.18 – Oriented Particle Model 3 rd Validation Test: Inputs	32
Figure 2.19 – Oriented Particle Model 3 rd Validation Test: Realized Trajectory	32
Figure 2.20 – Oriented Particle Model 3rd Validation Test: Vehicle Speed	33
Figure 2.21 – Oriented Particle Model 3rd Validation Test: Friction Ellipse	33
Figure 2.22 – Oriented Particle Model 4th Validation Test: Inputs	34
Figure 2.23 – Oriented Particle Model 4th Validation Test: Vehicle Speed	34
Figure 2.24 – Oriented Particle Model 4th Validation Test: Realized Trajectory	35
Figure 2.25 – Oriented Particle Model 4th Validation Test: Orientation	35
Figure 2.26 – Oriented Particle Model 4th Validation Test: Friction Ellipse	36
Figure 2.27 – Kinematical Model Representation.	37

Figure 2.28 – Ackerman Geometry Definitions.	. 38
Figure 2.29 – Simulink Block Diagram: Kinematical Vehicle Model. Compact Form (a) and Extended Form (b)	40
Figure 2.30 – Kinematical Model Validation Tests: Simulink Block Diagram	. 40
Figure 2.31 – Kinematical Model 1st Validation Test: Input	. 41
Figure 2.32 – Kinematical Model 1 st Validation Test: Trajectory Comparison	. 42
Figure 2.33 – Kinematical Model 1 st Validation Test: Orientation Comparison	. 42
Figure 2.34 – Kinematical Model 2 nd Validation Test: Input.	. 43
Figure 2.35 – Kinematical Model 2 nd Validation Test: Realized Trajectories Comparison.	43
Figure 2.36 – Kinematical Model 2 nd Validation Test: Orientation Comparison	. 43
Figure 3.1 - Track stretch Coordinate Calculus	. 46
Figure 3.2 – Track Model Validation Test: Oval Circuit	. 47
Figure 3.3 – Graphic Representation of the Traveled Track Distance Correction	. 48
Figure 3.4 – Straight Line's Projection Procedure	. 49
Figure 3.5 – Curve's Projection Procedure.	. 52
Figure 3.6 – Traveled Distance Correction Validation Test: Projection Procedure	. 52
Figure 3.7 – Present-based Trajectory Error: Graphic Representation.	. 53
Figure 3.8 – Present-based Trajectory Error Validation 1 st Test: Simulink Block Diagram.	56
Figure 3.9 – Present-based Trajectory Error Validation 1 st Test: Inputs	. 57
Figure 3.10 – Present-based Trajectory Error Validation 1 st Test: Outputs	. 57
Figure 3.11 – Present-based Trajectory Error Validation 2 nd Test: Inputs	. 58
Figure 3.12 – Present-based Trajectory Error Validation Second Test: Outputs	. 59
Figure 3.13 – Future-based Trajectory Error: Graphic Representation.	. 60
Figure 3.14 – Future-based Trajectory Error Validation Tests: Simulink Block Diagram.	62
Figure 3.15 – Future-based Trajectory Error Validation 1 st Test: Inputs	. 62
Figure 3.16 – Future-based Trajectory Error Validation 1 st Test: Outputs	. 63
Figure 3.17 – Future-based Trajectory Error Validation 2 nd Test: Inputs	. 64
Figure 3.18 – Future-based Trajectory Error Validation 2 nd Test: Outputs.	. 65

Figure 4.1 – Classic Optimization Block Diagram.	66
Figure 4.2 – Genetic Algorithm Optimization Block Diagram	67
Figure 4.3 – Center Line Trajectory.	68
Figure 4.4 – Correspondent Acceleration Profiles.	68
Figure 4.5 – Acceleration Profiles.	69
Figure 4.6 – Chromosome Codification	69
Figure 4.7 – Chromosome Sectors' domains	70
Figure 4.8 – Fitness Roulette Wheel	70
Figure 4.9 – Scattered Crossover Algorithm.	71
Figure 4.10 – Center Line Seed Trajectory.	73
Figure 4.11 – GA Optimization 1 st Validation Test: Optimized Trajectory	74
Figure 4.12 – GA Optimization 1 st Validation Test: Acceleration profiles	74
Figure 5.1 – Simulink Block Diagram: Detailed Fuzzy Driver	75
Figure 5.2 – Designed FIS Structure	76
Figure 5.3 – Membership Functions: Position Error	77
Figure 5.4 – Membership Functions: Angle Error.	77
Figure 5.5 – Membership Functions: Desired Steering Wheel Angle	78
Figure 5.6 – FIS Example: Analysis of Position and Orientation of the Vehicle	79
Figure 5.7 - FIS Procedure Example: 1 st and 2 nd Activated Rules	80
Figure 5.8 - FIS Procedure Example: 3 rd and 4 th Activated Rules	81
Figure 5.9 - FIS Example: Crisp Output Determination.	81
Figure 5.10 - FIS Example: Desired Steering Wheel Angle	82
Figure 5.11 - Simulink Block Diagram Used in the FIS Tests	82
Figure 5.12 – FIS 1 st Validation Test: Inputs and Output	83
Figure 5.13 - FIS 2 nd Validation Test: Driver Comparison	84
Figure 6.1 – "S" Chicane: Center Line Trajectory	85
Figure 6.2 – Classical Optimization 1 st Test: Obtained Trajectory	86
Figure 6.3 – Classical Optimization 1 st Test: Acceleration Profiles	86
Figure 6.4 – Genetic Optimization 1 st Test: Obtained Trajectory	87
Figure 6.5 – Genetic Optimization 1 st Test: Acceleration Profiles	87

Figure 6.6 – Genetic Optimization 1 st Test: Longitudinal Speed
Figure 6.7 – Present-based Trajectory Error and Fuzzy Controller: Block Diagram88
Figure 6.8 – Present-based Trajectory Error and Fuzzy Controller: Obtained Trajectory
Figure 6.9 – Future-based Trajectory Error and Fuzzy Controller: Block Diagram
Figure 6.10 – Future-based Trajectory Error and Fuzzy Controller: Obtained Trajectory
Figure 6.11 – PDD Controller High Speed Test: Trajectory91
Figure 6.12 – Fuzzy Driver High Speed Test: Trajectory92
Figure 6.13 – Intelligent Applications Test: Center Line Trajectory
Figure 6.14 – Intelligent Applications Test: Evolved Trajectory
Figure 6.15 – Fuzzy Driver High Speed Test: Trajectory93
Figure 6.16 – Intelligent Applications Test: Evolved Acceleration Profiles

List of Tables

Table 2.1 – Kinematical Model 1st Validation Test: Vehicle Parameters	. 41
Table 3.1 - Detailed Track Information	. 47
Table 4.1 – Genetic Optimization Initial Parameters	. 73
Table 5.1 - Matrix Structure with the Fuzzy Rules.	. 78
Table 5.2 - Relation of Methods Used in FIS	. 79