

Thiago Galindo Pecin

Ações Mecânicas Tornádicas Globais sobre Torres de Linhas de Transmissão

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: João Luis Pascal Roehl

Rio de Janeiro, agosto de 2008

Thiago Galindo Pecin

Ações Mecânicas Tornádicas Globais sobre Torres de Linhas de Transmissão

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. João Luis Pascal Roehl Orientador Departamento de Engenharia Civil - PUC-Rio

> Prof^a. Andréia Abreu Diniz de Almeida Departamento de Engenharia Civil - PUC-Rio

> **Prof. Paulo Batista Gonçalves** Departamento de Engenharia Civil - PUC-Rio

> > Prof. André Teófilo Beck USP

D.Sc. Nelson Henrique Costa Santiago Fluxo Engenharia

José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 19 de agosto de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Thiago Galindo Pecin

Mestre em Engenharia Civil pela PUC-Rio em 2006. Graduado em Engenharia Civil pela Universidade Federal de Goiás em 2004. Atua na linha de pesquisa de Instabilidade e Dinâmica das Estruturas.

Ficha Catalográfica

Galindo Pecin, Thiago

Ações mecânicas tornádicas globais sobre torres de linhas de transmissão / Thiago Galindo Pecin; orientador: João Luis Pascal Roehl. – 2008. 179 f. : il. ; 30 cm

Tese (Doutorado em Engenharia Civil)– Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia.

1. Engenharia civil – Teses. 2. Tornado. 3. Torres de transmissão. 4. Efeitos globais. 5. Estruturas. 6. Vento. I. Roehl, João Luis Pascal. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Aos professores que tive durante a vida, sem os quais não me seriam possíveis nem os primeiros passos.

Agradecimentos

Ao desconhecido. À dimensão da existência desobediente à relação causa-efeito que governa a razão humana, deixando nossas questões fundamentais sem respostas.

Aos meus pais, João e Alexânia, por me darem a vida e, cada um a seu modo, oferecerem-me boa parte de seus sentimentos e pensamentos.

Aos meus irmãos, Diego, Giselle, João Lucas, Guilherme e Fillipe, pela convivência e amizade, essenciais à constituição da minha personalidade.

A minha namorada, Érica, com quem muito aprendi, e continuo aprendendo, sobre coisas outras que tese alguma pode ensinar. Obrigado por estar ao meu lado e pelos maravilhosos momentos juntos. Te amo!

A minha vó, Eni, pelo amor e carinho; ao meu primo, Alex, amigo de toda uma vida.

Ao professor João Luis Roehl, pela valiosa orientação e pelo exemplo. Sinto muito orgulho em ter sido seu orientado. "Vamos em frente", Mestre. Obrigado.

À professora Andréia, pela gentil colaboração.

Aos amigos da sala 609, que proporcionaram sempre enriquecedores debates: Fredão, Renata, Pantoja, Diegão, João, Igor e Paul. Sempre me lembrarei dos memoráveis intervalos do café. Meu grande abraço a todos vocês!

Aos amigos dos bares e da República Redonda: Diegão, Patrício, Magnus, Christiano, Joabson, Adriano, Zé, Tio Chico, Jean, Pekeno e Gigante. Valeu por tantas vezes atrapalharem meu trabalho com propostas tentadoras, geralmente relacionadas ao Baixo Gávea ou algo similar.

Ao CNPq, Eletronuclear e Fluxo Engenharia, pelo apoio financeiro.

Pecin, Thiago Galindo; Roehl, João Luis Pascal. **Ações Mecânicas Tornádicas Globais sobre Torres de Linhas de Transmissão.** Rio de Janeiro, 2008. 179p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Tornados são fenômenos atmosféricos de pequena escala com grande poder de destruição ao longo de sua trilha e têm sido reportados com freqüência crescente no território brasileiro. Do ponto de vista da engenharia de estruturas, atenção especial deve ser destinada a instalações sensíveis, como centrais nucleares e torres de transmissão de energia. A despeito do registro do colapso dessas últimas por conta da ação de tornados no território nacional, pesquisas brasileiras dessa natureza são incipientes. Neste contexto, estudam-se os efeitos mecânicos decorrentes da incidência de tornados sobre torres de transmissão, comparando-os com valores prescritos em normas para ventos usuais de projeto. Para isso, utiliza-se o modelo de campo de vento proposto por Wen (1975) a partir do trabalho de Kuo (1971) e simulações de torres de transmissão representativas da região das bacias hidrográficas do Sul e Sudeste, propícias a tornados. A partir desses estudos, propõe-se e exemplifica-se uma metodologia para avaliação dos efeitos globais tornádicos no projeto das torres de transmissão. O método é construído através da variação de diversos parâmetros envolvidos no problema, buscando-se situações críticas. Na seqüência, realiza-se uma análise mais abrangente da demanda tornádica e sugere-se, a partir da mesma, uma metodologia para avaliação da probabilidade anual de falha de uma torre de transmissão a eventos dessa natureza, que é ilustrada ao final.

Palavras-chave

Tornado, torres de transmissão, efeitos globais, estruturas, vento.

Abstract

Pecin, Thiago Galindo; Roehl, João Luis Pascal. **Global Tornadic Mechanical Actions on EETL Towers.** Rio de Janeiro, 2008. 179p. D.Sc. Thesis – Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

Tornadoes are small-scale atmospheric phenomena that have large power of destruction along their path. Tornado occurrence has been reported with increasing frequency in Brazilian territory. From the point of view of engineering, special attention should be destined to sensible structures, such as nuclear power plants and towers for transmission of electric energy. In spite of observed collapses of these systems due to the action of tornadoes in national territory, Brazilian researches on this subject are incipient. In this context, the mechanical effects of tornado incidence on transmission towers are studied and compared with values prescribed by the usual standards for wind design. The wind field model proposed by Wen (1975) based on the work of Kuo (1971) and simulations of representative transmission towers of South and Southeast Brazilian river basins, favorable to such events, are used. From these studies, a methodology for evaluation of the tornadic global effects in the design of transmission towers is proposed and exemplified. The method is carried out through the variation of several parameters involved in the problem, seeking to critical situations. Finally, a broader tornadic demand analysis is made and a methodology for evaluation of transmission tower annual probability of failure due to tornado events is suggested and illustrated.

Keywords

Tornado, transmission towers, global effects, structures, wind.

Sumário

1 Int	rodução	26
2 Re	evisão bibliográfica	28
2.1 (D evento meteorológico	28
2.1.1	Considerações gerais	28
2.1.2	Situações atmosféricas favoráveis à formação de tornados	30
2.1.3	Ocorrências	31
2.1.4	O movimento e a estrutura do tornado	36
2.1.5	A escala de Fujita	43
2.2 (Considerações de projeto	48
2.2.1	Efeitos mecânicos sobre estruturas	50
2.2.2	Ações de tornados sobre torres de transmissão	55
2.2.3	Ações de tornados sobre usinas nucleares	56
2.2.4	Ações de tornados sobre outras estruturas	58
2.2.5	Análise não-determinística da solicitação tornádica	59
2.3 L	inhas aéreas de transmissão e tipos usuais de torres	63
2.3.1	Tensões usuais e componentes de uma linha de transmissão	63
2.3.2	Tipos usuais de torres	66
2.3.3	Tipos usuais de fundações	69
3 Mo	odelos gerais – ações mecânicas	71
3.1 N	Nodelo de tornado segundo Kuo/Wen	71
3.2 <i>A</i>	Avaliação da pressão sobre a estrutura	75
4 Ce	enários	77
4.1 N	Modelo do tornado para os ensaios	77
4.2 N	Modelo dos sistemas estruturais	77
5 An	álises preliminares	81
5.1 N	Modelo inicial	83

5.1.1 Estrutura tomada como eixo material	84
5.1.2 Efeitos da consideração da estrutura como corpo extenso	86
5.2 Modelo simplificado	89
5.2.1 Análise estática	90
5.2.2 Análise dinâmica	94
5.3 Torre SA	97
5.3.1 Torre isolada	98
5.3.2 Torre na linha de transmissão	102
5.4 Torre SE	107
5.4.1 Torre isolada	108
5.4.2 Torre na linha de transmissão	112
5.5 Conclusões parciais	117

6 Metodologia para avaliação da ação mecânica global de tornados	
no projeto de torres de transmissão	119
6.1 Ações horizontais de vento	120
6.1.1 Torre	120
6.1.2 Cabos condutores e pára-raios	128
6.2 Ações verticais de vento	130
6.2.1 Torre	130
6.2.2 Cabos condutores e pára-raios	132
6.3 Interação entre ações horizontais e verticais	134
6.4 Estudos complementares	136
6.4.1 Eixo material versus corpo extenso	136
6.4.2 Força de arrasto versus força de inércia	139
6.4.3 Análise estática versus análise dinâmica	141
6.5 Síntese e exemplo	144

7	Análise não-determinística da solicitação de tornados sobre torres	
de	transmissão	152
7.1	Estudo da demanda tornádica	152
7.2	Metodologia para avaliação da probabilidade de falha de torres	
de	transmissão a tornados	163
7.2	.1 Metodologia	163

7.2	.2 Exemplo	164
8	Conclusões e recomendações	167
9	Referências bibliográficas	169
10	Apêndice	178

Lista de figuras

Figura 2.1 - Exemplo de tornado na Flórida, EUA, 1991 (foto de Fred
Smith)29
Figura 2.2 – Funil rotativo de condensação em Xanxerê – SC (2005)29
Figura 2.3 - Dias anuais com condições favoráveis à ocorrência de
tornados no período de 1980 a 1999 – Brooks et al (2006)32
Figura 2.4 – Ocorrência de tornados na Argentina – Goliger e Milford
(1998)
Figura 2.5 – Tornado ocorrido em Indaiatuba, SP, 2005 – Rodovia das
Colinas S.A
Figura 2.6 – Tromba d'água na Bacia de Campos, RJ, próximo à
plataforma P-17, 200133
Figura 2.7 – Ocorrências de tornados e conformação das bacias
hidrográficas –35
Figura 2.8 – Ocorrência de tornados na América do Sul – Relatório 001/4
(2007)
Figura 2.9 – Tornados ocorridos em 03/05/1999, em Oklahoma: sentido
nordeste - National Weather Service, Norman, Oklahoma
Figura 2.10 – Trilhas de tornados hemisfério sul: sentido sudeste – Dyer
(1991)
Figura 2.11 – Mudança brusca na direção de movimento do tornado,
Iowa, 1999 – National Weather Service (2003)
Figura 2.12 – Estrutura do tornado – adaptada de Lewellen (1976); foto:
Willhelmsom e Wicker (2001)
Figura 2.13 - Ilustração esquemática de tipos de vórtice de canto -
Lewellen (1993)41
Figura 2.14 – Imagens do radar Doppler móvel, mostrando subvórtices no
tornado de Oklahoma, em 1999 – Wurman (2002)42
Figura 2.15 – Danos a construções em superfície causados pela
velocidade radial dentro da camada limite - Federal Emergency
Management Agency, FEMA, 199943

Figura 2.16 – A escala de Fujita (1971)44
Figura 2.17 – Relação entre intensidade, largura (a) e comprimento (b)
das trilhas tornádicas – adaptada de National Weather Service
(2003)
Figura 2.18 – Ruptura de torre na Bacia do Prata causada por tornado55
Figura 2.19 – Divisão do território americano para definição de parâmetros
de projeto a tornados – Simiu e Scanlan (1986)57
Figura 2.20 – Curvas de ameaça tornádica para o território nacional –
Relat. 001/4 (2007)61
Figura 2.21 – Probabilidade de falha condicionada à ameaça – Almeida
(2002)
Figura 2.22 – Exemplos de torres autoportantes: circuito duplo (a),
configuração horizontal (b) e configuração delta (c) – Santiago
(1983)
Figura 2.23 – Exemplos de torres estaiadas: tipo portal (a), tipo trapézio
(b), tipo V (c) e tipo Y (d) – Santiago (1983)69
Figura 3.1 – Parcelas de velocidade no tornado – adaptada de Dutta et al
(2002)
Figura 3.2 - Representação esquemática do campo de vento tornádico
proposto por Kuo – adaptada de Savory et al (2001)72
Figura 3.3 – Geometria do problema – adaptada de Wen (1975)75
Figura 4.1 – Torre SA
Figura 4.2 - Torre SE79
Figura 4.3 – Modelo para análise numérica da torre SA80
Figura 4.3 – Modelo para análise numérica da torre SA
Figura 4.3 – Modelo para análise numérica da torre SA
Figura 4.3 – Modelo para análise numérica da torre SA
 Figura 4.3 – Modelo para análise numérica da torre SA
 Figura 4.3 – Modelo para análise numérica da torre SA
 Figura 4.3 – Modelo para análise numérica da torre SA
 Figura 4.3 – Modelo para análise numérica da torre SA
 Figura 4.3 – Modelo para análise numérica da torre SA
 Figura 4.3 – Modelo para análise numérica da torre SA80 Figura 4.4 – Modelo para análise numérica da torre SE

Figura 5.7 – Força cortante global na direção radial para o modelo inicial 87
Figura 5.8 – Momento global na direção radial para o modelo inicial87
Figura 5.9 – Força cortante global na direção tangencial para o modelo inicial
Figura 5.10 – Momento global na direção tangencial para o modelo inicial
Figura 5.11 – Força global na direção vertical para o modelo inicial
Figura 5.12 – Momento global de torção obtido para o modelo inicial discretizado
Figura 5.13 – Modelo simplificado, adaptada de Aguilera (2007)90
Figura 5.14 – Forças globais para o modelo simplificado91
Figura 5.15 – Momentos globais para o modelo simplificado91
Figura 5.16 – Força cortante global na direção radial para o modelo
Figura 5.17 – Momento global na direção radial para o modelo
simplificado
Figura 5.18 - Força cortante global na direção tangencial para o modelo
simplificado92
Figura 5.19 – Momento global na direção tangencial para o modelo simplificado
Figura 5.20 – Força global na direção vertical para o modelo simplificado
Figura 5.21 – Força cortante global na direção radial para o modelo simplificado
Figura 5.22 – Força cortante global na direção tangencial para o modelo
simplificado,95
Figura 5.23 – Deslocamento do topo na direção radial para o modelo simplificado,
Figura 5.24 – Deslocamento do topo na direção tangencial para o modelo
simplificado,95
Figura 5.25 – Força global na direção vertical para o modelo simplificado

Figura 5.26 – Espectro de resposta do deslocamento do topo na direção
tangencial para o modelo simplificado97
Figura 5.27 – Forças cortantes globais para a torre SA98
Figura 5.28 – Momentos globais para a torre SA99
Figura 5.29 – Força global na direção vertical para a torre SA99
Figura 5.30 – Força cortante global na direção radial para a torre SA, $f_o x$
r _{max} /V = 19,82100
Figura 5.31 - Força cortante global na direção tangencial para a torre SA,
Figura 5.32 - Deslocamento do topo na direção radial para a torre SA, $f_0 x$
$r_{max}/V = 19.82$ 101
Figura 5.33 - Deslocamento do topo na direcão tangencial para a torre
SA,
Figura 5.34 – Esforço normal nas pernas da torre SA, $f_o \propto r_{max}/V = 19,82$
Figura 5.35 - Forças cortantes globais para a torre SA na linha de
transmissão103
Figura 5.36 - Momentos globais para a torre SA na linha de transmissão
Figura 5.37 - Força global na direção vertical para a torre SA na linha de
transmissão104
Figura 5.38 - Força cortante global na direção radial para a torre SA na
linha de transmissão, $f_o x r_{max}/V = 6,63$
Figura 5.39 - Força cortante global na direção tangencial para a torre SA
na linha de transmissão, $f_o \propto r_{max}/V = 6,63$
Figura 5.40 - Deslocamento do topo na direção radial para a torre SA na
linha de transmissão, f _o x $r_{max}/V = 6,63$
Figura 5.41 - Deslocamento do topo na direção tangencial para a torre SA
na linha de transmissão, $f_o x r_{max}/V = 6,63$
Figura 5.42 - Esforço normal nas pernas da torre SA na linha de
transmissão,107
Figura 5.43 - Forças cortantes globais para a torre SE 108
Figura 5.44 – Momentos globais para a torre SE 108
Figura 5.45 - Forca global na direção vertical para a torre SE 100

Figura 5.46 - Força cortante global na direção radial para a torre SE, fo x
$r_{max}/V = 10,04110$
Figura 5.47 - Força cortante global na direção tangencial para a torre SE,
Figura 5.48 - Deslocamento do topo na direção radial para a torre SE, $f_0 x$
$r_{max}/V = 10,04110$
Figura 5.49 - Deslocamento do topo na direção tangencial para a torre
SE,
Figura 5.50 - Esforço normal nos mastros da torre SE, $f_0 x r_{max}/V = 10,04$
Figura 5.51 – Esforco normal de tração nos estais da torre SE, $f_0 \propto r_{max}/V =$
10.04
Figura 5.52 - Forcas cortantes globais para a torre SE na linha de
transmissão
Figura 5.53 - Momentos globais para a torre SE na linha de transmissão
Figura 5.54 - Força global na direção vertical para a torre SE na linha de
transmissão114
Figura 5.55 - Força cortante global na direção radial para a torre SE na
linha de transmissão, f _o x $r_{max}/V = 5,74$
Figura 5.56 - Força cortante global na direção tangencial para a torre SE
na linha de transmissão, $f_o \propto r_{max}/V = 5,74$
Figura 5.57 - Deslocamento do topo na direção radial para a torre SE na
linha de transmissão, f _o x $r_{max}/V = 5,74$
Figura 5.58 - Deslocamento do topo na direção tangencial para a torre SE
na linha de transmissão, $f_o x r_{max}/V = 5,74$
Figura 5.59 - Esforço normal nos mastros da torre SE na linha de
transmissão,116
Figura 5.60 - Esforço normal de tração nos estais da torre SE na linha de
transmissão,117
Figura 6.1 – Relação entre a força cortante global resultante máxima e a
força global máxima atuante em uma face do modelo SA50, δ_0 = 500
m

Figura 6.2 - Relação entre a força cortante global resultante máxima e a
força global máxima atuante em uma face do modelo SE42, δ_0 = 500
m
Figura 6.3 – Variação de C _{rh} no modelo SA50 para diferentes valores de
δ ₀ 123
Figura 6.4 - Variação de C_{rh} no modelo SE42 para diferentes valores de δ_0
Figura 6.5 - Variação de C _{rh} em função de δ_0 para modelos autoportantes
Figura 6.6 - Variação de C $_{\rm rh}$ em função de δ_0 para modelos estaiados 125
Figura 6.7 - Variação de C _{rh} para diversas posições torre-tornado na face
transversal do modelo SA50, δ_0 = 100 m 126
Figura 6.8 - Variação de C _{rh} para diversas posições torre-tornado na face
transversal do modelo SE42, δ_0 = 100 m
Figura 6.9 – Valores máximos de C _{rh} para os modelos autoportantes, δ_0 =
100 m 126
Figura 6.10 - Valores máximos de C_{rh} para os modelos estaiados, δ_0 = 100
m127
Figura 6.11 – Variação de C_{rh} na face transversal do modelo SA50 para
diferentes velocidades de translação, δ_0 = 100 m 127
Figura 6.12 – Velocidade tangencial atuante no cabo de uma linha de
transmissão128
Figura 6.13 - Velocidade radial atuante no cabo de uma linha de
transmissão129
Figura 6.14 – Velocidade radial equivalente nos cabos da linha de
transmissão129
Figura 6.15 – Variação de C_{rv} em função de δ_0 para modelos
autoportantes
Figura 6.16 - Variação de C_{rv} em função de δ_0 para modelos estaiados 131
Figura 6.17 – Velocidade vertical ao longo do cabo para diferentes valores
de z/δ_0
Figura 6.18 – Perfil aproximado da pressão vertical tornádica sobre cabos
condutores e pára-raios133

Figura 6.19 – Forças globais horizontais e verticais, $D/r_{max} = 0$
Figura 6.20 - Forças globais horizontais e verticais, $D/r_{max} = 0,5$
Figura 6.21 – Forças globais horizontais e verticais, $D/r_{max} = 1$ 135
Figura 6.22 – Relação entre forças globais verticais de eixo material e
corpo extenso136
Figura 6.23 – Relação entre forças cortantes globais de eixo material e
corpo extenso137
Figura 6.24 - Relação entre momentos globais de eixo material e corpo
extenso137
Figura 6.25 – Momentos globais de torção no modelo SA50 138
Figura 6.26 – Relação entre força horizontal de torção e força cortante
global
Figura 6.27 - Relevância da força de inércia em função da espessura
média da estrutura140
Figura 6.28 – Espectros de resposta a tornados para o modelo SA50 142
Figura 6.29 - Espectros de resposta a tornados para o modelo SE42 142
Figura 6.30 - Espectro de resposta para projeto a tornados 143
Figura 6.31 – Hipótese de projeto 1 147
Figura 6.32 – Hipótese de projeto 2 147
Figura 6.33 – Hipótese de projeto 3 148
Figura 6.34 – Hipótese de projeto 4 149
Figura 6.35 – Hipótese de projeto 5 149
Figura 6.36 – Hipótese de projeto 6 150
Figura 6.37 – Hipótese de projeto 7 150
Figura 6.38 – Hipótese de projeto 8 151
Figura 6.39 – Hipótese de projeto 9 151
Figura 7.1 – Funções de distribuição acumulada de C_{rh} para a força
cortante global nos modelos autoportantes153
Figura 7.2 – Funções de distribuição acumulada de C _{rh} para a força
cortante global nos modelos estaiados153
Figura 7.3 - Funções de distribuição acumulada de C _{rh} para o momento
global nos modelos autoportantes154
Figura 7.4 - Funções de distribuição acumulada de C _{rh} para o momento
global nos modelos estaiados154

Figura 7.5 – Funções de distribuição acumulada para C _{rv} nas torres autoportantes
Figura 7.6 - Funções de distribuição acumulada para C _{rv} nas torres estaiadas
Figura 7.7 - Funções de distribuição acumulada para C _{rc} nas torres autoportantes
Figura 7.8 - Funções de distribuição acumulada para C _{rc} nas torres estaiadas
Figura 7.9 - Funções de distribuição acumulada para C _{rt} nas torres autoportantes
Figura 7.10 - Funções de distribuição acumulada para C _{rt} nas torres estajadas
Figura 7.11 - Funções de distribuição acumulada para C _{rtmast} nas torres estajadas
Figura 7.12 – Funções de distribuição propostas para C _{rh} (momento dobal) e C _{rt}
Figura 7.13 - Funções de distribuição propostas para C _{rh} (força cortante
Figura 7.14 - Funções de distribuição propostas para C _{rc} nas torres
Figura 7.15 - Funções de distribuição propostas para C _{rt} nas torres
Figura 7.16 - Funções de distribuição propostas para C _{rv} nas torres autoportantes
Figura 7.17 - Funções de distribuição propostas para C _{rv} nas torres estaiadas
Figura 7.18 – Funções de densidade de probabilidade da demanda, V _{max} = 85 m/s, e da capacidade para força cortante global na torre SA50
Figura 7.19 – Curva de fragilidade a tornados para força cortante global na torre SA50

Lista de tabelas

Tabela 2.1 – Escala de Fujita45
Tabela 2.2 - Escala Fujita-Pearson47
Tabela 2.3 – Escala de Fujita Aprimorada48
Tabela 2.4 – Parâmetros de projeto para tornados nos Estados Unidos58
Tabela 2.5 – Parâmetros de pressão para tornados nos Estados Unidos58
Tabela 4.1 - Freqüências naturais, em Hz, dos modelos de torre
analisados80
Tabela 6.1 – Parâmetro r _{max} /V143
Tabela 7.1 – Ajuste das funções de distribuição dos coeficientes de
demanda tornádicos163

Lista de símbolos

Ai	área de exposição ao vento do módulo i;
A _{exp}	projeção da área do corpo ortogonalmente ao vento incidente;
A_0	área de uma dada região local de interesse;
A_1	área, do lado do compartimento 1, da parede entre os compartimentos
	1 e 2;
A_2	área que conecta os compartimentos 1 e 2;
В	projeção da largura do corpo no sentido da velocidade ou aceleração
	incidente;
C(t)	grandeza aleatória referente à capacidade da estrutura;
C _c	coeficiente de compressibilidade;
C _d	coeficiente de arrasto;
C_i	coeficiente de arrasto de norma para o módulo i;
C _m	coeficiente de inércia;
C _p	coeficiente de pressão externa;
C_{pi}	coeficiente de pressão interna;
C _{rc}	coeficiente de redução à compressão;
C_{rh}	coeficiente de redução horizontal;
C _{rt}	coeficiente de redução à tração;
$C_{rt\text{mast}}$	coeficiente de redução à tração no mastro;
C_{rv}	coeficiente de redução vertical;
\mathbf{C}_{sf}	coeficiente de redução da pressão externa básica;
C_{sm}	coeficiente de redução da pressão interna básica;
D	distância do centro da estrutura ao caminho do tornado;
D(t)	grandeza aleatória referente à demanda causada pela solicitação;
F	força;
F _A	força de arrasto;
F _b	força cortante global de projeto;
F_{blong}	força cortante global de projeto na direção longitudinal;
F _{btrans}	força cortante global de projeto na direção transversal;
F _D	função de distribuição de probabilidade da demanda;

F _h	força global na direção horizontal;
F_{hce}	força global horizontal, tomando a estrutura como corpo extenso;
F_{hem}	força global horizontal, tomando a estrutura como eixo material;
FI	força de inércia;
F _{max}	força global máxima em uma face da torre;
F_N	referência à classificação de tornados na Escala Fujita;
$\mathbf{F}_{\mathbf{n}}$	força normal em um elemento do modelo devida ao tornado;
F_{nb}	força normal em um elemento do modelo devida ao vento de projeto;
$\mathbf{F}_{\mathbf{q}}$	força cortante global;
F_{ql}	força cortante global para vento na direção longitudinal;
F _{qt}	força cortante global para vento na direção transversal;
F_{q45}	força cortante global para vento a 45°;
Fr	força cortante global na direção radial;
F _{res}	força global resultante máxima;
Ft	força cortante global na direção tangencial;
F_{v}	força global na direção vertical;
F_{vce}	força global vertical, tomando a estrutura como corpo extenso;
F_{vem}	força global vertical, tomando a estrutura como eixo material;
FA _{max}	fator de amplificação de resposta máximo;
G	taxa de fluxo de massa;
$G_N(_{in})(t_j)$	massa de ar por unidade de tempo que entra no compartimento N no
	instante t _j ;
$G_N(_{out})(t_j)$	massa de ar por unidade de tempo que sai do compartimento N no
	instante t _j ;
Κ	constante de proporcionalidade da velocidade horizontal;
М	momento global;
M_{b}	momento global de projeto;
$M_{blong} \\$	momento global de projeto devido ao vento na direção longitudinal;
M_{btrans}	momento global de projeto devido ao vento na direção transversal;
M _{ce}	momento global, tomando a estrutura como corpo extenso;
M _{em}	momento global, tomando a estrutura como eixo material;
M_{Pto}	momento de torção de projeto a tornados;
M_r	momento global na direção radial;

M _t ,	momento global na direção tangencial;
$M_{Tlong} \\$	momento global de torção para vento na direção longitudinal;
M _{Ttrans}	momento global de torção para vento na direção transversal;
M_{T45}	momento global de torção para vento a 45°;
M_{to}	momento global de torção;
Р	peso próprio da torre;
\mathbf{P}_{f}	probabilidade de falha anual;
$P_{f\!/\!h}$	probabilidade de falha condicionada a um valor da ameaça;
$P_{f\!/V\!max}$	probabilidade de falha condicionada a V _{max} ;
$P_{H}(V_{max})$	probabilidade da ameaça tornádica;
P _{total}	peso próprio da torre somado ao peso dos outros elementos da linha;
P(S)	probabilidade anual de um tornado atingir um ponto;
P(V _s)	probabilidade de a velocidade máxima de vento superar o valor $V_{\mbox{\tiny s}}$ em
	determinado tornado;
$P(V>V_s)$	probabilidade anual de um ponto na área de interesse superar um
	determinado valor V _s ;
R	velocidade radial;
R _{COND}	velocidade radial no condutor;
R _{eq}	velocidade radial equivalente no cabo;
S	parâmetro de giro tornádico;
S_0	distância entre os centros do tornado e da estrutura no início da
	análise;
Т	velocidade tangencial;
T _{COND}	velocidade tangencial no condutor;
T _{max}	velocidade tangencial máxima;
U	deslocamento do topo;
U_b	deslocamento do topo devido ao vento de projeto;
Ur	deslocamento do topo na direção radial;
U_{long}	deslocamento do topo na direção longitudinal;
Ut	deslocamento do topo na direção tangencial;
Utrans	deslocamento do topo na direção transversal;
Uven	velocidade de vento incidente;
U_0	vento prevalecente da região;

V	velocidade de translação do tornado;
Vc	projeção do volume do corpo ortogonalmente à acelereção incidente;
V_h	velocidade horizontal;
V _{max}	velocidade horizontal máxima de vento;
V _p	velocidade de projeto a ventos usuais;
$V_{\rm PH}$	velocidade horizontal de projeto a tornados;
V _{PHcabo}	velocidade horizontal de projeto a tornados no cabo;
V _{PHest}	velocidade horizontal estática de projeto a tornados;
V_{PV}	velocidade vertical de projeto a tornados;
V _{PVcabo}	velocidade vertical de projeto a tornados no cabo;
V _{PVest}	velocidade vertical estática de projeto a tornados;
V _{ro}	velocidade rotacional;
V _{romax}	velocidade rotacional máxima;
Vs	velocidade de vento genérica utilizada na análise probabilística;
V _{som}	velocidade do som;
W	velocidade vertical;
$W_N(t_j)$	massa de ar no compartimento N no instante t _j ;
$W_N(t_{j+1})$	massa de ar no compartimento N no instante t_{j+1} ;
a	área média da trilha de dano;
a _h	convergência horizontal do vento no ambiente;
b	parâmetro de flutuação das componentes de velocidade;
e _m	espessura média da estrutura;
$\mathbf{f}_{\mathbf{C}}$	função de densidade de probabilidade da capacidade da estrutura;
\mathbf{f}_{D}	função de densidade de probabilidade da demanda;
$\mathbf{f}_{\mathbf{H}}$	função de densidade de probabilidade da ameaça;
f_0	freqüência fundamental do sistema;
h	determinado valor de ameaça;
h'	altura até o topo do domínio;
k	razão entre os calores específicos do ar à pressão constante e a volume
	constante;
l_v	vão de vento da linha de transmissão;
n	freqüência anual de tornados observada na área A ₀ ;
pa	queda de pressão atmosférica;

p_a^{max}	queda de pressão atmosférica máxima;
p_i	mudança de pressão interna;
p _{iN} (t _j)	pressão no compartimento N no instante t _j ;
$p_{iN}(t_{j+1})$	pressão no compartimento N no instante t_{j+1} ;
p_{max}	pressão de vento máxima;
$p_{\rm v}$	pressão de vento vertical no cabo;
$p_{\rm w}$	pressão de vento utilizada no projeto de estruturas;
p_1	pressão no compartimento 1;
p ₂	pressão no compartimento 2;
$q_{\rm f}$	pressão externa básica;
$q_{\rm m}$	pressão interna básica;
r	distância ao centro do tornado dividida pelo raio do núcleo, r'/rmax;
r'	distância ao centro do tornado;
r _{max}	raio do núcleo, onde ocorre a velocidade tangencial máxima;
u	velocidade incidente na estrutura na direção x;
v	velocidade incidente na estrutura na direção y;
W	velocidade incidente na estrutura na direção z;
W ₀	velocidade vertical média no topo do domínio;
Z	altura sobre o solo;
β	ângulo entre a trajetória do tornado e o eixo x;
γ_1	peso por unidade de volume no compartimento 1;
Δt	incremento de tempo;
δ(r)	espessura da camada limite em função de r;
δ_0	espessura da camada limite quando r >> 1;
η	razão entre a altura sobre o solo e a espessura da camada limite, z/δ ;
θ	ângulo entre a trajetória do tornado e a reta que une os centros do
	tornado e da estrutura;
ρ	massa específica do ar;
φ	ângulo entre o eixo x e a reta que une os centros do tornado e da
	estrutura;
ω	vorticidade vertical do ambiente.

"A ciência não é uma ilusão, mas seria uma ilusão acreditar que poderemos encontrar noutro lugar o que ela não nos pode dar." Sigmund Freud