

Leandro Pereira Basilio

Avaliação de Metodologias para Gerenciamento da Integridade de Dutos Rígidos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Prof. José Luiz de França Freire

Rio de Janeiro Abril de 2009

Leandro Pereira Basilio

Avaliação de Metodologias para Gerenciamento da Integridade de Dutos Rígidos

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. José Luiz de França Freire Orientador Pontifícia Universidade Católica do Rio de Janeiro

> Prof. Arthur Martins Barbosa Braga Pontifícia Universidade Católica do Rio de Janeiro

> > Prof. Tito Luiz da Silveira Universidade Federal do Rio de Janeiro

> > > Dra. Érika Santana Mota Nicoletti TRANSPETRO

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 07 de abril de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Leandro Pereira Basilio

Graduou-se em Engenharia Mecânica no CEFET-RJ (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca) em 2004. Concluiu o curso de Engenharia de Terminais e Dutos na Petrobras em 2007. Participou de cursos e congressos, no Brasil, na área de engenharia de dutos. Trabalha com suporte técnico em projetos e gerenciamento da integridade de dutos submarinos na Petrobras.

Ficha Catalográfica

Basilio, Leandro Pereira

Avaliação de Metodologias para Gerenciamento da Integridade de Dutos Rígidos / Leandro Pereira Basilio; orientador: José Luiz de França Freire. – Rio de Janeiro: PUC, Departamento de Engenharia Mecânica, 2009.

282 f. : il. (color.) ; 30 cm

Dissertação (Mestrado em Engenharia Mecânica) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui referências bibliográficas.

 Engenharia mecânica – Teses. 2. Duto. 3. Corrosão.
Integridade estrutural. 5. Confiabilidade. I. Freire, José Luiz de França. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

Dedico esta dissertação de mestrado aos meus pais, José e Denira, que com o exemplo de honestidade, humildade e integridade foram os maiores mestres que alguém pode ter.

Sou eternamente grato.

Agradecimentos

A Deus, pela força e perseverança nos momentos de dificuldade. Sem ele, nada disso seria possível.

Ao meu orientador, Professor José Luiz da França Freire, pela orientação, aprendizado e atenção durante a elaboração da dissertação.

Aos meus pais, José e Denira, pelo exemplo de honestidade, humildade e perseverança.

À Lívia de Hollanda Chaves, pelo apoio, carinho e dedicação durante os momentos de dificuldade ao longo do mestrado.

Aos colegas de trabalho Hélio Kubota, Mario Pezzi, Enrique Casaprima e Pavel Bernardi, pelos comentários que tanto enriqueceram a minha dissertação e pelo ambiente positivo onde eu pude me desenvolver nos últimos dois anos.

A José de Jesús Leal Carvajalino, pela ajuda na utilização do programa Confiabilidade de Dutos.

Aos Engenheiros Sergio Cunha e Érika Nicoletti, pelas discussões e ajuda na utilização do programa Planpig.

À Petrobras, pelo apoio e incentivo na conclusão da minha dissertação.

Ao Departamento de Engenharia Mecânica da PUC-Rio.

Aos professores que participaram da Comissão Examinadora.

A todos os amigos e familiares que oraram pela conclusão da minha dissertação.

A todos que não foram citados acima, porém que tiveram participação na elaboração da minha dissertação.

Resumo

Basilio, Leandro Pereira; Freire, José Luiz de França. **Avaliação de Metodologias para Gerenciamento da Integridade de Dutos Rígidos.** Rio de Janeiro, 2009. 282p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O mecanismo de falha por corrosão se apresenta, na maioria dos casos, como o fator limitante na operação continuada de um duto. Esse mecanismo reduz a resistência mecânica do duto, aumentando a necessidade de reparos com a conseqüente diminuição da capacidade produtiva. A determinação da resistência remanescente através da aplicação de metodologias semi-empíricas é uma prática mundialmente aplicada, fato este que promoveu o surgimento de diversos programas destinados à aplicação sistematizada dos métodos semi-empíricos. Além do cálculo da resistência remanescente, os aplicativos desenvolvidos fornecem diversas ferramentas adicionais, como a avaliação da confiabilidade das ferramentas de inspeção, o cálculo do tempo ótimo para re-inspeção e a determinação da confiabilidade do duto. No desenvolvimento deste trabalho, foram comparados três diferentes programas na avaliação da integridade imediata e futura de dutos de aço com defeitos de corrosão, dando-se ênfase na comparação das pressões de falha e das probabilidades de falha fornecidas pelos programas. Com o objetivo de estabelecer valores de referência, um modelo analítico para o cálculo da probabilidade de falha imediata e futura foi desenvolvido, dando enfoque nas incertezas associadas à medição feita por PIG Instrumentado e às associadas às taxas de corrosão na profundidade e no comprimento do defeito. Os diferentes métodos foram aplicados sobre um defeito hipotético isolado, e em seguida em três diferentes dutos com defeitos reais de corrosão, abrangendo diversas condições operacionais, de projeto e quanto ao estado de corrosão. Na comparação dos programas, foram observados diferentes modelos de cálculo da probabilidade de falha quanto à avaliação dos modos de falha por ruptura e por vazamento como fenômenos dependentes e independentes. Os resultados de probabilidade de falha apresentados pelos diferentes modelos se mostraram congruentes apenas em defeitos onde o modo de falha por vazamento se apresenta como dominante. Em defeitos onde o modo de falha por ruptura se mostra expressivo, o modelo de avaliação dos modos falha por ruptura e por vazamento como fenômenos independentes apresenta maiores valores de probabilidade de falha. Além disso, foi possível observar a influência dos diferentes modelos de crescimento do defeito na previsão da pressão de falha e da probabilidade de falha. Observou-se também a importância do uso de modelos de interação de defeitos, observando-se pressões de falha até 50% inferiores com o uso do modelo de interação de defeitos.

Palavras-chave

Duto; Corrosão; Integridade Estrutural; Confiabilidade

Abstract

Basilio, Leandro Pereira; Freire, José Luiz de França (Advisor). **Evaluation** of Methodologies for Integrity Management of Rigid Pipelines. Rio de Janeiro, 2009. 282p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The corrosion failure mechanism presents itself, in most of cases, as the limiting factor of the continued operation of a steel pipeline. This failure mechanism reduces the strength of the pipeline, increasing the demand for repair, and consequently, reducing the production capacity. The determination of the pipeline remaining strength through semi-empirical methodology application is a practical worldwide applied, fact that promoted the appearance of many computer programs for the systematic application of those semi-empirical methods. Besides the calculation of the pipeline remaining strength, the developed programs provide several additional tools, such as the reliability evaluation of the In Line Inspection Tools, the determination of the optimum time for pipeline re-inspection and the reliability evaluation of the pipeline in itself. In this work development, it was compared three different programs in the immediate and future integrity evaluation of real pipelines with corrosion defects, giving emphases at the comparison of the burst pressure and failure probability supplied by the programs. Aiming establish reference values for probability of failure, a analytical model was developed to calculate the immediate and future probability of failure, focusing the uncertainties associated with the In Line Inspection measurement and with the corrosion rate in defect depth and length. The different methodologies were applied under a hypothetic single defect, and next, in three different pipelines with real corrosion defects, covering several operational conditions, of design and of corrosion severity. In the program comparison, it was noticed different models for calculating the probability of failure regarding the assessment of failure modes by rupture and by leakage as dependent and independent phenomena. The results of probability of failure presented by different models were congruent only in defects where the failure mode by leakage appears as dominant. In defects where the failure mode by rupture is shown expressive, the model of assessment of failure modes by rupture and by leakage as independent phenomena presents higher values of probability of failure. Furthermore, it was possible to observe the influence of different models of growth of the defect in the calculation of the future failure pressure and the probability of failure. It was also observed the importance of using models of interaction of defects, finding difference up to 50% in the results of failure pressure.

Keywords

Pipeline; Corrosion; Structural Integrity; Reliability

Sumário

1. Introdução	25
1.1. Considerações iniciais	25
1.2. Motivação da dissertação	27
1.3. Organização da dissertação	29
2. Revisão bibliográfica das metodologias semi-empíricas para	
avaliação de dutos com defeitos de corrosão	31
2.1. ASME B31G	33
2.2. Método RStreng 0,85dL	38
2.3. Método RPA	39
2.4. Formulação de Kastner	40
2.5. DNV-RP-F101	42
3. A Confiabilidade aplicada ao gerenciamento da integridade	
de dutos	49
3.1. Função de distribuição de probabilidade e função de	
distribuição acumulada	50
3.2. Expectância e variância de uma variável aleatória	51
3.3. A Distribuição Normal	52
3.4. Intervalo de confiança	54
3.5. Probabilidade de falha por vazamento	55
3.6. Probabilidade de falha por ruptura	58
3.7. Probabilidade de falha combinada	70
4. Ferramentas computacionais para avaliação da integridade	
de dutos com defeitos de corrosão	71
4.1. Programa PLANPIG	71
4.2. Programa CONFIABILIDADE DE DUTOS	80
4.3. Programa OPIS	87
4.4. Visão comparativa das ferramentas computacionais	95

5. Avaliação de um defeito isolado em condições hipotéticas	97
5.1. Premissa de crescimento do defeito	98
5.2. Pressão de falha imediata e futura	102
5.3. Probabilidade de falha imediata e futura	112

6. Comparação de aplicativos em dutos com defeitos reais de Corrosão6.1. Metodologia de comparação dos aplicativos

6.2. Descrição dos dutos avaliados	122
6.3. Considerações estocásticas do estudo	127
6.4. Avaliação da pressão de falha imediata	128
6.5. Avaliação da pressão de falha em um momento futuro	140
6.6. Avaliação da probabilidade de falha imediata	140
6.7. Avaliação da probabilidade de falha em um momento futuro	164
6.8. Conclusões do estudo	179

7. Conclusões e recomendações de trabalhos futuros	181
7.1. Quanto ao desempenho dos programas avaliados no	
cálculo da pressão de falha imediata e futura	182
7.2. Quanto ao desempenho dos programas no cálculo da	
probabilidade de falha imediata e futura	182
7.3. Quanto à influência do modelo de crescimento do	
defeito na integridade futura	184
7.4. Quanto à influência do modelo de interação de defeitos	185
7.5. Quanto à forma de aquisição de dados	185
7.6. Quanto à precisão associada aos dados manipulados e	
gerados pelos programas	185
7.7. Quanto ao modelo analítico desenvolvido para o	
cálculo da probabilidade de falha imediata e futura	186
7.8. Sugestões de trabalhos futuros	186

8. Referências bibliográficas

120

120

Anexo A - Métodos de avaliação de defeitos de corrosão conforme	
a Parte B da Prática Recomendada DNV-RP-F101	190
Anexo B – Sensibilidade dos programas PLANPIG, OPIS e	
CONFIABILIDADE à severidade dos defeitos no cálculo	
da POF para os dutos avaliados no Capítulo 6	206
Anexo C – Análise de Confiabilidade de um Duto Padrão pelo	
programa PLANPIG 3.0	220
Anexo D - Análise de Confiabilidade de um Duto Padrão pelo	
programa CONFIABILIDADE DE DUTOS	243
Anexo E – Avaliação estocástica da pressão de ruptura obtida a	
partir da aplicação analítica da ASME B31G	278

Lista de figuras

Figura 1.1 - Exemplo de Matriz Qualitativa de Risco, adaptada da	
API RP 580 [3]	26
Figura 2.1 - Procedimento para análise da resistência de um duto	
corroído conforme ASME B31.G [6]	35
Figura 2.2 - Representação da área longitudinal de material	
perdido: a) forma parabólica e b) forma retangular	37
Figura 2.3 - Sistemática de avaliação de defeitos de corrosão	
em dutos rígidos considerada na norma PETROBRAS N-2786 [22]	40
Figura 2.4 - Adaptação do fluxograma da DNV-RP-F101 para	
avaliação de defeitos de corrosão em dutos	45
Figura 2.5 - Dimensões utilizadas na caracterização de um defeito	
isolado, adaptada de [7]	47
Figura 3.1 - Distribuição de probabilidade acumulada de uma	
variável em um intervalo definido seguindo uma distribuição normal	53
Figura 3.2 - Gráfico do intervalo de confiança de uma distribuição	
normal para uma incerteza dada	55
Figura 3.3 - Gráfico da probabilidade de falha por vazamento	58
Figura 3.4 – Razão M/α em função do comprimento do defeito	
para a Norma ASME B31G	65
Figura 3.5 – Razão M/α em função do comprimento do defeito	
para o método RStreng 0,85dL	65
Figura 3.6 – Razão M/α em função do comprimento do defeito	
para o método RPA	66
Figura 3.7 – Razão M/α em função do comprimento do defeito	
para o método DNV RP F 101	66
Figuras 3.8 - Derivadas de primeira e segunda ordem da fórmula	
NG-18 na variável d , sendo M e $lpha$ calculados segundo	
DNV RP F101	67
Figuras 3.9 - Derivadas de primeira e segunda ordem da fórmula	
NG-18 na variável L, sendo M e α calculados segundo	

DNV RP F101	67
Figura 3.10 - Gráfico da probabilidade de falha por ruptura	68
Figura 3.11 – Histograma dos resultados de Pressão de Ruptura	
obtido a partir de uma Simulação de Monte Carlo [5]	69
Figura 4.1 - Tela inicial do aplicativo PLANPIG apresentando as	
opções e combinações de avaliação do duto	73
Figura 4.2 - Conjunto de gráficos apresentando o valor do ERF em	
função dos defeitos, para cada metodologia considerada no	
programa PLANPIG	76
Figura 4.3 – Tela do programa PLANPIG apresentando a	
classificação dos tipos de defeito de corrosão pelo critério do	
Pipeline Operators Fórum [31]	77
Figura 4.4 - Gráficos com a análise da posição circunferencial dos	
defeitos de corrosão	78
Figura 4.5 – Representação gráfica das funções de	
distribuição de probabilidades das variáveis pressão de falha,	
MAOP e Margem de Segurança	81
Figura 4.6 - Interface de aquisição de dados do programa	
Confiabilidade de Dutos	81
Figura 4.7 – Interface para cálculo da taxa de corrosão do	
programa Confiabilidade de Dutos	82
Figura 4.8 - Interface de aquisição de dados de inspeção	
por PIG Instrumentado do programa Confiabilidade de Dutos	83
Figura 4.9 - Interface do programa Confiabilidade de Dutos	
com as opções para cálculo da pressão de falha e da	
probabilidade de falha	84
Figura 4.10 - Interface do programa Confiabilidade de	
Dutos apresentando os resultados de uma análise	85
Figura 4.11 - Tela Teste Seqüencial do programa Confiabilidade	
de Dutos para avaliação da confiabilidade do PIG Instrumentado	86
Figura 4.12 – Tela Erros de Medição do programa Confiabilidade	
de Dutos para avaliação da confiabilidade do PIG Instrumentado	86
Figura 4.13 - Tela inicial do programa OPIS ilustrando a	
janela de informação dos dados do duto	87

Figura 4.14 - Janela do programa OPIS para visualização dos	
defeitos de corrosão verificados na inspeção por PIG Instrumentado	88
Figura 4.15 - Opções disponíveis no programa OPIS para o	
cálculo da taxa de corrosão	90
Figura 4.16 - Tela do programa OPIS para aquisição e	
correlação do perfil ambiental com o perfil de corrosividade	91
Figura 4.17 - Página de predição do OPIS apresentando a	
evolução do defeito e previsão de pressão de falha ao longo	
dos anos	92
Figura 4.18 - Página de Confiabilidade no OPIS apresentando	
para cada defeito as probabilidades de vazamento, ruptura e falha	93
Figura 4.19 - Tela de otimização do intervalo de re-inspeção do	
OPIS com valores fictícios para inspeção e reparo	94
Figura 6.1 - Distribuição da profundidade dos defeitos ao longo	
da posição para o Duto 1	124
Figura 6.2 - Distribuição do comprimento dos defeitos ao longo da	
posição para o Duto 1	125
Figura 6.3 - Distribuição da profundidade dos defeitos ao longo da	
posição para o Duto 2	125
Figura 6.4 - Distribuição do comprimento dos defeitos ao longo da	
posição para o Duto 2	126
Figura 6.5 - Distribuição da profundidade dos defeitos ao longo da	
posição para o Duto 3	126
Figura 6.6 - Distribuição do comprimento dos defeitos ao longo da	
posição para o Duto 3	127
Figura 6.7 - Avaliação dos aplicativos que utilizam o algoritmo da	
ASME B31G no cálculo do ERF imediato para o Duto 1	129
Figura 6.8 - Avaliação dos aplicativos que utilizam o algoritmo da	
ASME B31G no cálculo do ERF imediato para o Duto 2	130
Figura 6.9 - Avaliação dos aplicativos que utilizam o algoritmo da	
ASME B31G no cálculo do ERF imediato para o Duto 3	130
Figura 6.10 - Comparação dos valores de ERF imediato calculados	
pelo PLANPIG na opção ASME B31G com os valores de ERF	
calculados analiticamente considerando a soma das incertezas do	

PIG nas dimensões do defeito	131
Figura 6.11 - Avaliação dos aplicativos que utilizam o algoritmo	
da DNV RP F101 no cálculo do ERF imediato para o Duto 1	132
Figura 6.12 - Avaliação dos aplicativos que utilizam o algoritmo	
da DNV RP F101 no cálculo do ERF imediato para o Duto 2	132
Figura 6.13 - Avaliação dos aplicativos que utilizam o algoritmo	
da DNV RP F101 no cálculo do ERF imediato para o Duto 3	133
Figura 6.14 – Valores de ERF imediato calculados pelo	
aplicativo CONFIABILIDADE com a multiplicação do fator de	
projeto original por 0,9	133
Figura 6.15 - Avaliação dos aplicativos que utilizam o algoritmo do	
Método RPA no cálculo do ERF imediato para o Duto 1	134
Figura 6.16 - Avaliação dos aplicativos que utilizam o algoritmo do	
Método RPA no cálculo do ERF imediato para o Duto 2	135
Figura 6.17 - Avaliação dos aplicativos que utilizam o algoritmo do	
Método RPA no cálculo do ERF imediato para o Duto 3	135
Figura 6.18 - Comparação dos valores de ERF imediato calculados	
pelo PLANPIG na opção RPA com os valores de ERF	
calculados analiticamente considerando a soma das incertezas	
do PIG nas dimensões do defeito para o Duto 3	136
Figura 6.19 - Avaliação dos aplicativos que utilizam o algoritmo do	
Método RStreng 0,85dL no cálculo do ERF imediato para o Duto 1	136
Figura 6.20 - Avaliação dos aplicativos que utilizam o algoritmo do	
Método RStreng 0,85dL no cálculo do ERF imediato para o Duto 2	137
Figura 6.21 - Avaliação dos aplicativos que utilizam o algoritmo do	
Método RStreng 0,85dL no cálculo do ERF imediato para o Duto 3	137
Figura 6.22 - Comparação dos valores de ERF imediato calculados	
analiticamente pelo Método RStreng 0,85dL com os apresentados	
pelo OPIS corrigidos pelo fator de projeto para o Duto 1	138
Figura 6.23 - Comparação dos valores de ERF imediato calculados	
analiticamente pelo Método RStreng 0,85dL com os apresentados	
pelo OPIS corrigidos pelo fator de projeto para o Duto 2	138
Figura 6.24 - Comparação dos valores de ERF imediato calculados	
analiticamente pelo Método RStreng 0,85dL com os apresentados	

pelo OPIS corrigidos pelo fator de projeto para o Duto 3	139
Figura 6.25 - Avaliação dos aplicativos que utilizam o algoritmo da	
ASME B31G no cálculo do ERF futuro para o Duto 1	141
Figura 6.26 - Avaliação dos aplicativos que utilizam o algoritmo da	
ASME B31G no cálculo do ERF futuro para o Duto 2	142
Figura 6.27 - Avaliação dos aplicativos que utilizam o algoritmo da	
ASME B31G no cálculo do ERF futuro para o Duto 3	142
Figura 6.28 - Comparação dos valores de ERF para o Duto 2 em	
10 anos calculados pelo PLANPIG na opção ASME B31G com os	
valores de ERF calculados analiticamente considerando a soma	
das incertezas do PIG nas dimensões do defeito	143
Figura 6.29 - Avaliação dos aplicativos que utilizam o algoritmo da	
DNV RP F101 no cálculo do ERF futuro para o Duto 1	144
Figura 6.30 - Avaliação dos aplicativos que utilizam o algoritmo da	
DNV RP F101 no cálculo do ERF futuro para o Duto 2	144
Figura 6.31 - Avaliação dos aplicativos que utilizam o algoritmo da	
DNV RP F101 no cálculo do ERF futuro para o Duto 3	145
Figura 6.32 - ERF em 10 anos para o Duto 2 calculado pelo	
aplicativo CONFIABILIDADE com a multiplicação do fator de	
projeto original por 0,9	145
Figura 6.33 - Avaliação dos aplicativos que utilizam o algoritmo do	
Método RPA no cálculo do ERF futuro para o Duto 1	146
Figura 6.34 - Avaliação dos aplicativos que utilizam o algoritmo do	
Método RPA no cálculo do ERF futuro para o Duto 2	146
Figura 6.35 - Avaliação dos aplicativos que utilizam o algoritmo do	
Método RPA no cálculo do ERF futuro para o Duto 3	147
Figura 6.36 - Comparação dos valores de ERF em 10 anos	
calculados pelo PLANPIG na opção RPA com os valores	
de ERF calculados analiticamente considerando a soma das	
incertezas do PIG nas dimensões do defeito para o Duto 2	147
Figura 6.37 - Avaliação dos aplicativos que utilizam o algoritmo do	
Método RStreng 0,85dL no cálculo do ERF futuro para o Duto 1	148
Figura 6.38 - Avaliação dos aplicativos que utilizam o algoritmo do	
Método RStreng 0,85dL no cálculo do ERF futuro para o Duto 2	148

Figura 6.39 - Avaliação dos aplicativos que utilizam o algoritmo do	
Método RStreng 0,85dL no cálculo do ERF futuro para o Duto 3	149
Figura 6.40 - Comparação dos valores de ERF em 10 anos	
calculados analiticamente pelo Método RStreng 0,85dL com os	
apresentados pelo OPIS corrigidos pelo fator de projeto	
para o Duto 2	149
Figura 6.41 - Probabilidades de falha calculadas analiticamente	
para o Duto 1 no momento da inspeção	151
Figura 6.42 - Probabilidades de falha calculadas analiticamente	
para o Duto 2 no momento da inspeção	151
Figura 6.43 - Probabilidades de falha calculadas analiticamente	
para o Duto 3 no momento da inspeção	152
Figura 6.44 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 1 conf. a B31G	153
Figura 6.45 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 2 conf. a B31G	153
Figura 6.46 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 3 conf. a B31G	154
Figura 6.47 - Sensibilidade da POF imediata em função da	
severidade dos defeitos para o Duto 2 na opção B31G	155
Figura 6.48 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 1 na opção DNV	156
Figura 6.49 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 2 na opção DNV	157
Figura 6.50 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 3 na opção DNV	157
Figura 6.51 - Sensibilidade da POF imediata em função da	
severidade dos defeitos para o Duto 2 na opção DNV RP F101	158
Figura 6.52 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 1 na opção RPA	159
Figura 6.53 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 2 na opção RPA	159
Figura 6.54 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 3 na opção RPA	160

Figura 6.55 - Sensibilidade da POF imediata em função da	
severidade dos defeitos para o Duto 2 na opção RPA	160
Figura 6.56 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 1 conf. 0,85dL	161
Figura 6.57 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 2 conf. 0,85dL	162
Figura 6.58 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 3 conf. 0,85dL	162
Figura 6.59 - Interface do programa OPIS ilustrando a	
distribuição dos valores de POF para o Duto2	163
Figura 6.60 - Avaliação dos resultados de probabilidade de falha	
imediata para o Duto 2 conf. 0,85dL, na forma de pontos dispersos	163
Figura 6.61 - Sensibilidade da POF imediata em função da	
severidade dos defeitos para o Duto 2 na opção RStreng 0,85dL	164
Figura 6.62 - Probabilidades de falha calculadas analiticamente	
para os defeitos do Duto 1 em 10 anos a contar do momento da	
inspeção	165
Figura 6.63 - Probabilidades de falha calculadas analiticamente	
para os defeitos do Duto 2 em 10 anos a contar do momento da	
inspeção	166
Figura 6.64 - Probabilidades de falha calculadas analiticamente	
para os defeitos do Duto 3 em 5 anos a contar do momento da	
inspeção	166
Figura 6.65 - Avaliação dos resultados de probabilidade de falha	
em 10 anos para o Duto 1 conf. B31G	167
Figura 6.66 - Avaliação dos resultados de probabilidade de falha	
em 10 anos para o Duto 2 conf. B31G	167
Figura 6.67 - Avaliação dos resultados de probabilidade de falha	
em 5 anos para o Duto 3 conf. B31G	168
Figura 6.68 - Sensibilidade da POF em 10 anos em função da	
severidade dos defeitos iniciais para o Duto 2 na opção ASME B31G	169
Figura 6.69 - Sensibilidade da POF em 10 anos em função da	
severidade dos defeitos iniciais para o Duto 2 na opção ASME	
B31G, apresentada em escala linear	170

Figura 6.70 - Sensibilidade da POF em 5 anos em função da	
severidade dos defeitos iniciais para o Duto 3 na opção ASME B31G	171
Figura 6.71 - Sensibilidade da POF em 5 anos em função da	
severidade dos defeitos iniciais para o Duto 3 na opção	
ASME B31G, apresentada em escala linear	172
Figura 6.72 - Avaliação dos resultados de probabilidade de falha	
em 10 anos para o Duto 1 conf. DNV	173
Figura 6.73 - Avaliação dos resultados de probabilidade de falha	
em 10 anos para o Duto 2 conf. DNV	173
Figura 6.74 - Avaliação dos resultados de probabilidade de falha	
em 5 anos para o Duto 3 conf. DNV	174
Figura 6.75 - Sensibilidade da POF em 10 anos em função da	
severidade dos defeitos iniciais para o Duto 2 na opção	
DNV RP F101	174
Figura 6.76 - Avaliação dos resultados de probabilidade de falha	
em 10 anos para o Duto 1 conforme o Método RPA	175
Figura 6.77 - Avaliação dos resultados de probabilidade de falha	
em 10 anos para o Duto 2 conforme o Método RPA	175
Figura 6.78 - Avaliação dos resultados de probabilidade de falha	
em 5 anos para o Duto 3 conforme o Método RPA	176
Figura 6.79 - Sensibilidade da POF em 10 anos em função da	
severidade dos defeitos iniciais para o Duto 2 na opção RPA	176
Figura 6.80 - Avaliação dos resultados de probabilidade de falha	
em 10 anos para o Duto 1 conforme o Meto RStreng 0,85dL	177
Figura 6.81 - Avaliação dos resultados de probabilidade de falha	
em 10 anos para o Duto 2 conforme o Meto RStreng 0,85dL	177
Figura 6.82 - Avaliação dos resultados de probabilidade de falha	
em 5 anos para o Duto 3 conforme o Meto RStreng 0,85dL	178
Figura 6.83 - Sensibilidade da POF em 10 anos em função da	
severidade dos defeitos iniciais para o Duto 2 na opção	
RStreng 0,85dL	179

Lista de tabelas

Tabela 2.1 - Diferenças entre os métodos ASME B31G e	
RStreng .85 dL	38
Tabela 2.2 - Combinações de carregamentos e defeitos de	
corrosão cobertos pela DNV-RP-F101	43
Tabela 2.3 - Variação dos parâmetros avaliados nos testes de	
pressão interna – DNV-RP-F101	44
Tabela 3.1 - Derivadas parciais do parâmetro M na variável L	
para o método ASME B31	61
Tabela 3.2 – Derivadas parciais do parâmetro M na variável L	
para o método RStreng 0,85dL	62
Tabela 3.3 – Derivadas parciais do parâmetro M na variável L	
para o método RPA	62
Tabela 3.4 - Derivadas parciais do parâmetro M na variável L	
para o método DNV	63
Tabela 4.1 - Tabela com os parâmetros da planilha padrão	
utilizada para inserção de dados no PLANPIG	75
Tabela 4.2 - Critério para calculo da taxa de crescimento do	
defeito de corrosão adotado pelo PLANPIG, conforme [30]	78
Tabela 4.3 - Tabela comparativas das funcionalidades e	
considerações adotadas pelos aplicativos PLANPIG,	
CONFIABILIDADE DE DUTOS e OPIS	96
Tabela 5.1 – Dados hipotéticos de um defeito isolado em	
um duto submetido à pressão interna	98
Tabela 5.2 - Expectância e desvio padrão das dimensões do	
defeito isolado para a condição de crescimento apenas na	
profundidade	102
Tabela 5.3 - Expectância e desvio padrão das dimensões do	
defeito isolado para a condição de crescimento na	
profundidade e comprimento conforme a Tabela 4.2	102
Tabela 5.4 - Pressão de falha e ERF calculados analiticamente	
para o defeito isolado na condição imediata	103

Tabela 5.5 - Pressão de falha e ERF calculados analiticamente	
para o defeito isolado na condição futura, considerando o	
crescimento do defeito apenas na profundidade	103
Tabela 5.6 - Pressão de falha e ERF calculados analiticamente	
para o defeito isolado na condição futura, considerando o	
crescimento do defeito na profundidade e no comprimento	104
Tabela 5.7 - Valores de pressão de falha e ERF obtidos pela	
aplicação dos programas avaliados em um defeito isolado, para o	
instante imediato e em 10 anos após a inspeção	105
Tabela 5.8 - Valores de pressão de falha e ERF imediatos,	
calculados analiticamente para as metodologias B31G e RPA	
com a majoração das dimensões do defeito isolado pelas	
incertezas do PIG	107
Tabela 5.9 - Valores de pressão de falha e ERF em 10 anos,	
calculados analiticamente para as metodologias B31G e RPA	
com a majoração das dimensões do defeito pelas incertezas do	
PIG e modelo de crescimento do defeito na profundidade e	
comprimento conforme a Tabela 4.2	107
Tabela 5.10 - Valores de pressão de falha e ERF em 10 anos,	
calculados analiticamente para as metodologias B31G e RPA	
com a majoração das dimensões do defeito pelas incertezas do	
PIG e modelo de crescimento do defeito apenas na profundidade	108
Tabela 5.11 – Avaliação do erro relativo apresentado entre o	
aplicativo PLANPIG e o modelo analítico no cálculo da pressão	
de falha considerando as dimensões do defeito majoradas	108
Tabela 5.12 - Valores de pressão de falha e ERF calculados	
analiticamente para a metodologia DNV RP F101 sem a utilização	
do fator de 0,9 correspondente ao "modelling factor" – condição	
imediata	109
Tabela 5.13 – Valores de pressão de falha e ERF calculados	
analiticamente para a metodologia DNV RP F101 sem a utilização	
do fator de 0,9 correspondente ao "modelling factor" – condição	
futura com crescimento do defeito somente na profundidade	109
Tabela 5.14 - Avaliação do erro relativo apresentado entre o	

aplicativo CONFIABILIDADE e o modelo analítico no cálculo da	
pressão de falha	110
Tabela 5.15 - Valores de pressão de falha e ERF imediato	
calculados analiticamente para a metodologia RStreng 0,85dL	
com a utilização de fator de projeto equivalente a 1,0	111
Tabela 5.16 - Valores de pressão de falha e ERF em 10 anos	
calculados analiticamente para a metodologia RStreng 0,85dL	
com a utilização de fator de projeto equivalente a 1,0 –	
crescimento do defeito conforme a Tabela 4.2	111
Tabela 5.17 - Avaliação do erro relativo apresentado entre o	
aplicativo OPIS e o modelo analítico no cálculo da pressão de	
falha	112
Tabela 5.18 – Resultados analíticos de probabilidade de falha	
para o defeito isolado	114
Tabela 5.19 - Resultados de probabilidade de falha calculados	
pela aplicação dos programas para o defeito isolado	115
Tabela 5.20 – Avaliação comparativa dos resultados de	
POL apresentados pelos programas	116
Tabela 5.21 – Avaliação comparativa dos resultados de	
POR apresentados pelos programas	117
Tabela 5.22 – Avaliação comparativa dos resultados de	
POF apresentados pelos programas	118
Tabela 6.1 - Resumo das variáveis comparáveis pelos	
programas estudados	122
Tabela 6.2 - Descrição dos dutos avaliados pelas	
ferramentas computacionais para determinação da integridade	123
Tabela 6.3 - Considerações estatísticas adotadas pelos	
diferentes aplicativos avaliados	128
Tabela 6.4 – Descrição dos defeitos interagentes na posição	
2660,57m do Duto 3	140
Tabela 6.5 - Tabela geral com os resultados da avaliação dos	
aplicativos para gerenciamento da integridade de dutos de aço	
com defeitos reais de corrosão	180

Abreviaturas e Siglas

- ASD Allowable Stress Design
- COF Consequence of Failure
- ERF Estimated Repair Factor
- MAOP Maximum Allowed Operation Pressure
- PIG Pipeline Inspection Gauge
- POF Probability of Failure
- POL Probability of Leakage
- POR Probability of Rupture
- UEP Unidade de Exploração e Produção
- UTS Ultimate Tensile Strength
- ZTA Zona Termicamente Afetada