

Flávia Ferreira de Carvalho Marques

Desenvolvimento de métodos analíticos espectroluminescentes e eletroforéticos para a determinação de alcaloides (beta-carbolinas, camptotecina e derivados) de interesse farmacológico

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Química da PUC-Rio como requisito parcial para obtenção do título de Doutor em Química.

Orientador: Ricardo Queiroz Aucélio

Rio de Janeiro março de 2009

Flávia Ferreira de Carvalho Marques

Desenvolvimento de métodos analíticos espectroluminescentes e eletroforéticos para a determinação de alcaloides (beta-carbolinas, camptotecina e derivados) de interesse farmacológico

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Química da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Ricardo Queiroz Aucélio Orientador Departamento de Química - PUC-Rio

Profa. Tatiana Dillenburg Saint Pierre Departamento de Química – PUC-Rio

Dr Arthur de Lemos Scofield Departamento de Química – PUC-Rio

Prof. Aderval Severino Luna

Instituto de Química – UERJ

Profa. Shirley de Mello Pereira Abrantes

Departamento de Química - INCQS - Fundação Oswaldo Cruz

Prof. Annibal Duarte Pereira Netto

Departamento de Química – UFF

José Eugenio Leal

Coordenador Setorial de Pesquisa e Pós-Graduação do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 31 de março de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da autora, do orientador e da universidade.

Flávia Ferreira de Carvalho Marques

Mestre em Química Analítica pela Pontifícia Universidade Católica do Rio de Janeiro (2005). Pós-graduada na Universidade do Estado do Rio de Janeiro (UERJ) no curso de Especialização no Ensino de Química (2000). Graduada em Licenciatura Plena em Química na mesma universidade (UERJ) em 1998. Trabalhou em indústrias de bebidas, farmacêutica e de óleos e aditivos para combustíveis (1993 a 2003) e também como apoio técnico de consultoria em laboratórios (2006). Foi aluna da Escola Técnica Federal de Química do Rio de Janeiro (1993). Leciona no ensino médio desde 1999.

Ficha Catalográfica

Marques, Flávia Ferreira de Carvalho

Desenvolvimento de métodos analíticos espectroluminescentes e eletroforéticos para a determinação de alcalóides (beta-carbolinas, camptotecina e derivados) de interesse farmacológico / Flávia Ferreira de Carvalho Marques ; orientador: Ricardo Queiroz Aucélio. – 2009.

237 f. : il. ; 30 cm

Tese (Doutorado em ciências – Química Analítica) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

1. Química – Teses. 2. Camptotecina e derivados. 3. Beta-carbolinas. 4. Fluorimetria. 5. Fosforimetria. 6. Eletroforese capilar. 7. Seletividade. 8. Incertezas de medição. I. Aucélio, Ricardo Queiroz. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Química. III. Título.

CDD: 540

Acima de tudo, a Deus, por ter me dado a vida e a sabedoria.

Aos meus pais, Hamilton e Lenita, por toda amizade e incansável ajuda.

Em especial ao meu esposo Marcio, pela paciência, compreensão e apoio.

Principalmente aos meus filhos Lucas e Gabriel, meus maiores incentivos para esta conquista.

Agradecimentos

Ao professor e orientador Ricardo Queiroz Aucélio, pelos ensinamentos, pela confiança em meu trabalho e pela oportunidade de ter aprendido a valorizar e a amar a pesquisa.

A todos os professores do Departamento de Química da PUC-Rio, os quais muito contribuíram para o aumento do meu conhecimento. Também a professora Cássia do Departamento de Física pelas tentativas na identificação de fotoprodutos por LDI e Cf-PDMS.

A todos do LEEA, Eliane, Thiago, Sonia, Elaine, Wagner, Carlos, Renata e Flávia Figueiredo pelas colaborações, trocas de ensinamentos e ótima convivência no laboratório, mas especialmente a Cabrini Ferraz por ter me dado os primeiros passos na técnica de eletroforese capilar. Um agradecimento especial à amiga Alessandra por sua agradável amizade e por toda troca de experiência profissional que tivemos, principalmente nos assuntos metrológicos.

A todos da minha família que muito me ajudaram ao longo destes quatro anos, cuidando dos meus filhos Lucas e Gabriel para que eu pudesse estar tantas horas ausente, dedicando-me à pesquisa. Agradeço especialmente a minha mãe Lenita, minha sogra Marísia, minha avó Lizete, minha afilhada Érica, minha irmã Marcela e meu primo Bruno. Um agradecimento muito especial ao meu falecido avô Geraldo por todo o seu incentivo e por amostras biológicas por ele cedidas.

Aos professores participantes da comissão examinadora.

À PUC-Rio pela organização e qualidade do curso oferecido, e aos funcionários do Departamento de Química.

Ao CNPq, FAPERJ e FINEP-MCT pelo suporte financeiro.

A todos aqueles que de alguma forma contribuíram para que este trabalho fosse realizado

Resumo

Marques, Flávia Ferreira de Carvalho; Aucélio, Ricardo Queiroz (orientador). **Desenvolvimento de métodos analíticos espectroluminescentes e eletroforéticos para a determinação de alcaloides (beta-carbolinas, camptotecina e derivados) de interesse farmacológico.** Rio de Janeiro, 2009. 237p. Tese de Doutorado -Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Métodos analíticos foram desenvolvidos para a determinação seletiva de alcalóides de interesse farmacológico. Com o objetivo de permitir a determinação seletiva de camptotecina (CPT) em formulações farmacêuticas de irinotecana (CPT-11) ou de topotecana (TPT), dois métodos espectrofluorimétricos e um eletroforético, com detecção por fotometria de absorção, foram propostos. Os métodos espectrofluorimétricos permitiram a determinação seletiva de CPT usando um ajuste de alcalinidade do meio associado ao uso de varredura sincronizada ou de derivada de 2ª ordem. Alternativamente, o procedimento de derivação fotoquímica (com otimização com planejamento composto central) eliminou completamente as interferências no sinal do CPT. Nas condições otimizadas, a espectrofluorimetria permitiu a determinação de CPT em misturas contendo até 50 vezes mais TPT ou contendo até 10 vezes mais CPT-11. A resposta analítica indicou faixas lineares de trabalho e homoscedasticidade. O limite de deteccão (LD) foi da ordem de 10⁻¹⁰ mol L⁻¹ para o método baseado na derivação fotoquímica e uma ordem de grandeza a menos para os métodos sem derivatização fotoquímica. Testes foram feitos em medicamentos a base de TPT e de CPT-11 e as recuperações ficaram em torno de 100%. Esses resultados foram comparáveis aos obtidos com método de referência (HPLC). O estudo de incerteza de medição por fluorimetria indicou que a maior contribuição do processo era a preparação de solução por avolumação. A contribuição dessa fonte foi minimizada pela preparação de solução por meio de ajuste de massa, causando um grande impacto na redução da incerteza expandida. O método baseado na eletroforese eletrocinética capilar micelar (MEKC) permitiu a quantificação simultânea de TPT, CPT e CPT-11. Para conseguir o ajuste final das melhores condições, foi feito um estudo univariado seguido de um planejamento composto central. Para se melhorar a sensibilidade da detecção em até 76 vezes, foi utilizado um processo de pré-concentração no capilar por modo de empilhamento e uma cela de caminho óptico alongado. A escolha do tampão borato (pH 8,5) contendo SDS e acetonitrila permitiu condições robustas de sinal de tempo de migração. A resposta analítica mostrou faixa linear e homoscedatidade, além de repetitividade em torno de 3,5%. O LD foi da ordem de 10⁻⁷ mol L⁻¹ (TPT) e 10⁻⁸ mol L⁻¹ (CPT-11 e CPT). Testes de recuperação em amostras de saliva fortificadas foram feitos e comparados com os obtidos por um método de referência (HPLC) de forma a mostrar a exatidão adequada para o método proposto. Para a determinação seletiva de β-carbolinas, a fosforimetria em substrato sólido (SSRTP) foi utilizada. O ajuste do átomo pesado seletivo e a aplicação de técnica de varredura sincronizada e de 2ª derivada aumentaram o grau de seletividade, pois induziu fosforescência dos analitos de interesse na amostra e melhorou a resolução espectral em relação aos interferentes. O ajuste da quantidade de HgCl₂ (0,81 mg) permitiu a determinação seletiva de harmol na presença de quantidades até 10 vezes maiores de harmine, harmane, norharmane e harmaline. O método SSRTP seletivo proposto para determinação de harmol foi comparado com o resultado obtido por um método de referência adaptado baseado em MEKC, o qual também mostrou sua capacidade para a determinação seletiva de harmol na presença dos interferentes. LD absoluto na ordem de ng e comportamento linear da resposta analítica foram obtidos. No caso do método analítico desenvolvido para a determinação de harmane na presença de harmine em chás, estudos de otimização mostraram o AgNO3 como sal de átomo pesado no substrato, solução de amostra em pH 11 e medições feitas em 322 nm do espectro de 2ª derivada da varredura sincronizada ($\Delta\lambda$ = 109 nm). Testes de interferência mostraram que a matriz do chá não tem influência no sinal do harmane e que nas condições otimizadas, pode-se determinar harmane na presenca de harmine, em concentrações até duas vezes maiores. A resposta analítica mostrou faixa linear e homoscedaticidade. A repetitividade dos resultados foi de até 9,0%. O LDA encontrado para o harmane foi 3,1 ng. Em amostras de chá de camomila, erva-doce e capim-cidreira, a média de recuperação do harmane na presença de harmine ficou em torno de 100%. No caso da incerteza associada à medição de fosforescência por SSRTP, as quatro fontes de incerteza (repetitividade, reprodutibilidade, curva analítica e soluções) foram relevantes, o que se deve a variações de sinais produzidos pela não homogeneidade nos substratos sólidos utilizados nas medições por SSRTP.

Palavras chave

Camptotecina e derivados, β-carbolinas, fluorimetria, fosforimetria, eletroforese capilar, seletividade, incerteza de medição.

Abstract

Marques, Flávia Ferreira de Carvalho; Aucélio, Ricardo Queiroz (advisor). **Development of analytical methods based on luminescence and electrophoresis for the determination of alkaloids (beta-carbolines, camptothecin and derivatives) of pharmacological interest**. Rio de Janeiro, 2009. 237p. Doctor Thesis - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Analytical methods were developed for the selective determination of alkaloids of pharmacological interest. Aiming the selective determination of camptothecin (CPT) in irinotecan (CPT-11) or topotecan (TPT) based pharmaceutical formulations, two spectrofluorimetric methods and one electrophoretic method with absorciometic detection were proposed. The spectrofluorimetric method allowed the determination of CPT using the adjustment of the alkalinity of the sample solution associated with the use of synchronous scanning or 2nd order spectral derivation. Alternativelly, the photochemical derivatization (optimized by central composite design) completely eliminated interferences on the CPT signal. The optimized conditions allowed the spectrofluorimetric determination of CPT in mixtures containing up to 50 times more TPT or up to 10 times more CPT-11. The analytical response presented linear working ranges and homocedasticity. The limit of detection (LD) was in the order of 10⁻¹⁰ mol L⁻¹ for the method based on photochemical derivatization and one order of magnitude higher for the methods without photochemical derivatization. Tests were made using TPT and CPT-11 based comercial drugs and recoveries were around 100%. Such results were comparable to those obtained with the reference method (HPLC). A study of fluorimetric measurement uncertainty indicated that the greatest contribution in the process was the preparation of solution by volume. The contribution from this source was minimized by the preparation of solutions by weight measurement which caused a major impact in reducing the expanded uncertainty. The method based on micellar electrokinetic capillary electrophoresis (MEKC) allowed the simultaneous quantification of TPT, CPT and CPT-11. To achieve final adjustment of conditions, an univariated study was made followed by a central composite design. To improve the sensitivity of detection up to 76 times, a pre-concentration in the capillary by the normal stacking mode was used along with an extended optical path cell. The choice of borate buffer (pH 8.5) containing SDS and acetonitrile implicated in robust conditions of signal and migration times. The response showed analytical linear working range and homocedasticity, and repeatability of around 3.5%. The LD was in the order of 10⁻⁷ mol L⁻¹ (TPT) and 10⁻⁸ mol L⁻¹ (CPT-11 and CPT). Recovery tests using spiked saliva samples were made and compared with those obtained by a reference method (HPLC) to show the appropriated accuracy for the proposed method. For the selective determination of β -carbolines, solid surface room temperature phosphorimetry (SSRTP) was used. The adjustment of the selective heavy atom and the application of synchronized scanning technique and 2nd order spectral derivation, increased the degree of selectivity, because induced phosphorescence of the analytes of interest in the sample and improved spectral resolution. The adjustment of the amount of HgCl₂ (0.81 mg) allowed the selective determination of harmol in the presence of up to 10 times higher amounts of harmine, harman, harmaline and norharman. The method proposed for selective SSRTP determination of harmol was compared with the results obtained by an adapted method based on MEKC, which also showed its ability to determine harmol in the presence of interferences. The absolute limit of detection in the ng order and linear behavior of the analytical response was obtained. For the analytical method developed for the determination of harman in the presence of harmine in teas, optimization studies indicated the following conditions: AgNO₃ as the heavy atom salt deposited on the substrate, sample solution at pH 11 and measurements made at 322 nm of the 2nd order derivated synchronous scanning spectrum ($\Delta\lambda$ = 109 nm). Tests showed that, in optimized conditions, the tea matrix had no influence on the harman signal and and that harman could be determined in samples containing harmine in concentrations up to two times higher. The analytical response showed linear range and homocedasticity. The repeatability indicated results up to 9.0%. The absolute limit of detection found for harman was 3.1 ng. In samples of threes different teas, the average recovery of harman in the presence of harmine was around 100%. The uncertainty of the SSRTP measurements indicated relevance from the four sources of uncertainty (repeatability, reproducibility, analytical curve and solutions), which is mostly caused by the variations in signals produced by non-homogeneities of the solid substrate used in measurements by SSRTP.

Keywords

Camptothecin and derivatives, β -carbolines, fluorimetry, phosphorimetry, capillary electrophoresis, selectivity, uncertainty of measurement.

Sumário

1 Analitos	s de interesse clínico e biológico	30
1.1 Camp	totecina, irinotecana e topotecana	30
1.1.1 Méte	odos para a determinação de CPT e seus derivados	33
1.2 Deriva	ados da β -carbolina	38
1.2.1 Méte	odos para determinação de β -carbolinas	43
2 Objetivo	os e técnicas utilizadas	47
2.1 Objeti	vos	47
2.2 Inform	nações gerais sobre as técnicas utilizadas	49
2.2.1 Fluo	rimetria e Fosforimetria	49
2.2.1.1 Efi	ciência quântica da fluorescência e da fosforescência	54
2.2.1.2 Pa	râmetros que afetam a fluorescência e a fosforescência	55
2.2.1.2.1	Estrutura molecular	56
2.2.1.2.2	Temperatura	58
2.2.1.2.3	Sistema de solventes	58
2.2.1.2.4	Influência do oxigênio e da umidade	59
2.2.1.2.5	Efeito do pH	60
2.2.1.2.6	Efeito do átomo pesado	60
2.2.1.3 Té	cnicas para aumento de seletividade	61
2.2.1.3.1	Varredura sincronizada	62
2.2.1.3.2	Fosforescência derivada superior (d ⁿ)	63
2.2.2 Elet	roforese capilar	64
2.2.2.1 Mo	odos de introdução da amostra	72
2.2.2.2 Co	ncentração da amostra no capilar	73
2.2.2.3 Cr	omatografia eletrocinética micelar (MEKC)	76
2.2.2.3.1	Micelas	77
2.2.2.3.2	Migração em MEKC	78
2.2.2.3.3	Resolução, capacidade e eficiência	79
2.2.2.3.4	Parâmetros experimentais relacionados com a	
oti	mização da resolução	82
2.2.2.3.5	Escolha da micela – surfactante aniônico	82
2.2.2.3.6	Concentração e pH da solução tampão	83

2.2.2.3.7 Temperatura	83
2.2.2.3.8 Uso de aditivos na fase aquosa	83
3 Materiais, reagentes, soluções, instrumentação e métodos	85
3.1 Materiais e reagentes	85
3.2 Soluções	87
3.2.1 Soluções usadas nos experimentos com fosforimetria e	
fluorimetria	87
3.2.2 Soluções usadas nos experimentos com cromatografia	
eletrocinética micelar (MEKC)	89
3.2.3 Soluções usadas em cromatografia líquida (HPLC)	90
3.2.4 Soluções usadas nos estudos de incerteza	91
3.3 Instrumentação	91
3.3.1 Instrumentação usada nas medições de fosforescência ou	
fluorescência	91
3.3.1.1 Espectrômetro de luminescência	91
3.3.1.2 Reator fotoquímico	92
3.3.1.3 Sistema de lavagem dos papéis	93
3.3.2 Instrumentação usada nas separações por cromatografia	93
3.3.3 Instrumentação usada nas separações por eletroforese capilar	94
3.3.4 Outros equipamentos auxiliares	96
3.4 Procedimentos gerais	96
3.4.1 Limpeza do material	96
3.4.2 Preparação de substrato de celulose de baixo sinal de fundo	
usado em SSRTP	97
3.4.3 Procedimento geral para medição do sinal fosforescente	97
3.4.4 Procedimento geral para medição do sinal fluorescente e para	
separações por eletroforese capilar	98
3.4.4.1 Uso da cela de caminho óptico alongado	100
3.4.4.2 Pré-concentração da amostra em linha	101
3.4.5 Procedimento geral para as separações feitas por	
cromatografia líquida de alta eficiência	101
3.5 Programas utilizados	102
4 Camptotecina, irinotecana, topotecana – Desenvolvimento de	
métodos e resultados	103
4.1 Informações preliminares	103

4.2 Método espectrofluorimétrico para determinação de CPT	103
4.2.1 Estudo das características fluorescentes do CPT e de seus	
derivados	103
4.2.1.1 Testes de interferência	108
4.2.1.2 Parâmetros analíticos de mérito do método	
espectrofluorimétrico para o CPT	111
4.2.1.3 Cálculo da incerteza associada à medição da fluorescência	
da CPT	115
4.2.1.4 Testes de recuperação em formulações farmacêuticas e	
comparação com método analítico de referência	116
4.2.2 Método espectrofluorimétrico para determinação de CPT após	
derivação fotoquímica	118
4.2.2.1 Estudo das características fluorescentes da camptotecina e	
de seus derivados após irradiação com UV	118
4.2.2.2 Otimização multivariada das condições experimentais	124
4.2.2.3 Testes de interferência	129
4.2.2.4 Parâmetros Analíticos de Mérito do método	
espectrofluorimétrico para o CPT após derivação	
fotoquímica	132
4.2.2.5 Cálculo da incerteza associada à medição da fluorescência	
da CPT após derivação fotoquímica	134
4.2.2.6 Testes de recuperação em formulações farmacêuticas e	
comparação com método analítico de referência	136
4.3 Método para determinação simultânea de CPT, CPT-11 e TPT	
por cromatografia eletrocinética micelar (MEKC)	137
4.3.1 Otimização dos parâmetros críticos para separação	
eletroforética na fase pseudoestacionária	137
4.3.1.1 Estudos univariados	138
4.3.1.2 Planejamento experimental	148
4.3.2 Pré-concentração em linha	153
4.3.3 Parâmetros de mérito do método eletroforético para o CPT e	
derivados	157
4.3.4 Testes de recuperação em saliva	162
5 β-Carbolinas – Desenvolvimento de Métodos e Resultados	165
5.1 Informações preliminares	165

5.1.1 Estudo das características fosforescentes do harmol,	
harmaline, harmalol e norharmane em substrato de celulose	
de baixo sinal de fundo	166
5.1.1.1 Fosforescência em função da composição da solução	
carreadora	166
5.1.1.2 Fosforescência em função do efeito do átomo pesado e do	
pH	169
5.1.1.3 Efeito do SDS como modificador de superfície do substrato	
de celulose associado à variação de pH	174
5.1.1.4 Efeito do SDS como modificador de superfície do substrato	
de celulose associado à variação de pH e na presença de	
diferentes íons de átomo pesado	175
5.1.2 Estudos visando a determinação seletiva de β -carbolinas por	
SSRTP	178
5.1.2.1 Estudo de caso I: Determinação seletiva de harmol em urina	178
5.1.2.1.1 Condições experimentais para a determinação seletiva	
de harmol usando um método de referência adaptado	
baseado em cromatografia eletrocinética micelar (MEKC)	185
5.1.2.1.2 Parâmetros analíticos de mérito para a determinação de	
harmol através dos métodos SSRTP e MEKC adaptado	187
5.1.2.1.3 Testes de recuperação em amostras de urina usando	
SSRTP e MEKC adaptado	190
5.1.2.2 Estudo de caso II: Determinação seletiva de harmane na	
presença de harmine em chás	191
5.1.2.2.1 Condições experimentais para a determinação de	
harmane na presença de harmine	191
5.1.2.2.2 Avaliação de interferências	195
5.1.2.2.3 Determinação de harmane na presença de harmine em	
chás	198
5.1.2.2.4 Testes de recuperação em chás	200
	001
6 Estudos de incerteza	201
6.1 Fontes de inceneza	201
$0.1.1$ incerteza associada à repetitivilidade (U_r)	200
6.1.2 Incerteza associada a reprodutibilidade interna (u _R).	200
o. i.o. moeneza associada ao preparo das soluções (U _s).	207

6.1.4 Incerteza associada à curva analítica (u _{curva})	209
6.1.5 Incertezas combinada (u _c) e expandida (U)	
7 Conclusões	215
7.1 Determinações fluorimétricas e eletroforéticas para a	
camptotecina e derivados	215
7.2 Determinação de beta-carbolinas por SSRTP	220
7.3 Estudos de incerteza	222
8 Referências bibliográficas	223

Lista de figuras

Figura 1: Estruturas da (a) camptotecina, (b) irinotecana e	
(c) topotecana	31
Figura 2: Representação esquemática da hidrólise reversível do (a) anel lactônico para a forma do (b) anel aberto carboxilado da	
camptotecina e seu derivado CPT-11.	32
Figura 3: Mecanismo de ação da camptotecina	33
Figura 4: Estruturas dos derivados da β-carbolina: harmane (a); harmine (b); harmol (c); harmalol (d); harmaline (e);	
norharmane (f)	39
Figura 5: Biossíntese do harmane	40
Figura 6: Rota metabólica proposta para o harmane e o harmine	42
Figura 7: Diagrama esquemático de um arranjo de spins nos orbitais moleculares para os estados fundamental, e singleto e tripleto	
excitados	50
Figura 8: Diagrama de Jablonski modificado, mostrando os processos físicos que podem ocorrer após cada molécula absorver um fóton	
ultravioleta ou visível	53
Figura 9: Representação esquemática do arranjo dos principais componentes de um instrumento típico de Eletroforese Capilar.	66
Figura 10: Modelo da distribuição de uma dupla camada de carga em um capilar carregado negativamente, o qual gera potencial zeta.	69
Figura 11: Esquema geral do modo de empilhamento de uma amostra aniônica.	75
Figura 12: Esquema representativo da separação por MEKC usando micelas aniônicas.	77
Figura 13: (a) Reator fotoquímico e (b) detalhe dos papéis sendo irradiados.	93
Figura 14: Sistema composto por capilar com janela óptica feita	

Figura 15: (a) Cassete fechado já contendo o capilar; (b) interior do cassete com o capilar e seu respectivo alinhador adaptados.	95
Figura 16: (a) Cela com caminho óptico alongado com os aparatos adaptados e (b) formato em Z no interior da cela.	95
Figura 17: Aplicação das soluções no substrato sólido com auxílio de planilha demarcada para indicação de posição de amostra.	97
Figura 18: (a) Colocação do substrato de papel no suporte que é acoplado ao (b) aparato de medição em superfície sólida	98
Figura 19: Influência do pH na intensidade fluorescente do CPT (1x 10 ⁻⁶ mol L ⁻¹) e de seus derivados (1x 10 ⁻⁶ mol L ⁻¹).	105
Figura 20: (a) Espectros de excitação e emissão fluorescente do CPT, CPT-11 e TPT, todos a 1 x 10 ⁻⁶ mol L ⁻¹ e em pH original de suas	
soluções aquosas.	105
Figura 21: Influência do NaOH 1,0 mol L ⁻¹ usado como solvente para CPT, CPT-11 e TPT (todos a 1 x 10 ⁻⁶ mol L ⁻¹) no perfil dos espectros de (a) excitação e (b) emissão fluorescentes destes analitos.	106
Figura 22: Influência da concentração de NaOH na intensidade fluorescente do CPT.	107
Figura 23: Espectros de emissão e excitação fluorescentes do CPT em três diferentes concentrações de solução de NaOH.	108
Figura 24: Espectro de varredura sincronizada ($\Delta\lambda = 82$ nm) da fluorescência de (a) CPT 2 x 10 ⁻⁷ mol L ⁻¹ ; (b) mistura de CPT:TPT 2 x 10 ⁻⁷ : 2 x 10 ⁻⁶ mol L ⁻¹ e (c) mistura de CPT:TPT 2 x 10 ⁻⁷ : 1 x 10 ⁻⁵ mol L ⁻¹	110
Figura 25: Espectro fluorescente de segunda ordem do CPT 1 x 10^{-6} mol L ⁻¹ e da mistura CPT:CPT-11: a) branco; b) 1 x 10^{-6} : 0 mol L ⁻¹ ; c) 1 x 10^{-6} : 2 x 10^{-6} mol L ⁻¹ ; d) 1 x 10^{-6} : 5 x 10^{-6} mol L ⁻¹ ; e) 1 x 10^{-6} :	
U, I X IU ° MOIL '; T) I X IU °: U,5 X IU ° MOIL '.	111
Figura 26: Curvas analíticas para o CPT em NaOH 1,0 mol L ⁻¹ obedecendo as condições para determinação seletiva: (a)	

Espectros de 2ª derivada (quando CPT-11 está presente); (b)

Espectros de varredura sincronizada (quando TPT está presente).	113
Figura 27: Gráficos de resíduos para as determinações fluorimétricas de CPT em NaOH 1,0 mol L ⁻¹ através da (a) 2ª derivação do espectro de excitação (CPT na presença de CPT-11) e da (b) varredura sincronizada (CPT na presença de TPT).	114
Figura 28: Cromatogramas obtidos por HPLC (detecção por fluorescência) para o (a) CPT 1 x 10 ⁻⁶ mol L ⁻¹ e para o (b) CPT em formulação farmacêutica de TPT 5 x 10 ⁻⁵ mol L ⁻¹ e (c) em formulação farmacêutica de CPT-11 1 x 10 ⁻⁵ mol L ⁻¹ .	118
Figura 29: Influência do pH e da irradiação UV em soluções de CPT- 11, CPT e TPT (todas a 1 x 10 ⁻⁶ mol L ⁻¹).	119
Figura 30: Influência do tempo de irradiação UV no sinal fluorescente do CPT 5 x 10 ⁻⁶ mol L ⁻¹	120
Figura 31: Espectros de excitação e emissão fluorescentes do CPT 5 x 10 ⁻⁶ mol L ⁻¹ (em NaOH 1,0 mol L ⁻¹), após diferentes tempos de irradiação UV, com medições feitas em λ_{exc} = 368 nm e λ_{em} = 450	
nm.	121
Figura 32: Influência da concentração de NaOH na intensidade fluorescente do CPT (1x 10 ⁻⁶ mol L ⁻¹) após 30 min de irradiação UV de suas soluções.	121
Figura 33: Espectros de excitação e emissão fluorescentes do CPT-11 1 x 10 ⁻⁶ mol L ⁻¹ (em NaOH 1 mol L ⁻¹), após diferentes tempos de irradiação UV, com medições feitas em λ_{exc} = 368 nm e λ_{em} = 450	
nm.	122
Figura 34: Influência da concentração de NaOH na intensidade fluorescente do CPT-11 (1x 10 ⁻⁶ mol L ⁻¹) e do TPT (1x 10 ⁻⁶ mol L ⁻¹) após 30 min de irradiação UV de suas soluções.	123
Figura 35: Espectro de excitação e emissão fluorescentes do (a) CPT (1x 10 ⁻⁶ mol L ⁻¹); (b) CPT-11 (1 x 10 ⁻⁶ mol L ⁻¹) e (c) TPT (1 x 10 ⁻⁶ mol L ⁻¹) depois de 30 minutos de irradiação UV e em solução	
aquosa de NaOH 1,0 mol L ⁻¹ .	124
Figura 36: Pontos experimentais para o planejamento composto	

central para o caso de dois fatores.	126
ura 37: Gráfico de Pareto referente ao Planejamento Composto Central para a derivatização fotoquímica (UV) da camptotecina.	128
ura 38: Superfície de resposta para o Planejamento Composto Central para a derivatização fotoquímica (UV) da camptotecina.	128
ura 39: Bandas de fluorescência de soluções alcalinas de (a) CPT (2 x 10^{-7} mol L ⁻¹), (b) mistura CPT:TPT (2 x 10^{-7} mol L ⁻¹ : 1 x 10^{-5} mol L ⁻¹), e de (c) TPT (1 x 10^{-5} mol L ⁻¹) após 26 minutos de	
irradiação UV.	130
ura 40: Bandas de fluorescência de soluções alcalinas de (a) CPT (2 x 10 ⁻⁷ mol L ⁻¹), (b) da mistura CPT:CPT-11 (2 x 10 ⁻⁷ mol L ⁻¹ : 2 x 10 ⁻⁶ mol L ⁻¹) e do (c) CPT-11 (2 x 10 ⁻⁶ mol L ⁻¹) após 26 minutos	
de irradiação UV.	131
ura 41: Curva analítica para o CPT em NaOH 1,0 mol L ⁻¹ e após 26 min de irradiação UV, obtida através de varredura normal (λ_{exc} / $\lambda_{em} = 368 / 450$ nm).	132
ura 42: Gráfico de resíduos para as determinações fluorimétricas de CPT em NaOH 1,0 mol L ⁻¹ e após 26 min de irradiação UV.	133
ura 43: Espectros de absorção da (a) TPT; (b) CPT e (c) CPT-11.	139
ura 44: Efeito do pH 8,0–10,0 na separação e nos tempos de migração dos picos de (a) TPT 2 x 10^{-4} mol L ⁻¹ , (b) CPT 1 x 10^{-5} mol L ⁻¹ e (c) CPT-11 1 x 10^{-5} mol L ⁻¹ por MEKC, usando tampão de borato 2 x 10^{-2} mol L ⁻¹ contendo acetonitrila 5% v/v, com temperatura do sistema igual a 25°C, potencial de 25 kV e 15 s	140
de injeção norodinamica por pressão de 50 mbar.	140
ura 45: Efeito da concentração de SDS na separação e nos tempos de migração (ordem crescente)dos picos de (a) TPT 2 x 10^{-4} mol L ⁻¹ , (b) CPT 1 x 10^{-5} mol L ⁻¹ e (c) CPT-11 1 x 10^{-5} mol L ⁻¹ por MEKC, usando tampão de borato 2 x 10^{-2} mol L ⁻¹ (pH 8,2) contendo acetonitrila 5% v/v e com temperatura do sistema igual	
pressão de 50 mbar.	141
	central para o caso de dois fatores. ura 37: Gráfico de Pareto referente ao Planejamento Composto Central para a derivatização fotoquímica (UV) da camptotecina. ura 38: Superfície de resposta para o Planejamento Composto Central para a derivatização fotoquímica (UV) da camptotecina. ura 39: Bandas de fluorescência de soluções alcalinas de (a) CPT $(2 \times 10^7 \text{ mol L}^{-1})$, (b) mistura CPT:TPT $(2 \times 10^{-7} \text{ mol L}^{-1} \pm 1 \times 10^5 \text{ mol L}^{-1})$, e de (c) TPT $(1 \times 10^5 \text{ mol L}^{-1})$ após 26 minutos de irradiação UV. ura 40: Bandas de fluorescência de soluções alcalinas de (a) CPT $(2 \times 10^7 \text{ mol L}^{-1})$, (b) da mistura CPT:CPT-11 $(2 \times 10^7 \text{ mol L}^{-1} \pm 2 \times 10^6 \text{ mol L}^{-1})$ e do (c) CPT-11 $(2 \times 10^6 \text{ mol L}^{-1})$ após 26 minutos de irradiação UV. ura 41: Curva analítica para o CPT em NaOH 1,0 mol L ⁻¹ e após 26 min de irradiação UV, obtida através de varredura normal ($\lambda_{exc} / \lambda_{em} = 368 / 450 \text{ nm}$). ura 42: Gráfico de resíduos para as determinações fluorimétricas de CPT em NaOH 1,0 mol L ⁻¹ e após 26 min de irradiação UV. ura 43: Espectros de absorção da (a) TPT; (b) CPT e (c) CPT-11. ura 44: Efeito do pH 8,0–10,0 na separação e nos tempos de migração dos picos de (a) TPT 2 × 10 ⁴ mol L ⁻¹ , (b) CPT 1 × 10 ⁵ mol L ⁻¹ e (c) CPT-11 1 × 10 ⁵ mol L ⁻¹ por MEKC, usando tampão de borato 2 × 10 ⁻² mol L ⁻¹ contendo acetonitrila 5% v/v, com temperatura do sistema igual a 25°C, potencial de 25 kV e 15 s de injeção hidrodinâmica por pressão de 50 mbar. ura 45: Efeito da concentração de SDS na separação e nos tempos de migração (ordem crescente)dos picos de (a) TPT 2 × 10 ⁻⁴ mol L ⁻¹ , (b) CPT 1 × 10 ⁻⁵ mol L ⁻¹ e (c) CPT-11 1 × 10 ⁻⁵ mol L ⁻¹ por MEKC, usando tampão de borato 2 × 10 ⁻² mol L ⁻¹ Q ⁺ mol L ⁻¹ , (b) CPT 1 × 10 ⁻⁵ mol L ⁻¹ e (c) CPT-11 1 × 10 ⁻⁵ mol L ⁻¹ por MEKC, usando tampão de borato 2 × 10 ⁻² mol L ⁻¹ por MEKC, usando tampão de borato 2 × 10 ⁻² mol L ⁻¹ por MEKC, usando tampão de borato 2 × 10 ⁻² mol L ⁻¹ por MEK

Figura 46: Efeito da temperatura na separação e nos tempos de

PUC-Rio - Certificação Digital Nº 0510428/CA

migração (ordem crescente) dos picos de (a) TPT 2 x 10⁻⁴ mol L⁻¹, (b) CPT 1 x 10^{-5} mol L⁻¹ e (c) CPT-11 1 x 10^{-5} mol L⁻¹ por MEKC, usando tampão de borato 2 x 10⁻² mol L⁻¹ (pH 8,2) contendo SDS 5 x 10^{-2} mol L⁻¹ e acetonitrila 5% v/v, com temperatura do sistema igual a 25°C, potencial de 25 kV e 15 s de injeção hidrodinâmica por pressão de 50 mbar.

- Figura 47: Efeito do pH 8,4 a 9,5, na separação e nos tempos de migração dos picos de (a) TPT 2 x 10⁻⁴ mol L⁻¹, (b) CPT 1 x 10⁻⁵ mol L⁻¹ e (c) CPT-11 1 x 10⁻⁵ mol L⁻¹ por MEKC, usando tampão de borato 2 x 10⁻² mol L⁻¹ contendo acetonitrila 5% v/v, com temperatura do sistema igual a 25°C, potencial de 25 kV e 15 s de injeção hidrodinâmica por pressão de 50 mbar.
- Figura 48: Efeito da concentração de ácido bórico (pH 8,8) contendo SDS 5 x 10^{-2} mol L⁻¹ e acetonitrila 5% (v/v), com temperatura do sistema igual a 25°C, potencial de 25 kV e 15 s de injeção hidrodinâmica por pressão de 50 mbar, na separação e nos tempos de migração (em ordem crescente) dos picos do (a) TPT 2 x 10⁻⁴ mol L⁻¹, (b) CPT 1 x 10⁻⁵ mol L⁻¹ e (c) CPT-11 1 x 10⁻⁵ mol L⁻¹ por MEKC.
- Figura 49: Efeito do percentual de acetonitrila na separação e nos tempos de migração dos picos de (a) TPT 2 x 10⁻⁴ mol L⁻¹, (b) CPT 1 x 10⁻⁵ mol L⁻¹ e (c) CPT-11 1 x 10⁻⁵ mol L⁻¹ por MEKC, usando tampão de borato 2 x 10⁻² mol L⁻¹ (pH 8,8), contendo SDS 5 x 10^{-2} mol L⁻¹, com temperatura do sistema igual a 25° C, potencial de 25 kV e 15 s de injeção hidrodinâmica por pressão de 50 mbar.
- Figura 50: Sobreposição dos eletroferogramas da mistura TPT 2 x 10⁻⁴ mol L^{-1} : CPT 1 x 10⁻⁵ mol L^{-1} : CPT-11 1 x 10⁻⁵ mol L^{-1} , assim como de cada uma das soluções dos analitos separadamente e nas mesmas concentrações da mistura, todas em pH original, utilizando tampão de borato 2 x 10⁻² mol L⁻¹ (pH 8,8) contendo SDS 5 x 10^{-2} mol L⁻¹ e acetonitrila 7,5% v/v, com temperatura do sistema igual a 25°C, potencial de 25 kV e 15 s de injeção hidrodinâmica por pressão de 50 mbar.

Figura 51: Planejamento composto central para três fatores. Os pontos

145

146

143

144

142

PUC-Rio - Certificação Digital Nº 0510428/CA

das arestas do cubo são os ensaios de um fatorial 2 ³ e os círculos fora do cubo representam a parte em estrela.	149
Figura 52: Gráfico de Pareto referente ao tempo de separação entre os picos do TPT-CPT.	152
Figura 53: Gráfico de Pareto referente ao tempo de separação entre os picos do CPT-CPT11.	152
Figura 54: Influência do tempo de injeção hidrodinâmica na separação dos picos de (a) TPT 2 x 10 ⁻⁴ mol L ⁻¹ , (b) CPT 1 x 10 ⁻⁵ mol L ⁻¹ e (c) CPT-11 1 x 10 ⁻⁵ mol L ⁻¹ sob as condições otimizadas (Tabela 22)	154
Figura 55: Influência do uso da cela de caminho óptico alongado em conjunto com NSM na amplificação das áreas dos picos da topotecana 2 x 10 ⁻⁴ mol L ⁻¹ , camptotecina 1 x 10 ⁻⁵ mol L ⁻¹ e irinotecana 1 x 10 ⁻⁵ mol L ⁻¹ , utilizando tempo de injeção de 75 s.	155
Figura 56: Curvas analíticas para o (a) TPT, (b) CPT e (c) CPT-11 obtidos sob as condições otimizadas (Tabela 22).	159
Figura 57: Gráficos de resíduo para a determinação de (a) TPT; (b) CPT e (c) CPT-11 por MEKC.	160
Figura 58: Sobreposição dos eletroferogramas obtidos a partir das Curvas analíticas mostradas na Figura 56.	161
Figura 59: Eletroferograma de amostra de saliva (a) sem tratamento; (b) pós-tratamento de <i>clean up</i> e obtida de um voluntário na parte da manhã; (c) pós-tratamento de <i>clean-up</i> e obtida de outro voluntário na parte da tarde; (d) pós-tratamento de <i>clean up</i> adicionada previamente de TPT 2 x 10 ⁻⁵ mol L ⁻¹ ; CPT 1 x 10 ⁻⁵ mol L ⁻¹ e CPT-11 1 x 10 ⁻⁵ mol L ⁻¹ .	163
Figura 60: Sobreposição de eletroferogramas de (a) uma solução padrão da mistura de TPT 1 x 10 ⁻⁵ mol L ⁻¹ , CPT 2 x 10 ⁻⁶ mol L ⁻¹ e CPT-11 2 x 10 ⁻⁶ mol L ⁻¹ ; de (b) uma amostra de saliva póstratamento e de (c) uma amostra de saliva adicionada de TPT 1 x 10 ⁻⁵ mol L ⁻¹ , CPT 2 x 10 ⁻⁶ mol L ⁻¹ e CPT-11 2 x 10 ⁻⁶ mol L ⁻¹ e após tratamento para desproteinização.	164

Figura 61: Espectros de excitação e emissão fosforescentes de

soluções dos derivados das β -carbolinas em pH original, todas a	
4 x 10 ⁻⁴ mol L ⁻¹ (2 nmol depositados no substrato sólido).	168
Figura 62: Espectros de excitação e emissão fosforescentes de soluções dos derivados das β-carbolinas em pH ácido, todas a 4 x 10 ⁻⁴ mol L ⁻¹ (2 nmol depositados no substrato sólido).	168
Figura 63: Esquema simplificado de adição das soluções de átomos pesados e de analitos no substrato sólido.	169
Figura 64: Sobreposição dos espectros de excitação e emissão fosforescentes dos seis derivados das β-carbolinas em pH original de suas soluções (2 nmol depositados no papel) e com o uso de AgNO ₃ 0,01 mol L ⁻¹ (8,5 μg depositados no papel) como átomo pesado.	173
Figura 65: Sobreposição dos espectros de excitação e emissão fosforescentes dos seis derivados das β-carbolinas em pH original de suas soluções (2 nmol depositados no papel) e com o uso de TINO ₃ 0,25 mol L ⁻¹ (333 μg depositados no papel) como átomo pesado.	173
Figura 66: Esquema simplificado de adição das soluções de SDS e de analitos no substrato sólido.	174
Figura 67: Esquema simplificado de adição das soluções de SDS, de átomos pesados e de analitos no substrato sólido.	175
Figura 68: Efeito da quantidade de HgCl ₂ no sinal fosforescente das β- carbolinas (2nmol de suas soluções em pH original depositados no papel), utilizando 0,81 mg de HgCl ₂ como átomo pesado	
depositado no substrato de celulose. Figura 69: Espectros de emissão fosforescente das β-carbolinas (2	180
nmol de suas soluções em pH original depositados no papel), utilizando 0,81 mg de HgCl ₂ como átomo pesado depositado no	
substrato de celulose.	180
Figura 70: Espectros de 2ª derivada da SSRTP das β-carbolinas (2 nmol de suas soluções em pH original depositados no papel)	101
Figura 71: (a) Eletroferogramas de uma seguência de padrões de	101
ingura / i. (a) menorerogramas de uma sequencia de padroes de	

20,5 min), b) harmine (1 x 10^{-4} mol L ⁻¹ ; t _m = 17,1 min), c) harmane (1 x 10^{-4} mol L ⁻¹ ; t _m = 15,1 min), d) norharmane (1 x 10^{-4} mol L ⁻¹ ; t _m = 13,8 min) e e) harmol (1 x 10^{-5} mol L ⁻¹ ; t _m = 11,2 min).	186
Figura 72: Curvas analíticas para o harmol, feita por SSRTP, obedecendo as condições para determinação seletiva (Tabela 32).	188
Figura 73: Curvas analíticas para o harmol, feita por MEKC, obedecendo as condições para determinação seletiva (Tabela 32).	188
Figura 74: Gráficos de resíduos para a determinação de harmol por (a) SSRTP e por (b) MEKC (método de validação).	189
Figura 75: Influência da massa de AgNO ₃ depositada no substrato de celulose, no sinal fosforescente do harmane 4 x 10 ⁻⁴ mol L ⁻¹ (2 nmol) e do harmine 4 x 10 ⁻⁴ mol L ⁻¹ (2 nmol), em pH natural, sem SDS e sem tratamento fotoquímico.	192
Figura 76: Sobreposição dos espectros do harmane e do harmine em pH original na presença de AgNO3 0,01 mol L ⁻¹ (8,5 μg depositados no papel), utilizando varredura normal.	193
Figura 77: Espectros das varreduras sincronizadas da fosforescência em $\Delta\lambda$ = 109 nm e λ = 346 nm e utilizando AgNO ₃ 0,01 mol L ⁻¹ (8,5 µg depositados no papel).	193
Figura 78: Espectros da 2ª derivada das varreduras sincronizadas da Figura 77.	194
Figura 79: Espectros de emissão fosforescente de solução de padrão de harmane (1 x 10 ⁻⁶ mol L ⁻¹); solução de chá fortificado com harmane 1x 10 ⁻⁶ mol L ⁻¹ ; extrato do chá (branco).	197
Figura 80: Curva analítica da 2ª derivada da varredura sincronizada	199
Figura 81: Diagrama de causa e efeito para (a) fluorimetria e (b) fosforimetria em temperatura ambiente e substrato sólido.	204

Figura 82: Contribuição relativa das fontes de incerteza na incerteza

combinada (u_c) de medições luminescentes de criseno usando: (a) fluorimetria empregando solução de analito por avolumação e (b) fosforimetria em temperatura ambiente. Fontes: u_{curva} (curva analítica); u_s (preparo de soluções); u_R (reprodutibilidade interna); u_r (repetitividade).

Figura 83: Contribuição relativa das fontes de incerteza na incerteza combinada (u_c) da medição fluorescente do criseno empregando o preparo da solução por ajuste de massa. Fontes: u_{curva} (curva analítica); u_s (preparo de soluções); u_R (reprodutibilidade interna); u_r (repetitividade).

213

209

Lista de tabelas

Tabela 1: Métodos por HPLC para a camptotecina e seus derivados	36
Tabela 2: Tempos característicos dos processos fotofísicos em moléculas excitadas	53
Tabela 3: Percentual de cada componente da fase móvel ao longo do tempo	91
Tabela 4: Estudos de interferência na fluorescência do CPT	110
Tabela 5: Resumo das condições experimentais selecionadas para a determinação espectrofluorimétrica do CPT em misturas com CPT-11 ou com TPT.	111
Tabela 6: Parâmetros analíticos de mérito encontrados para o CPT em condições otimizadas para a sua determinação na presença de CPT-11 ou de TPT.	115
Tabela 7: Valores de incerteza calculados para o método fluorimétrico utilizado na determinação de CPT (5 x 10-7 mol L-1).	116
Tabela 8: % de recuperação do CPT 1 x 10-6 mol L-1 (contaminante) adicionado aos medicamentos Camptosar (CPT-11 como princípio ativo) e Hycamtin (TPT como princípio ativo)	117
Tabela 9: Matriz do Planejamento Composto Central indicando níveis (codificados e não-codificados) e fatores	126
Tabela 10: Planilha elaborada no programa Statistica 7.0 para o planejamento composto central, considerando os fatores concentração de hidróxido de sódio e tempo de exposição UV na intensidade do sinal fluorescente da camptotecina.	127
Tabela 11: Estudos de interferência na fluorescência do CPT	129
Tabela 12: Resumo das condições experimentais selecionadas para a determinação espectrofluorimétrica do CPT em misturas com CPT-11 ou com TPT submetidas à irradiação UV.	131
Tabela 13: Parâmetros Analíticos de Mérito encontrados para o CPT em condições otimizadas para a sua determinação na presença de CPT-11 ou TPT após irradiação UV.	134

Tabela 14: Valores de incerteza calculados para o método fluorimétrico utilizado na determinação de CPT na presença de CPT-11 ou TPT após irradiação UV.	136
Tabela 15: Taxa de recuperação do CPT 1 x 10 ⁻⁶ mol L ⁻¹ (contaminante) adicionado aos medicamentos Camptosar (CPT-11 como princípio ativo) e Hycamtin (TPT como princípio ativo)	137
Tabela 16: Condições otimizadas univariadamente para a separação do TPT, CPT e CPT-11 por MEKC	145
Tabela 17: Características do TPT, CPT e CPT-11 quanto ao tempo de migração, eficiência, simetria de pico e resolução por MEKC.	147
Tabela 18: Codificação dos fatores (variáveis).	149
Tabela 19: Matriz de planejamento experimental, gerada através do programa Statistica.	150
Tabela 20: Dados experimentais e resultados	151
Tabela 21: Resultados que indicam a vantagem do uso da cela de caminho óptico alongado em conjunto com NSM para aumento da sensibilidade do método desenvolvido por MEKC	155
Tabela 22: Resumo das condições finais otimizadas para o método de determinação e quantificação de CPT e derivados por MEKC, usando também o artifício do empilhamento (NSM) em conjunto com a cela de caminho óptico alongado.	156
Tabela 23: Características do TPT, CPT e CPT-11 quanto ao tempo de migração, eficiência, simetria de pico e resolução por MEKC após condições finais otimizadas para o método, usando também o artifício do empilhamento (NSM) em conjunto com a cela de caminho óptico alongado.	156
Tabela 24: Parâmetros Analíticos de Mérito encontrados para o TPT, CPT e CPT-11 em condições otimizadas para a sua determinação por MEKC	161
Tabela 25: Médias dos percentuais de recuperação em amostras de saliva fortificadas com TPT 1 x 10 ⁻⁵ mol L ⁻¹ , CPT 2 x 10 ⁻⁶ mol L ⁻¹ e CPT-11 2 x 10 ⁻⁶ mol L ⁻¹	164
Tabela 26: Fosforescência do harmane, harmine, harmol, harmaline, harmalol e norharmane (2nmol de suas soluções depositados no papel) em função do pH	167
Tabela 27: Efeito do átomo pesado e do pH na fosforescência do harmane, harmine, harmol, harmaline, harmalol e	170

norharmane (2 nmol de suas soluções depositados no papel).

Tabela 28: Efeito do surfactante, associado à influência do pH, no sinal fosforescente do harmane, harmine, harmol, harmaline, harmalol e norharmane (2 nmol de suas soluções depositados no papel).	175
Tabela 29: Influência do agente surfactante, associado ao efeito do átomo pesado e do pH, no sinal fosforescente do harmane, harmine, harmol, harmaline, harmalol e norharmane (2 nmol de suas soluções depositados no papel).	176
Tabela 30: Estudos de interferência na fosforescência do harmol	182
Tabela 31. Determinação de harmol (2 nmol) através da 2ª derivada do espectro de RTP usando Hg(II) e considerando 564 nm como ponto isodiferencial.	182
Tabela 32: Resumo das condições experimentais selecionadas para a determinação fosforimétrica do harmol em misturas com harmine:harmane:harmaline:norharmane	184
Tabela 33: Parâmetros analíticos para a determinação seletiva de harmol usando SSRTP e MEKC.	189
Tabela 34: Taxa de recuperação do harmol 1 x 10 ⁻⁵ mol L ⁻¹ na presença de harmine (1 x 10 ⁻⁴ mol L ⁻¹) e de harmane (1 x 10 ⁻⁴ mol L ⁻¹) em amostras de urina	190
Tabela 35: Resumo das condições experimentais selecionadas para a determinação fosforimétrica do harmane na presença de harmine.	194
Tabela 36: Estudos de interferência do sinal fosforescente do harmine no sinal do harmane usando as condições estabelecidas na Tabela 35.	195
Tabela 37: Soluções para o estudo da interferência do chá no sinal do harmane	197
Tabela 38: Parâmetros analíticos de mérito encontrados para o harmane nas condições estabelecidas (Tabela 35) para a sua determinação na presença de harmine (interferente) em concentrações até duas vezes maiores	199
Tabela 39: Percentuais de recuperação de harmane em amostras de chá contendo harmane (5 x 10 ⁻⁵ mol L ⁻¹) e harmine (1 x 10 ⁻⁴ mol L ⁻¹)	200
Tabela 40: Incertezas calculadas para as quatro fontes principais de incerteza associadas a medição da luminescência do criseno	214

Lista de abreviaturas

ACN	-	Acetonitrila
APCI-MS	-	ionização química por pressão atmosférica – espectrometria
		de massas
CCD	-	Planejamento Composto Central (Central Composite
		Designs)
CE	-	Eletroforese capilar
CGE	-	Eletroforese capilar por gel
CI	-	Cruzamento interno
CIS	-	Cruzamento intersistemas
CMC	-	Concentração micelar crítica
CPT	-	Camptotecina
CPT11	-	Irinotecana
CV	-	Coeficiente de variação (precisão)
CZE	-	Eletroforese capilar por zona
DOE	-	Planejamento de experimentos (Designs of Experiments)
ECC	-	Eletrocromatografia capilar
ECSL	-	Eletroforese capilar em solução livre
Em	-	emissão
EOF	-	Fluxo eletro-osmótico
ESI-MS	-	Eletrospray – espectrometria de massas
Ex	-	excitação
FASS	-	Empilhamento da Amostra Amplificada por Campo (Field
		Amplified Sample Stacking)
Flu	-	Fluorescência
I _A	-	Intensidade fosforescente do analito
$I_{\rm A} - I_{\rm B}$	-	Sinal fosforescente líquido
I _B	-	Intensidade fosforescente do branco
ISP-MS	-	íon spray espectrometria de massas
LC	-	Cromatografia líquida
LEEA	-	Laboratório de Espectrometria e Eletroquímica Aplicada
LLE	-	extração líquido-líquido
MEKC	-	Cromatografia eletrocinética micelar
MeOH	-	Metanol

NSM	-	Modo normal de empilhamento
PLS	-	Método dos mínimos quadrados parciais
REPSM	-	Empilhamento onde se aplica inversão da polaridade do
		eletrodo (reverse electrode polarity stacking mode).
RTP	-	Fosforimetria na temperatura ambiente
RV	-	Relaxamento vibracional
SDS	-	Dodecil sulfato de sódio
SN-38	-	7-etil-10-hidroxicamptotecina
SPE	-	extração em fase sólida
SSRTP	-	Fosforescência na temperatura ambiente e em superfície
		sólida
TDM	-	Monitoramento terapêutico de drogas
TPT	-	Topotecana
u.a.	-	unidades arbitrárias
UV-Vis	-	Ultravioleta-visível
λ_{em}	-	Comprimento de onda de de emissão expresso em nm
λ_{ex}	-	Comprimento de onda de excitação expresso em nm

"A ciência humana de maneira nenhuma nega a existência de Deus. Quando considero quantas e quão maravilhosas coisas o homem compreende, pesquisa e consegue realizar, então reconheço claramente que o espírito humano é obra de Deus, e a mais notável."

Galileu Galilei

"É impossível avaliar a força que possuímos sem medir o tamanho do obstáculo que podemos vencer, nem o valor de uma ação sem sabermos o sacrifício que ela comporta."

H. W. Beecher