

Fanny Herrera Loayza

Modelagem do Comportamento Pós-Sismo de uma Barragem de Rejeito

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Civil.

Orientador: Prof. Celso Romanel

Rio de Janeiro Março de 2009

Fanny Herrera Loayza

Modelagem do Comportamento Pós-Sismo de uma Barragem de Rejeito

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Celso Romanel Orientador, PUC-Rio

Prof. Alberto S.F.J. Sayão PUC-Rio

Prof. João Luís Pascal Roehl PUC-Rio

Francisco Claudio Pereira de Barros CNEN - Comissão Nacional de Energia Nuclear

> Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 31 de março de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Fanny Herrera Loayza

Graduou-se em Engenharia Civil pela Pontificia Universidade Católica do Peru - PUCP em 1996. Principais áreas de interesse: dinâmica de solos, geomecânica computacional e mineração

Ficha Catalográfica

Herrera Loayza, Fanny

Modelagem do comportamento pós-sismo de uma barragem de rejeito / Fanny Herrera Loayza ; orientador: Celso Romanel. – 2009.

80 f. : il.(color.) ; 30 cm 220 f. il; 29,7 cm.

Dissertação (Mestrado em Engenharia Civil)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Modelo numérico. 3. Comportamento pós-sismo. 4. Análise dinâmica. 5. Barragem de rejeito. 6. Mineração. I. Romanel, Celso. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD 624

PUC-Rio - Certificação Digital Nº 0611834/CA

Ao amor da minha vida: meu amado esposo Fernando

Agradecimentos

A Deus minha fonte de fé e esperança. Sem Ele nada seria possível!

Ao professor Celso Romanel, pela sua impecável orientação e dedicado acompanhamento do meu trabalho. Seu apoio, compreensão e paciência foram muito importantes para mim no desenvolvimento desta dissertação, que é produto do trabalho de ambos. Obrigada Mestre! Eu espero atender às suas expectativas, sua discípula promete tentar não desapontá-lo no futuro.

Ao meu pai, que desde o céu sempre me acompanha e cuida de mim. Sempre senti sua presença e sei que sem ele nunca teria alcançado meu ansiado sonho.

À minha mãe, minha "carinhosa". Você nunca me deixou sozinha. Obrigada pelas viagens tão sacrificadas para me visitar e que não as mereço. Sua companhia me fez sentir em casa no Brasil e sua alegria contagiante me ajudou nos momentos mais difíceis. Obrigada mãezinha, você é minha melhor amiga!

Ao meu irmão Pablo por seu apoio incondicional durante todo esse tempo. Obrigada por cuidar da mamãe na minha ausência e pelo incentivo para que eu fizesse o mestrado. À toda minha família, meus tios, primos e sobrinhos que sempre se preocuparam comigo e rezaram todos os dias para que eu cumprisse meu sonho.

À Maria Fernanda, Marianna, Paôla e Renata, companheiras do dia-a-dia na PUC.

À Adriana, Claudia, Dario, Martin e William, minha família no Brasil, pela grata convivência em casa e o apoio incondicional, em especial nos últimos meses do mestrado.

À Paôla pelo apoio na geração do sismo artificial para a aplicação do presente trabalho e pelas sugestões e recomendações para o melhor desenvolvimento da dissertação.

Ao Jorge pelo apoio no conhecimento teórico, fornecimentos de artigos e, sobretudo, pela amizade.

À Vivian, minha grande amiga. Através de você conheci a generosidade do povo brasileiro para com os estrangeiros, por sua amizade e ajuda incondicional durante todo o mestrado.

À Cynthia, Sean, Tom, Graham, Mark, Mario e Olimpio, pelo fornecimento dos dados utilizados neste estudo e, além disso, pelo contínuo apoio e cooperação.

À professora Andréia Diniz de Almeida pelas sugestões em relação ao item de ameaça sísmica. Ao engenheiro Denys Parra pelo apoio inicial no fornecimento de dados de obras e pelas consultas técnicas. Ao professor Roehl pelo auxílio na elaboração do capítulo sobre aspectos de sismicidade. Ao professor Sayão pela ajuda na escolha dos parâmetros utilizados na barragem estudada neste trabalho e tradução de alguns termos técnicos. Ao professor Ramón Verdugo pelas respostas às minhas múltiplas dúvidas conceituais.

Aos meus amigos e colegas da PUC-Rio, pelo carinho e amizade.

Ao Departamento de Engenharia Civil da PUC-Rio pela infra-estrutura e suporte, e em especial a Rita, grande amiga.

À CAPES e à FAPERJ pelo apoio financeiro.

Finalmente, eu quero agradecer à pessoa a quem devo tudo, pelo seu apoio incondicional em todo este tempo e pela sua compreensão. Obrigada pelas várias ligações diárias e pelas oito viagens ao Brasil para me visitar. Eu te agradeço pelos momentos inesquecíveis e adoráveis que vivemos juntos no Brasil e no Peru. Eu dou graças a Deus todos os dias por ter me enviado você, e espero ansiosamente começar uma nova etapa da minha vida a seu lado. Meu amado esposo Fernando, meu amor, eu te peço perdão por todo este tempo que te deixei sozinho. A única coisa que eu posso dizer agora é que eu TE AMO MUITO.

Resumo

Loayza Fanny Herrera; Romanel, Celso (orientador) **Modelagem do Comportamento Pós-Sismo de uma Barragem de Rejeito.** Rio de Janeiro, 2009. 220 p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Os danos causados em geo-estruturas devido à ação de carregamentos dinâmicos gerados por terremotos não ocorrem necessariamente durante o evento, tendo sido observado em campo que muitos acontecem após o término da excitação. Esta dissertação tem como objetivo apresentar um fluxo de trabalho que compreenda o estado da prática da avaliação completa de uma barragem composta pelas análises estática, dinâmica e pós-sísmica. Para desenvolver a metodologia de trabalho proposta, utilizou-se o programa FLAC, software comercial de maior uso em análises dinâmicas detalhadas. A simulação neste programa de diferenças finitas permitiu o aprendizado de suas potencialidades, a aplicação de técnicas de modelagem e o conhecimento de suas limitações. A estrutura destinada à aplicação foi uma barragem de contenção de rejeitos de mineração localizada na Argentina. Os aspectos investigados compreendem a análise estática e a determinação do estado permanente, que marca o estado incial da etapa sísmica, a avaliação dinâmica e a análise de estabilidade pós-sismo. Na avaliação dinâmica no FLAC foram estudadas as condições de contorno mais adequadas aos requerimentos do problema. Também abrangeu-se a determinação do tipo de amortecimento e seus respetivos parâmetros. Finalmente, estimou-se a história no tempo de tensões, das velocidades e dos deslocamentos que compõem o estado final logo ao término do sismo, com o qual foi efetuada a análise póssismo. Analisou-se então a estabilidade do talude no mesmo programa. Em paralelo, também foram executados procedimentos alternativos para a avaliação pós-sismo, demonstrando, para a estrutura estudada, a importância e a praticidade da modelagem completa no FLAC.

Palavras - chave

Modelo numérico; comportamento pós-sismo; análise dinâmica; barragem de rejeito; mineração.

Abstract

Loayza Fanny Herrera. Romanel, Celso (advisor). **Modeling the Post-Seismic Behavior of a Tailing Dam**. Rio de Janeiro, 2009. 220 p. M.Sc. Dissertation – Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

The damages caused in geo-structures due to the action of dynamic loads produced by earthquakes do not take place necessarily during the event, being observed in the field that many of them happen after the end of the excitation. Among the factors that contribute to this behavior can be mentioned the generation and subsequent redistribution of porepressures, the action of erosive phenomena (piping) in cracks created by the seism and, mainly, the loss of the shear strength of the soil. For geo-structures located in zones of seismic activity, the consideration of post-seismic analyses, such as the stability of dam slopes, is a very important design requirement As for the estimate and distribution of the porepressure values generated by the earthquake, a computational simulation of the event is necessary, including the consideration of constitutive relations formulated in terms of effective stresses to well represent the occurrence of shear and volumetric strains of the soil and the possibility of the development of dynamic liquefaction. In this thesis, which investigates the post-seismic behavior of a tailing dam situated in Argentina, the numerical simulation of the dynamic response of the structure has been obtained using the computational code FLAC v.5, one of the most complete software nowadays available for analyses of geotechnical problems. A description of the numerical procedures, the difficulties, advantages and limitations in the use of FLAC will be discussed along this work.

Keywords

Numerical model; post-seismic behavior; dynamic analysis; tailing dams; mining

Sumário

1 Introdução	29
1.1. Motivação e objetivos	29
1.2. Estrutura da dissertação	32
2 Fundamentos de sismicidade	34
2.1. Conceitos gerais	34
2.1.1. Estrutura da Terra	34
2.1.2. Ondas planas de tensão	35
2.1.3. Falhas geológicas	39
2.2. Origem dos sismos	41
2.2.1. Tectônica de placas	41
2.3. Teoria da recuperação elástica (elastic rebound theory)	44
2.4. Localização de um sismo	44
2.5. Grandeza de um sismo	46
2.5.1. Intensidade	46
2.5.2. Magnitude	46
2.6. Parâmetros do movimento do terreno	48
2.6.1. Parâmetros de amplitude	49
2.6.2. Parâmetros de conteúdo de frequências	49
2.6.3. Parâmetros de duração	50
2.7. Estimativa dos parâmetros do movimento	51
2.7.1. Desenvolvimento das relações de prognóstico	51
2.7.2. Estimativa dos parâmetros de amplitude	52
2.7.3. Estimativa dos parâmetros de conteúdo de frequências	53
2.7.4. Estimativa da duração	54
2.8. Projeto do movimento do terreno	54
2.8.1. Efeitos das condições do sítio no movimento do terreno	54
2.8.2. Parâmetros do projeto	55
2.8.3. Geração de movimento artificial do terreno	56

2.8.4. Geração de sismos artificiais no domínio da frequência	58
2.9. Avaliação de ameaça sísmica	63
2.9.1. Análise determinística	63
2.9.2. Análise probabilística	65
3 Análise Pós-Sismo	70
3.1. Conceitos fundamentais e terminologia usada	71
3.1.1. Estado permanente	71
3.1.2. O fenômeno de liquefação	71
3.1.3. Susceptibilidade à liquefação	72
3.1.4. Parâmetro de estado	73
3.1.5. Potencial de liquefação	73
3.1.6. Razão de tensão cíclica e razão de resistência cíclica	74
3.1.7. Resistência cisalhante não drenada residual	75
3.1.8. Curva base para areia limpa do SPT (SPT clean-sand base curve	∋)75
3.2. Determinação da CRR por meio de ensaios de campo	76
3.2.1. Ensaios de penetração padrão (standard penetration test, SPT)	76
3.2.2. Ensaio de cone (Cone penetration test, CPT)	79
3.2.3. Ensaios geofísicos para determinar a velocidade da onda	
cisalhante, v_s	83
3.2.4. Ensaios de penetração Becker (Becker penetration test, BPT)	85
3.2.5. Fatores de correção	86
3.3. Cálculo da resistência ao cisalhamento não drenada	87
3.3.1. Cálculo da resistência ao cisalhamento não-drenada na condição)
permanente (Poulos <i>et al.</i> ,1985)	88
3.3.2. Cálculo da resistência ao cisalhamento não drenada residual (Se	ed
& Harder, 1990)	91
3.3.3. Cálculo da resistência não drenada crítica (Stark & Mesri, 1992)	92
3.3.4. Cálculo da resistência à liquefação (Olson & Stark, 2002)	94
3.4. Procedimento de análise de estabilidade pós-sismo	98
3.4.1. Estimar o potencial de liquefação	99
3.4.2. Estimativa da resistência ao cisalhamento não drenada reduzida	99
3.4.3. Análise de estabilidade	101

3.5. Observações	102
4 Modelos Constitutivos	103
4.1. Modelo elástico	104
4.2. Modelo de Mohr Coulomb	106
4.3. Modelo de Finn	108
4.3.1. Procedimento para avaliar o incremento da poropressão (Marti	n <i>et</i>
<i>al.</i> , 1975).	109
4.3.2. Método simplificado para calcular a geração e dissipação de	
poropressões (Seed <i>et al</i> ., 1975).	115
4.3.3. Modelo de tensões efetivas para liquefação (Finn et al., 1977).	121
4.4. Modelo de Byrne	126
4.5. Modelo UBCsand	133
4.5.1. Comportamento elástico	135
4.5.2. Comportamento plástico mobilizado no plano de tensão de	
cisalhamento máximo	135
4.5.3. Comportamento plástico mobilizado no plano horizontal	137
4.6. Observações	140
5 Modelagem Numérica de Barragens de Terra	141
5.1. Características gerais do programa FLAC	142
5.2. Mecanismo inicial da modelagem da barragem	143
5.2.1. Configuração do projeto	143
5.2.2. Geração de malha	144
5.3. Modelagem estática	146
5.3.1. Modelos constitutivos	146
5.3.2. Propriedades dos materiais	147
5.3.3. Interação fluido-mecânica	148
5.3.4. Condições iniciais e de contorno	149
5.4. Modelagem dinâmica	150
5.4.1. Processamento do registro da aceleração	151
5.4.2. Discretização da malha para a transmissão de ondas	153
5.4.3. Amortecimento mecânico	153
5.4.4. Aferição com o programa SHAKE	159

5.4.5. Condições de contorno dinâmicas	161
5.5. Fator de segurança	164
5.6. Limitações do FLAC	165
5.6.1. Simulação em pequenas e grandes deformações	165
5.6.2. Uso do amortecimento mecânico	167
5.6.3. Unificação dos tempos de processamento	168
5.6.4. Uso limitado do fator de segurança	168
5.7. Observações	169

6 Comportamento Dinâmico e Pós-Sísmico de uma Barragem na Argentina

	170
6.1. Descrição geral da estrutura	170
6.2. Propriedades do material	173
6.3. Configuração preliminar	174
6.3.1. Discretização da malha	175
6.3.2. Determinação das condições iniciais e de contorno estáticas	176
6.4. Simulação estática	178
6.4.1. Síntese dos resultados da análise estática	178
6.4.2. Determinação do fator de segurança estático	181
6.4.3. Determinação do fator de segurança pseudo-estático	182
6.5. Simulação dinâmica	183
6.5.1. Sismicidade	184
6.5.2. Geração do sismo artificial	184
6.5.3. Processamento do registro sísmico	186
6.5.4. Frequência predominante da barragem	189
6.5.5. Aferição com o programa SHAKE	189
6.5.6. Síntese dos resultados da análise dinâmica	193
6.6. Simulação pós-sismo	199
6.6.1. Determinação do fator de segurança	200
6.6.2. Comparação com outros métodos de avaliação da análise de	
estabilidade pós-sismo	202
6.7. Observações	204
7 Conclusões e Sugestões	206

7.1. Conclusões	206
7.2. Sugestões	210
Referências Bibliográficas	212
Apêndice	219
Anexo	220

Lista de figuras

Figura 1.1 - Deslizamento na barragem de San Fernando, em 1971	
(EERC, University of California, Berkeley, USA).	30
Figura 1.2 - Ruptura e reconstrução das condições iniciais da	
barragem de San Fernando. Modificado de Seed et. al. (1988)	30
Figura 2.1- Esquema da estrutura da Terra	
(www.ige.unicamp.br/site/aulas/109/Terra-tempo_geo-aula1.pdf).	35
Figura 2.2 – Movimentos de partícula produzidos pelos diferentes	
tipos de ondas planas de tensão (Teixeira et al., 2003).	38
Figura 2.3 - Ondas sísmicas registradas a 10.000 km do epicentro:	
a) sismo de foco profundo; b) sismo de foco superficial.	
Modificado de Sauter (1989) apud Arias (1996).	39
Figura 2.4 – Notação geométrica para descrição do plano de falha	40
Figura 2.5 - Placas tectônicas principais	
(http://pubs.usgs.gov/gip/dynamic/slabs.html).	41
Figura 2.6 – Movimentos interplacas	43
Figura 2.7 - Sismos ocorridos no Brasil da época colonial	
ao ano 2000 (Berrocal, 1984).	44
Figura 2.8 - Elementos para descrição da localização de um sismo	45
Figura 2.9 - Representação de um espectro de resposta	
com quatro escalas logarítmicas (adaptado de Figuereido, 2004).	56
Figura 2.10 - Geração artificial de movimentos de terreno	
(adaptado de Kramer, 1996).	57
Figura 2.11 - Exemplo de uma função sintética no tempo gerada no	
domínio da frequência (modificado de Kramer, 1996).	58
Figura 2.12 - Função Intensidade para um sismo com duração	
total de 15s (Figueiredo, 2004).	60
Figura 2.13 - Diagrama de blocos que descreve o procedimento de	
geração de sismos artificiais (Notas de aula de Dinâmica de Solos, 1996).	62
Figura 2.14 - Procedimento de avaliação da ameaça sísmica	
determinística (modificado de Kramer, 1996).	64

Figura 2.15 - Esquema de avaliação da ameaça sísmica	
probabilística (NAHB Research Center, 2003).	66
Figura 3.1 – Curva base para areia limpa do SPT para sismo de	
magnitude 7,5 obtidos com dados de casos históricos.	
Modificado de Seed et al. (1985) apud Youd et al. (2001).	77
Figura 3.2 - Curva recomendada para o cálculo de CRR baseada em	
dados de liquefação empírica obtidos com CPT compilados de casos	
históricos. Adaptado de Robertson & Wride (1998) apud Youd et al. (2001).	80
Figura 3.3 - Gráfico que classifica o tipo de comportamento do solo	
baseado no CPT. Modificado de Robertson (1990) apud Youd et al. (2001).	82
Figura 3.4 – Relação de liquefação recomendada para solos	
limpos não cimentados baseados em dados de liquefação compilados	
de casos históricos.	
Adaptado de Andrus & Stokoe (2000) apud Youd et al. (2001).	85
Figura 3.5 – Correlação entre a resistência à penetração Becker corrigida	
N_{BC} e a resistência do SPT corrigida N_{60} .	
Modificado de Harder & Seed (1986) e Harder (1997) apud Youd et al. (2001).	86
Figura 3.6 – Correção da resistência não drenada no estado permanente	
medida para diferenças entre o índice de vazios in-situ e o índice de	
vazios de laboratório (adaptado de Poulos et al., 1985).	90
Figura 3.7 – Relação entre a contagem de golpes corrigidos	
para areia limpa $(N_l)_{60-CS}$ e a resistência não drenada residual (S_r)	
baseadas em casos históricos (modificado de Seed & Harder, 1990).	92
Figura 3.8 – Relação entre a razão da resistência não drenada crítica	
e a contagem do número de golpes para uma areia limpa equivalente	
(adaptado de Stark & Mesri, 1992).	94
Figura 3.9 – Diagrama de corpo livre utilizado para a análise cinética	
(modificado de Olson & Stark, 2002).	96
Figura 3.10 – Relação da razão da resistência do solo liquefeito	
baseada na resistência de ponta normalizada do CPT	
(adaptado de Olson & Stark, 2002).	98
Figura 3.11 – Determinação do potencial de liquefação	
(modificado de Kramer, 1996).	99

Figura 3.12 – Relações típicas entre a razão de excesso de poropressão	
residual e o fator de segurança contra liquefação para areia e para cascalho	
obtidos com dados de laboratório (adaptado de Marcuson et al., 1990).	100
Figura 4.1 – Critério de escoamento de Mohr-Coulomb:	
a) no plano (σ , τ); b) no plano octaédrico (Ibañez, 2003).	106
Figura 4.2 – Curvas de deformação volumétrica para ensaios de	
cisalhamento cíclico de amplitude de deformação constante	
(modificado de Martin et. al., 1975).	112
Figura 4.3 – Curvas de deformação volumétrica incremental	
(adaptado de Martin et. al.,1975).	112
Figura 4.4 – Efeito da amplitude de deformação cisalhante cíclica e	
deformação volumétrica em relações de amplitudes de tensão x	
deformação drenadas, onde $1psf = 47.9N/m^2$ (modificado de Martin, 1975).	114
Figura 4.5 – Razão de incremento de poropressão em ensaios de	
cisalhamento simples cíclico (modificado de Seed et. al., 1975).	116
Figura 4.6 – Curva hiperbólica de tensão x deformação	
(adaptado de Finn et. al.,1977).	122
Figura 4.7 – (a) Ciclo do primeiro carregamento; (b) Mudança de volume	
com o tempo; (c) Detalhe da mudança de volume; (d) Modelo de	
carregamento geral. Modificado de Finn et. al. (1977).	123
Figura 4.8 – Curvas alternativas de deformação volumétrica dos dados	
das Figura 4.2 e Figura 4.3 (modificado de Byrne, 1991).	127
Figura 4.9 – Relação entre a razão de deformação volumétrica e o	
número de ciclos para areias secas (adaptado de Byrne,1991).	128
Figura 4.10 – Relação entre a deformação volumétrica e a	
deformação de cisalhamento para areias secas.	
Dados de Silver & Seed (1971) apud adaptado de Byrne (1991).	129
Figura 4.11 – Relação entre os níveis de tensões de cisalhamento e o	
número de ciclos para iniciar liquefação (modificado de Byrne,1991).	133
Figura 4.12 – Limite de escoamento do modelo UBCsand	
(adaptado de Byrne et al., 2004).	136
Figura 4.13 – Relação tensão – deformação hiperbólica	
(modificado de Byrne et al., 2003).	136

Figura 4.14 – Razão de tensões durante o descarregamento e	
recarregamento (Park & Byrne, 2004).	138
Figura 4.15 - Acoplamento do volume cisalhante (adaptado de Park, 2004).	140
Figura 5.1 – Condições de contorno aplicadas à estrutura no	
programa FLAC (adaptado de Itasca, 2005).	150
Figura 5.2 – Erros introduzidos nas velocidades e deslocamentos pela	
falta da correção da linha base no acelerograma.	
(Modificado de Hudson (1979), apud de Carreño et al. (1999)).	152
Figura 5.3 – Variação da razão de amortecimento crítico normalizado	
com a frequência angular (Itasca, 2005).	155
Figura 5.4 – Curvas do fator de redução do módulo de	
cisalhamento implementados no SHAKE e no FLAC	
(modificado de Itasca, 2005).	157
Figura 5.5 – Curvas da razão do amortecimento crítico implementados	
no SHAKE e no FLAC (adaptado de Itasca, 2005).	157
Figura 5.6 – Malha de campo livre (<i>free-field</i>) utilizada na avaliação	
dinâmica no FLAC (adaptado de Itasca, 2005).	162
Figura 5.7 – Modelagem do contorno silencioso implementado	
no FLAC (modificado de Itasca, 2005).	163
Figura 5.8 – Comparação para pequenas deformações (PD) e	
grandes deformações (GD), do comportamento da poropressão durante	
o sismo em diferentes pontos nodais da barragem do exemplo	
No. 18 do manual do FLAC.	166
Figura 6.1 – Seção transversal da barragem de contenção de rejeitos.	172
Figura 6.2 – Parâmetros de resistência utilizados para o material de	
enrocamento (adaptado de Leps,1970).	174
Figura 6.3 – Malha alternativa utilizada para avaliar a estrutura com a	
opção de grandes deformações.	175
Figura 6.4 – Configuração geométrica da barragem utilizada para a	
avalição no programa FLAC.	176
Figura 6.5 – Variação da poropressão no rejeito em relação	
à profundidade. Informação obtida com o CPT.	177
Figura 6.6 – Condição inicial de poropressão e condições de contorno	

simuladas no FLAC.	178
Figura 6.7 – Simulação da variação do módulo de cisalhamento em	
função da tensão média efetiva no FLAC.	179
Figura 6.8- Modelagem do módulo de compressão volumétrica em	
função do módulo de cisalhamento e do coeficiente de Poisson no FLAC.	179
Figura 6.9 – Valores de ângulo de atrito para a barragem.	
Observa-se a variação na zona de enrocamento.	180
Figura 6.10 – Resposta estática da barragem em termos de tensões totais.	180
Figura 6.11 – Valores de coesão na barragem.	181
Figura 6.12 – Superfície crítica obtida durante a avaliação da	
estabilidade estática da barragem.	181
Figura 6.13 – Análise de estabilidade pseudo-estática da estrutura	
efetuada no programa SLOPE/W.	182
Figura 6.14 – Valores de SPT do rejeito obtidos na investigação	
geotécnica de campo.	183
Figura 6.15 – Função densidade de espectro de potência dos	
registros sísmicos utilizados para a geração do sismo artificial.	185
Figura 6.16 – Sismo gerado artificialmente utilizado na avaliação	
dinâmica no FLAC.	186
Figura 6.17 – Potência do sismo avaliada na velocidade do registro sísmico.	187
Figura 6.18 – Comparação dos deslocamentos do registro sísmico	
corrigido e não corrigido.	188
Figura 6.19 – História de acelerações para o sismo original e corrigido.	188
Figura 6.20 – Espectro de potência de alguns pontos nodais	
localizados nos diferentes materiais que compõem a barragem.	189
Figura 6.21 – Localização das colunas de aferição na barragem de	
contenção de rejeitos.	190
Figura 6.22 – Resultados da aferição da coluna 1 com relação à	
tensão cisalhante máxima.	191
Figura 6.23 – Resultado da aferição com a coluna 1 considerando as	
acelerações máximas.	191
Figura 6.24 – Resultados da aferição da coluna 2 considerando a	
tensão de cisalhamento máxima.	192

Figura 6.25 – Resultados da aferição da coluna 2 com relação à	
aceleração máxima.	192
Figura 6.26 – Deslocamentos horizontais obtidos da avaliação dinâmica	
utilizando o modelo de Byrne com o amortecimento histerético.	193
Figura 6.27 – Deslocamentos horizontais e verticais obtidos na avaliação	
com o modelo Mohr-Coulomb.	194
Figura 6.28 – Deslocamentos obtidos na avaliação com o modelo de Byrne.	195
Figura 6.29 – Deslocamentos horizontais obtidos na avaliação dinâmica.	196
Figura 6.30 – Resposta dinâmica de deslocamentos verticais.	196
Figura 6.31 – Velocidades horizontais obtidas em diferentes pontos da	
barragem.	197
Figura 6.32 – Tensões cisalhantes obtidas no aterro como produto	
da avalição dinâmica.	198
Figura 6.33 – Avaliação de liquefação na barragem.	198
Figura 6.34 – Razão de excesso de poropresões em pontos localizados a	
diferentes profundidades do rejeito.	199
Figura 6.35 – Poropressões geradas após a análise dinâmica.	199
Figura 6.36 – Fator de segurança não-drenado obtido na avaliação com	
o modelo de Mohr.	200
Figura 6.37 - Fator de segurança não-drenado obtido com o modelo de Byrne	. 200
Figura 6.38 – Análise de estabilidade efetuada com o modelo de	
Mohr-Coulomb para o caso drenado.	201
Figura 6.39 – Fator de segurança drenado obtido na avaliação pós-sismica	
com o modelo de Byrne.	201
Figura 6.40 – Comparação da razão de excesso de poropressão no	
rejeito em função do fator de segurança contra liquefação com as curva	is de
Marcuson <i>et al.</i> (1990).	203
Figura 6.41 – Fator de segurança pós-sismo para valores de resistência	
residual reduzida utilizando o modelo de Byrne.	204

Lista de tabelas

Tabela 2.1 - Terremotos no	Brasil com	magnitude	superior	a 5 entre	1922	e 2005
						43

Tabela 2.2 –	Coeficientes	da le	i de	atenuação	de	Joyner	&	Boore	(1988)	apud
Kramer	(1996).									53

- Tabela 3.1 Comparação das vantagens e desvantagens de vários ensaios de campo utilizados para a avaliação da resistência à liquefação (modificado de Youd *et al.*, 2001).
 76
- Tabela 3.2 Correções do SPT (modificado de Youd *et al.*, 2001).79
- Tabela 3.3 Correção por conteúdo de finos recomendado para a avaliação da resistência residual (S_r) utilizando dados de SPT (Seed & Harder, 1990).
 91
- Tabela 5.1 Ajuste numérico para areias com as curvas de Seed & Idriss (1970).Adaptado de Itasca (2005).158
- Tabela 6.1 Propriedades dos Materiais utilizados no programa FLAC.173
- Tabela 6.2 Parâmetros obtidos na avaliação da ameaça sísmica da estrutura. 184

Lista de Símbolos

Romanos

A	Área
A_{1}, A_{2}, A_{3}	Constantes
B_1, B_2, B_3	Constantes
[C]	Matriz de amortecimento viscoso
С	Coesão
C	Fator de correção por diâmetro do furo de sondagem do ensaio
C_B	SPT
C_E	Fator de correção por energia do martelo do ensaio SPT
C_n	Amplitude do enésimo harmônico das séries de Fourier
C_N	Fator de correção por sobrecarga
C_R	Fator de correção por comprimento da haste
C_S	Fator de correção por amostradores com ou sem camisa
C_{v}	Coeficiente de adensamento do solo
$C_1, C_2, C_3, C_{4,}$	
$C_5, C_6, C_7, C_{8},$	Constantes
C_9	
d_c	Diâmetro do cone
d _c D _r	Diâmetro do cone Densidade relativa
d _c D _r dx/dy	Diâmetro do cone Densidade relativa Inclinação de curva
d _c D _r dx/dy Ē	Diâmetro do cone Densidade relativa Inclinação de curva Módulo tangencial da curva de descarregamento
d _c D _r dx/dy Ē _r	Diâmetro do cone Densidade relativa Inclinação de curva Módulo tangencial da curva de descarregamento unidimensional
d _c D _r dx/dy Ē _r e	Diâmetro do cone Densidade relativa Inclinação de curva Módulo tangencial da curva de descarregamento unidimensional Índice de vazios
d _c D _r dx/dy Ē _r e e _{ss}	Diâmetro do cone Densidade relativa Inclinação de curva Módulo tangencial da curva de descarregamento unidimensional Índice de vazios Índice de vazios na condição de estado permanente
d_c D_r dx/dy \bar{E}_r e e_{ss} f_c	Diâmetro do cone Densidade relativa Inclinação de curva Módulo tangencial da curva de descarregamento unidimensional Índice de vazios Índice de vazios na condição de estado permanente Frequência de esquina
d _c D _r dx/dy Ē _r e e _{ss} f _c f _{max}	Diâmetro do cone Densidade relativa Inclinação de curva Módulo tangencial da curva de descarregamento unidimensional Índice de vazios Índice de vazios na condição de estado permanente Frequência de esquina Frequência de corte
d_c D_r dx/dy \bar{E}_r e e_{ss} f_c f_{max} $F_{M(m)}$	Diâmetro do cone Densidade relativa Inclinação de curva Módulo tangencial da curva de descarregamento unidimensional Índice de vazios Índice de vazios na condição de estado permanente Frequência de esquina Frequência de corte
d_c D_r dx/dy \bar{E}_r e e_{ss} f_c f_{max} $F_{M(m)}$ FS_L	 Diâmetro do cone Densidade relativa Inclinação de curva Módulo tangencial da curva de descarregamento unidimensional Índice de vazios Índice de vazios na condição de estado permanente Frequência de esquina Frequência de corte Função densidade de probabilidade de magnitude m Fator de segurança contra a liquefação

G	Módulo de cisalhamento
G_i^{e}	Módulo de cisalhamento elástico
G_i^p	Módulo de cisalhamento plástico
G_{mn}	Módulo de cisalhamento tangente inicial máximo para o ciclo n
G_{mo}	Módulo de cisalhamento tangente inicial máximo
$G_{(\omega)}$	Espectro de potência ou função densidade espectro de potência
H_1, H_2, H_3, H_4	Constantes
I_c	Indicador do tipo de comportamento do solo para o ensaio CPT
I(t)	Função intensidade
<i>j</i> 1, <i>j</i> 2, <i>j</i> 3, <i>j</i> 4, <i>j</i> 5,	Constantes
<i>j</i> 6, <i>j</i> 7	Constantes
k	Permeabilidade intrínseca ou coeficiente de mobilidade
k_H	Condutividade Hidráulica
K_H	Fator de correção do ensaio CPT para camadas
[K]	Matriz de rigidez não-linear
Κ	Módulo de compressão volumétrica
K _c	Fator de correção do ensaio CPT por características de graõs
K ^e	Módulo de deformação volumétrica na condição elástica
Ko	Coeficiente de empuxo em repouso
K_w	Módulo de compressão volumétrica da água
k_2	Constante
$K_{2,max}$	Parâmetro utilizado para estimar o módulo de cisalhamento
K_m	Constante
Κσ	Fator de correção por sobrecarga
K^{e}_{G}	Número do módulo de cisalhamento na condição elástica
L	Onda Love
[M]	Matriz de massa
М	Módulo tangente restrito da tensão efetiva
M_b	Magnitude das ondas de corpo
M_L	Magnitude local
M_o	Momento sísmico
m_o	Magnitude mínima
<i>m_{max}</i>	Magnitude máxima

M_S	Magnitude de ondas superficiais
M_w	Magnitude de momento
n	Porosidade
N_{BC}	Contagem do número de golpes do ensaio BPT
N _{corr}	Função de porcentagem de finos
N_{eq}	Número de ciclos de tensões uniformes equivalente
N_l	Número de ciclos necessários para o inicia da liquefação
λ	Contagem do número de golpes do ensaio SPT medido no
1V _m	campo
$(N_1)_{60}$	Contagem do número de golpes do ensaio SPT normalizado
$(\mathbf{N}_{\mathbf{I}})$	Contagem do número de golpes do ensaio SPT normalizado
(<i>IN</i> 1)60-CS	para areia limpa
р	Tensão total média
p'	Tensão efetiva média
Р	Onda primária
P_a	Pressão atmosférica
$P_{(n)}$	Função do modelo de Poisson
q	Tensão de desvio
q_c	Resistência à penetração da ponta do ensaio CPT
	Resistência à penetração da ponta do ensaio CPT para camadas
q_{CA}	rijas
~	Resistência à penetração da ponta do ensaio CPT para camadas
<i>ЧСВ</i>	moles
q_{c1N}	Resistência de ponta do ensaio CPT normalizada
R	Onda Rayleigh
<i>r</i> _d	Coeficiente de redução de tensão
r_u	Razão de poropressão
S	Onda secundária ou de cisalhamento
<i>S</i> _d	Resistência ao cisalhamento médio do solo liquefeito
SH	Onda cisalhante horizontal
S _{SU}	Resistência ao cisalhamento no estado permanente
SV	Onda cisalhante vertical
s _u (yield,mob)	Resistência não drenada mobilizada na condição de escoamento

s _u (critical)	Resistência não drenada crítica
$s_u(LIQ)$	Resistência ao cisalhamento na zona liqüefeita
t	Tempo
Т	Período do sistema
T_d	Duração do sismo
$\ddot{u}_g(t)$	Aceleração do sismo
v_p	Velocidade da onda primária
\mathcal{V}_{S}	Velocidade da onda de cisalhamento
v_{s1}	Velocidade da onda de cisalhamento corrigida por sobrecarga
W	Peso
x	Deslocamento relativo
x	Velocidade relativa
 X	Aceleração relativa
Y	Parâmetro do movimento do terreno
Ζ	Profundidade

Gregos

α	Coeficiente de amortecimento local
Δ	Distância epicentral em graus
$\Delta \varepsilon_{vd}$	Incremento de deformação volumétrica acumulada
$\Delta \varepsilon^{e}_{v}$	Deformação volumétrica incremental elástica
$\Delta \varepsilon^{p}_{v}$	Deformação volumétrica incremental plástica
Δt	Incremento de tempo
Δt_{p-s}	Diferença de chegada entre as onda P e S
∆u	Incremento de poropressão
$\mathcal{E}_{\mathcal{V}}$	Deformação volumétrica
\mathcal{E}_{vd}	Deformação volumétrica acumulada
\mathcal{E}_{vr}	Deformação volumétrica recuperável
φ	Ângulo de atrito
φ_{mo}	Ângulo de atrito mobilizado no plano horizontal
φ_{cv}	Transformação de fase do ângulo de atrito para volume constante
φ_{m1}	Ângulo de atrito mobilizado
γ	Amplitude de deformação cisalhante
γ*	Deformação cisalhante plástica
γh	Deformação hiperbólica
γ^p	Deformação cisalhante na condição plástica
γ_r	Amplitude de deformação cisalhante quando ocorre reversão de
	carregamento
γ_t	Deformação limite
η_f	Razão de tensão na ruptura
λ	Constante de Lamé
λ_m	Razão anual média de ultrapassagem da magnitude do sismo m
θ	Ângulo de inclinação
ρ	Massa específica
$ ho_{\omega}$	Massa específica da água
μ	Constante de Lamé
v_p	Velocidade da onda P
\mathcal{V}_{S}	Velocidade da onda S

σ	Tensão média total
σ '	Tensão média efetiva
σ'_m	Tensão efetiva média normal
σ'_{vo}	Tensão efetiva vertical inicial
$ au_1$	Tensão de cisalhamento máxima
$ au_d$	Tensão cisalhante requerida para manter o equilíbrio estático
$ au_{hv}$	Amplitude de tensão de cisalhamento cíclica
$ au_{mo}$	Tensão cisalhante máxima
$ au_{mn}$	Tensão cisalhante máxima para o ciclo n
$ au_r$	Tensão cisalhante quando ocorre reversão de carregamento
υ	Coeficiente de Poisson
Ψ	Parâmetro de estado
ψ_l	Ângulo de dilatância
ω	Frequência natural do sistema

 ξ Amortecimento

Lista de Abreviaturas

BPT	Ensaio de penetração Becker
СРТ	Ensaio de penetração de cone
CSR	Razão de tensão cíclica ou razão de tensão cisalhante cíclica
CRR	Razão de resistência cíclica ou razão de resistência ao cisalhamento
	cíclica
DBE	Sismo base de projeto
DLLs	Livrarias dinâmicas
DSHA	Análise de ameaça sísmica determinística
ELM	Método linear equivalente
EMS-98	Escala macrosísmica europeia de intensidade de sismo
ER	Razão de energia
FC	Conteúdo de finos
FDEP	Função de densidade de espectro de potência
FFT	Transformada rápida de Fourier
FLAC	Finite Lagrangian Analysis of Continua.
GIIC	Graphical Interface for Itasca Codes
JMA	Escala de intensidade de sismo da agencia meteorológica japonesa
MCE	Sismo máximo a ser considerado
MDE	Sismo máximo de projeto
MEF	Método de elementos finitos
MMI	Escala de Intensidade de sismo de Mercalli modificada
MSF	Fator de correção do ensaio de penetração padrão pela magnitude do
	sismo
MSK	Escala de intensidade de sismo Medvedev-Sponnheuer-Karnik
NCEER	National Center Earthquake Engineering Research
OBE	Sismo base de operação
PHA	Aceleração horizontal de pico
PHV	Velocidade horizontal de pico
PSHA	Análise de ameaça sísmica probabilística

- RF Escala de intensidade de sismo Rosel-Forel
- SDOF Sistema de um grau de libertade
- SPT Ensaio de penetração padrão
- SSE Sismo de desligamento seguro
- SSL Linha do estado permanente