Resultados e Discussão

Serão apresentados neste capítulo os resultados obtidos para as otimizações de geometria, cálculos de frequências e cálculos da energia *single-point* dos reagentes, produtos e estados de transição, bem como os mecanismos propostos para a formação das espécies PN e NS, incluindo a análise das reações proibidas por spin. As coordenadas Cartesianas das estruturas e as suas respectivas energias encontram-se em anexo ao final desta dissertação.

6.1 Espécie PN

No estudo da molécula PN foram propostas algumas rotas de reação que pudessem levar à formação dessa espécie. Mas antes de discutir sobre sua formação, será falado um pouco sobre sua estrutura e as das espécies que fazem parte dos mecanismos propostos para sua formação. As espécies que fazem parte das rotas de reação propostas são o PH₃, PH₂, PH, NH₃, NH₂, NH, H₄PN, H₃PN, H₂PN e HPN.

6.1.1

Geometrias e frequências das espécies do sistema PN

A figura 3 mostra as estruturas otimizadas para os reagentes e produtos que participam da formação da molécula PN, utilizando o método CCSD/6-311++G(d,p). A tabela 5 apresenta as frequências vibracionais para as espécies químicas mostradas na figura 3. Os comprimentos de ligação e ângulos obtidos

para as espécies PH₃, PH₂, H₂PNH₂, H₃PNH e PN estão em pleno acordo com os valores encontrados na literatura.^{23,25,86-93}

Figura 3. Estruturas das espècies do sistema PN otimizadas. *Os átomos de fósforo estão representados pelas esferas laranjas, os de hidrogênio pelas brancas e os de nitrogênio pelas azuis.

As espécies H₄PN (H₂PNH₂ e HPNH₃) também foram estudadas por Sudhakar.⁸³ Os resultados apresentados aqui propõem que o isômero mais estável dentre as espécies H₄PN é a aminofosfina (H₂PNH₂), que está em acordo com os resultados de Sudhakar.⁸³ A análise conformacional da estrutura H₂PNH₂ apresenta que a conformação mais estável é a conformação estrela, o que é um resultado razoável, sendo também encontrado por Rak et al.⁸⁶ para a estrutura difosfina (H₂PPH₂). H₂PNH₂ possui um comprimento de ligação P–N de 1,723 Å, que está de acordo com o valor teórico de 1,720 Å encontrado por Sudhakar.⁸³ A espécie tautomérica ilídio fosfinoamônio (HPNH₃) possui uma ligação P–N bem longa, de 1,962 Å, o que está em acordo com o valor encontrado por Sudhakar, de 1,954 Å. Para as espécies H₃PN (PNH₃, H₃PN, HPNH₂, H₂PNH) não foi possível obter dados na literatura. As únicas estruturas encontradas foram para as dos cátions dessas espécies.⁸⁴ Os valores encontrados neste trabalho para os comprimentos da ligação P–N para os radicais PNH₃, H₃PN, HPNH₂, H₂PNH foram de 1,98, 1,61, 1,71 e 1,67 Å, respectivamente. Analisando esses valores de ligação, podemos supor que a estrutura do radical PNH₃ pode não ser uma estrutura muito estável, pois o comprimento da ligação P–N é muito grande, em comparação com os outros radicais dessa espécie.

As estruturas otimizadas para as espécies H₂PN (PNH₂, H₂PN, *cis*-HPNH e *trans*-HPNH) também podem ser observadas na figura 3. As moléculas PNH₂ e H₂PN possuem estrutura planas com a ligação the P–N estimada em 1,642 e 1,517 Å, respectivamente, que está em boa concordância com dados da literatura.⁸⁷⁻⁹²A geometria otimizada para a molécula PNH₂ calculada por Lai et al.⁸⁷ tem a ligação P–N de 1,669 Å usando a metodologia QCISD/LANL2DZdp. As geometrias otimizada para a molécula H₂PN calculada por Hoffmann e Kuhler,⁸⁸ Minyaev e Wales⁸⁹ e Lai et al.⁸⁷ possuem a ligação P–N de 1,511, 1,532, 1,515 e 1,547 Å usando as metodologias HF/3-21G*, CASSCF/3-21G(*d*), MP2/6-31G**, e QCISD/LANL2DZdp, respectivamente. Os comprimentos da ligação P–N calculados para as moléculas *cis*-HPNH e *trans*-HPNH foram 1,581 e 1,590 Å, respectivamente, com razoável acordo com a literatura.^{87,89-92}

O comprimento da ligação P–N calculado para os radicais PNH e HPN foi de 1,556 e 1,575 Å, respectivamente. Para os cátions PNH⁺ e HPN⁺, Glaser et al.²⁵ encontraram uma ligação P–N de 1,459 e 1,421 Å, respectivamente, usando o método CISD/6-311G(*df,p*), que é um valor menor do que aquele encontrado em nossos cálculos, como era de se esperar, já que geralmente o comprimento de ligação das espécies catiônicas são menores do que na espécie neutra. O comprimento da ligação P–N na molécula PN é de 1,493 Å para a espécie singlete e de 1,557 Å para a espécie triplete, sendo a espécie singlete a mais estável. A ligação P–N para o estado singlete está em excelente concordância com o valor encontrado para a teoria CCSD(T), 1,4950 Å por Kemeny et al.²³ e com o valor determinado experimentalmente, 1,4909 Å.⁹³

Tabela 4. Frequências vibracionaisv, em cm⁻¹, das espécies estudadas.

Espécies	ν_1	v_2	v_3	ν_4	v_5	ν_6	v_7	ν_8	v 9	ν_{10}	ν_{11}	v_{12}
$^{1}\text{H}_{2}\text{PNH}_{2}$	350	540	822	866	942	1115	1189	1639	2397	2462	3607	3704
¹ HPNH ₃	199	482	687	768	1021	1390	1614	1651	2412	3498	3594	3605
² HPNH ₂	372	452	831	860	1111	1626	2433	3618	3723			
²PNH₃	385	454	698	1364	1518	1645	3492	3590	3595			
² H ₂ PNH	530	605	776	884	1043	1152	2408	2501	3507			
² H₃PN	413	694	982	1041	1132	1263	2392	2442	2510			
¹ PNH ₂	754	973	1005	1665	3530	3610						
³ PNH ₂	474	832	888	1602	3581	3680						
<i>cis</i> -¹HPNH	834	936	1070	1094	2265	3542						
trans-1HPNH	908	1001	1055	1129	2381	3505						
¹ H₂PN	509	718	1223	1284	2440	2445						
³ H₂PN	678	772	790	1098	2414	2428						
PH₃	1050	1144	1144	2461	2467	2467						
NH_3	1087	1675	1675	3514	3648	3648						
² NH ₂	1527	3390	3484									
² PH ₂	1158	2434	2440									
² PNH	722	1157	3531									
² HPN	770	1057	2245									
¹ PH	2420											
³ PH	2393											
¹ NH	3283											
³ NH	3283											
¹ PN	1386											
³ PN	1127											

6.1.2

Mecanismos de formação da molécula PN

Nesta seção, os mecanismos químicos para a formação da molécula PN são apresentados por algumas rotas de reação, que são apresentadas nas figuras 4 a 9. Entretanto, somente alguns caminhos de reação são energeticamente favoráveis. As estruturas dos estados de transição são apresentadas na figura 9 e as frequências imaginárias dos estados de transição são mostradas na tabela 5. As frequências imaginárias dos estados de transição confirmam estas espécies como pontos de sela da superfície de energia potencial. O cálculo da coordenada intrínseca de reação para cada estado de transição foi também utilizado para confirmar os estados de transição para as suas respectivas reações químicas propostas. A tabela 6 apresenta as barreiras de energia para as reações químicas estudadas.

Algumas reações apresentadas nesse trabalho envolvem uma mudança de spin e são consideradas reações proibidas. Elas podem ocorrer em duas superfícies de energia potencial, e requerem que aconteça um salto de uma superfície de energia potencial correspondente ao estado inicial de spin até a correspondente ao estado de spin dos produtos.⁶²

O primeiro caminho de reação proposto para a formação da molécula ¹PN começa na figura 4, com a formação das espécies ¹H₂PN, ¹PNH₂ e *cis*-¹HPNH partindo das reações de associação ²NH₂ + ²PH₂ e NH₃ + ³PH. O radical fosfino (PH₂) pode reagir com o radical amino (NH₂) para formar a molécula ¹H₂PNH₂. A variação de energia (ΔE) nessa reação é de -78 kcal mol⁻¹. Na outra reação, o radical ³PH pode reagir com a molécula de NH₃ formando a molecula ¹HPNH₃, através do mecanismo de associação. Entretanto, a reação ¹NH₃ + ³PH é proibida por spin para a formação da molécula singlete ¹HPNH₃. A reação ¹NH₃ + ³PH é permitida para a formação da espécie triplete ³HPNH₃, em vez da singlete. Por outro lado, NH₃ poderia reagir com a espécie singlete ¹PH para a formação da molécula ¹HPNH₃.

Continuando nessa figura 4, a isomerização da espécie ¹HPNH₃ para a molécula ¹H₂PNH₂ ocorre passando pelo estado de transição TS1, com uma barreira de energia de 28 kcal mol⁻¹. Depois, a molécula H₂PNH₂ pode formar as espécies ¹H₂PN, *cis*-¹HPNH e ¹PNH₂ através dos estados de transição TS2, com barreira de energia de 105 kcal mol⁻¹, TS3, com 92 kcal mol⁻¹ e TS4, com 53 kcal mol⁻¹, respectivamente. Entretanto, a reação:

2
NH₂ + 2 PH₂ \rightarrow 1 H₂PNH₂ \rightarrow TS4 \rightarrow 1 PNH₂ + H₂
 $\Delta E = -28 \text{ kcal mol}^{-1}$

é um caminho energeticamente mais favorável. Mais adiante, na figura 5, poderá ser visto a eliminação de uma molécula de H_2 de ¹PNH₂ para a formação da molécula de interesse PN, passando pelo estado de transição TS9, com uma barreira de energia de 67 kcal mol⁻¹. Como a molécula ¹PNH₂ possui apenas 28 kcal de energia armazenada em seus modos normais, a barreira de energia para a

eliminação do H_2 é muito alta para que a formação do PN aconteça por este caminho de reação.

É interessante comparar a entalpia da reação $NH_2 + PH_2 \rightarrow H_2PNH_2$ com aquela das reações $PH_2 + PH_2 \rightarrow H_2PPH_2$ e $NH_2 + NH_2 \rightarrow H_2NNH_2$. O valor de entalpia para a reação $PH_2 + PH_2 \rightarrow H_2PPH_2$ foi calculada em -53 kcal mol⁻¹ por Rak et al.⁸⁶ Já a reação $NH_2 + NH_2 \rightarrow H_2NNH_2$ foi proposta por Stothard et al.⁹⁴ que determinou a entalpia como sendo de -68 kcal mol⁻¹. Como seria esperado, o valor de entalpia para $NH_2 + PH_2 \rightarrow H_2PNH_2$ está entre os valores das reações $PH_2 + PH_2 \rightarrow H_2PPH_2$ e $NH_2 + NH_2 \rightarrow H_2NNH_2$. A entalpia para essa reação (²NH₂ + ²PH₂ $\rightarrow H_2PNH_2$) é de -66 kcal mol⁻¹, que é a primeira estimativa para essa reação.

Figura 4. Diagrama de energia partindo das reações ${}^{2}NH_{2} + {}^{2}PH_{2} e NH_{3} + {}^{3}PH$.

A figura 5 mostra a formação do ¹PN a partir da reação ³NH + ³PH. Essa reação leva à formação da molécula ¹HPNH, que não é energeticamente favorável de ser formada na reação NH₂ + PH₂ (Figura 4). A rota da reação ³NH + ³PH é muito parecida com a da reação ³PH + ¹SH publicada anteriormente.⁹⁵ É observado que a conformação *cis*-HPNH é menos estável do que a *trans*-HPNH, entretanto, a diferença de energia é muito pequena, somente 1.2 kcal mol⁻¹,

porém, a barreira de energia para a isomerização *cis*, *trans*-HPNH, passando pelo estado de transição TS5 é 14 kcal mol⁻¹.

Ainda na figura 5, é possível observar que o deslocamento de um átomo de hidrogênio do isômero *trans*-¹HPNH ou *-cis* pode levar à formação das moléculas ¹H₂PN ou ¹PNH₂, se este passar pelos estados de tansição TS6 e TS7, respectivamente, envolvendo barreiras de energia de 80 e 73 kcal mol⁻¹. Lai et al.⁸⁷ também avaliou essas reações com o nível de teoria QCISD/LANL2DZdp, entretanto o autor encontrou barreiras com energias um pouco menores, 76 e 61 kcal mol⁻¹, respectivamente. A discrepância entre esses resultados pode ser devido à teoria empregada; no presente estudo, excitações triplas foram incluídas, o que é mais apropriado para estados de transição. A barreira de energia para a reação inversa foi calculada por Minyaev et al.,⁸⁹ que está em concordância com os valores encontrados nesse trabaho, de 61 kcal mol⁻¹ para a molécula ¹PNH₂ e de 40 kcal mol⁻¹ para a ¹H₂PN. A molécula ¹H₂PN é 29 kcal menos estável do que a ¹PNH₂.

Por fim, para a formação da molécula ¹PN, é necessário que ocorra a eliminação de uma molécula de H₂ das espécies ¹PNH₂ e ¹H₂PN. Para esssa eliminação, sera necessário uma energia de 67 kcal mol⁻¹ para a de ¹PNH₂ e de 73 kcal mol⁻¹ para a molécula de ¹H₂PN. Como a energia do estado de transição TS8 é maior do que a dos reagentes, ³NH e ³PH, é esperado que esta reação não seja energeticamente favorável, sendo, então, propostas as seguintes reações para a formação do PN:

³NH + ³PH \rightarrow cis-¹HPNH \rightarrow TS5 \rightarrow trans-¹HPNH \rightarrow TS7 \rightarrow ¹PNH₂ \rightarrow TS9 \rightarrow ¹PN + H₂ $\Delta E = -95 \text{ kcal mol}^{-1}$

> ³NH + ³PH \rightarrow trans-¹HPNH \rightarrow TS7 \rightarrow ¹PNH₂ \rightarrow TS9 \rightarrow ¹PN + H₂ $\Delta E = -95 \text{ kcal mol}^{-1}$

Figure 5. O diagrama de energia partindo da reação ³NH + ³PH.

Outro mecanismo de reação relevante para a formação do ¹PN é mostrado na figura 6. A figura 6 apresenta o mecanismo de formação dos radicais ²HPN e ²PNH, a partir das reações ⁴N + PH₃, NH₂ + ³PH e ⁴P + NH₃. À partir da inserção do átomo de ⁴N na fosfina (PH₃) ocorre a formação do radical ²H₃PN. Em contraste, Hamilton and Murrells⁹⁶ propuseram que a reação ⁴N + PH₃ ocorresse por uma abstração de H, formando NH + PH₂. É importante notar que não é proposto nenhum caminho de reação que envolva a abstração neste estudo, pois a maioria destas reações é com barreiras de energia. Essa reação ocorre passando por um radical intermediário ²H₃PN, seguido do estado de transição TS11, que possui uma barreira de energia de 30 kcal mol⁻¹, formando o radical ²H₂PNH. A reação ⁴N + PH₃ formando como produto o ²H₃PN é proibida por spin. Ela seria permitida se levasse à espécie ⁴H₃PN, ou se ocorrese a partir da espécie dublete ²N.

Partindo do radical ${}^{2}\text{H}_{2}\text{PNH}$, duas reações de eliminação de H₂ são possíveis: 1) através do estado de transição TS13 para formar a radical ${}^{2}\text{HPN}$ e 2) através do estado de transição TS14 para formar a espécie ${}^{2}\text{PNH}$. A barreira de energia para a formação do estado de transição TS13 é 51 kcal maior do que para a formação do estado de transição TS14. Por isso, é esperado que a eliminação de

uma molécula de H_2 que passa pelo estado de transição TS14 seja a mais favorável energeticamente. A continuação dessas reações, a partir das espécies ²HPN e ²PNH pode ser vista na figura 7, que mostra a eliminação de um átomo de H do radical ²PNH passando pelo estado de transição TS16, que tem uma barreira de energia de 53 kcal mol⁻¹. Como o radical ²PNH tem 58 kcal de energia armazenada em seus modos normais, a transposição da barreira de energia para a eliminação de H é energeticamente favorável.

A figura 6 também apresenta outras duas rotas para a formação dos radicais ²HPN e ²PNH: partindo das reações ²NH₂ + ³PH e ⁴P + NH₃. A reação ²NH₂ + ³PH também é energeticamente favorável. O radical ³PH reage com o radical ²NH₂ por uma reação de associação para formar o radical ²HPNH₂. A variação de energia calculada para essa reação foi de -77 kcal mol⁻¹. O radical ²HPNH₂ pode isomerizar, por deslocamento do átomo de H, e formar o ²H₂PNH através do estado de transição TS12, com uma barreira de energia de 54 kcal mol^{-1} . Alternativamente, a formação do ²HPNH₂ também pode acontecer pela reacão ⁴P + NH₃. O átomo ⁴P se adiciona à molécula de NH₃ e forma o intermediário ²PNH₃, que isomeriza à ²HPNH₂ pelo estado de transição TS10, através da barreira de energia de 26 kcal mol⁻¹. A reação ${}^{4}P + NH_{3} \rightarrow {}^{2}PNH_{3}$ é também uma reação proibida por spin. Esta reação seria permitida se levasse à formação da espécie quadruplete ⁴PNH₃. Porém, se a molécula de NH₃ reagisse com a espécie dubleto do fósforo, ²P, a formação da espécie ²H₃PN seria permitida. Embora essa barreira de energia seja de 26 kcal mol⁻¹, que pode ser ultrapassada em altas temperaturas, essa rota é muito menos favorável para a formação do ¹PN do que as outras mencionadas nessa figura, reações ${}^{4}N + PH_{3} e {}^{2}NH_{2} + {}^{3}PH$. A explicação para isso é a alta barreira energética para a eliminação de H, que não é compensada pela energia armazenada no início da reação. Então, pode-se dizer que as reações mais favoráveis para a formação do ²PNH são:

²NH₂ + ³PH
$$\rightarrow$$
²HPNH₂ \rightarrow TS12 \rightarrow ²H₂PNH \rightarrow TS14 \rightarrow ²PNH + H₂
 $\Delta E = -45 \text{ kcal mol}^{-1}$

Figura 6. O diagrama de energia partindo das reações ⁴N + PH₃, ²NH₂ + ³PH e ⁴P + NH₃.

A figura 7 mostra a formação do ¹PN partindo das reações ⁴N + ³PH e ⁴P + ³NH. A reação de associação ⁴N + ³PH é sem barreira, assim como as outras reações de partida mencionadas nesse trabalho, com uma energia de –89 kcal mol⁻¹. O átomo de ⁴N se adiciona ao radical ³PH para formar o radical ²HPN, que por sua vez desloca o átomo de H passando pelo estado de transição TS15 para formar o radical ²PNH. A barreira de energia para o TS15 é estimada em 22 kcal mol⁻¹. O radical ²PNH também pode ser formado pela reação ⁴P + ³NH, como também é apresentado na figura 7. A variação de energia da reação de associação ⁴P + ³NH é de –105 kcal mol⁻¹. O radical ²PNH pode formar a molécula ¹PN, por uma reação de eliinação de H através do estado de transição TS16 com uma barreira energética de 53 kcal mol⁻¹. Então, de acordo com essa fgura, as reações ⁴N + ³PH e ⁴P + ³NH são favoráveis energeticamente para a formação do ¹PN.

4
N + 3 PH→ 2 HPN→TS15→ 2 PNH→TS16→ 1 PN + H
ΔE = -66 kcal mol⁻¹

Figura 7. Diagrama de energia partindo das reações ⁴N + ³PH e ⁴P + ³NH.

O átomo ⁴N também pode reagir com o radical ²PH₂ levando à formação da molécula ¹H₂PN, como apresentado na figura 8. Essa reação é proibida por spin mas seria permitida se levasse à formação da espécie triplete ³H₂PN, ou se o radical ²PH₂ reagisse com a espécie dubleto ²N, para a formação da molécula singlete ¹H₂PN. A variação de energia para a formação do ¹H₂PN é de –69 kcal mol⁻¹. A molécula ¹H₂PN pode sofrer uma reação de eliminação de H₂ para formar a molécula ¹PN, que possui uma barreira do estado de transição TS8, de 74 kcal mol⁻¹. O TS8 possui uma energia mais alta do que a variação de energia armazenada nos modos normais da molécula ¹H₂PN para que essa barreira seja ultrapassada. Porém, em altas temperaturas ela poderá ser alcançada e essa rota proposta pode acontecer.

$$^{4}N + ^{2}PH_{2} \rightarrow ^{1}H_{2}PN \rightarrow TS8 \rightarrow ^{1}PN + H_{2}$$

$$\Delta E = -96 \text{ kcal mol}^{-1}$$

Figura 8. Diagrama de energia partindo da reação ⁴N + ²PH₂.

A figura 9 apresenta um mecanismo parecido com o da figura 8. Os reagentes ${}^{4}P + {}^{2}NH_{2}$ também podem levar à formação da molécula ${}^{1}PN$. A variação de energia da reação ${}^{4}P + {}^{2}NH_{2} \rightarrow {}^{1}PNH_{2}$ é de -70 kcal mol⁻¹. A espécie ${}^{1}PNH_{2}$ pode formar o ${}^{1}PN$ através de uma reação de eliminação de H₂, passando pelo estado de transição TS9. A barreira dessa reação é 66 kcal mol⁻¹. Essa reação parece ser mais favorável que a mostrada na figura 8.

$${}^{4}P + {}^{2}NH_{2} \rightarrow {}^{1}PNH_{2} \rightarrow TS9 \rightarrow {}^{1}PN + H_{2}$$
$$\Delta E = -68 \text{ kcal mol}^{-1}$$

Figura 9. Diagrama de energia partindo da reação ⁴P + ²NH₂.

Figura 10. Estruturas otimizadas dos estados de transição do sistema PN. *Os átomos de fósforo estão representados pelas esferas laranjas, os de hidrogênio pelas brancas e os de nitrogênio pelas azuis.

TS	v_1
TS1	-1909
TS2	-384
TS3	-802
TS4	-1575
TS5	-1346
TS6	-2194
TS7	-1115
TS8	-1635
TS9	-1735
TS10	-1633
TS11	-2203
TS12	-1101
TS13	-1597
TS14	-1041
TS15	-393
TS16	-1690

Tabela 5.Frequências imaginárias, v, em cm⁻¹, dos estados de transição (TS)

Reações	ΔE (kcal mol ⁻¹)			
$^{1}\text{HPNH}_{3} \rightarrow \text{TS1}$	28			
$H_2PNH_2 \rightarrow TS1$	61			
$H_2PNH_2 \rightarrow TS2$	106			
$^{1}\text{H}_{2}\text{PN} + \text{H} \rightarrow \text{TS2}$	26			
$H_2PNH_2 \rightarrow TS3$	92			
cis^{-1} HPNH + H ₂ \rightarrow TS3	52			
$H_2PNH_2 \rightarrow TS4$	53			
$^{1}\text{PNH}_{2} + \text{H}_{2} \rightarrow \text{TS4}$	3			
cis - ¹ HPNH \rightarrow TS5	14			
<i>trans</i> - ¹ HPNH \rightarrow TS5	15			
<i>trans</i> - ¹ HPNH \rightarrow TS6	80			
$^{1}\text{H}_{2}\text{PN} \rightarrow \text{TS6}$	40			
<i>trans</i> - ¹ HPNH \rightarrow TS7	73			
$^{1}\text{PNH}_{2} \rightarrow \text{TS7}$	61			
$^{1}\text{H}_{2}\text{PN} \rightarrow \text{TS8}$	73			
$^{1}\text{PN} + \text{H}_{2} \rightarrow \text{TS8}$	100			
$^{1}\text{PNH}_{2} \rightarrow \text{TS9}$	67			
$^{1}\text{PN} + \text{H}_{2} \rightarrow \text{TS9}$	65			
$^{2}\text{PNH}_{3} \rightarrow \text{TS10}$	26			
$^{2}\text{HPNH}_{2} \rightarrow \text{TS10}$	65			
$^{2}H_{3}PN \rightarrow TS11$	30			
$^{2}H_{2}PNH \rightarrow TS11$	68			
$^{2}\text{HPNH}_{2} \rightarrow \text{TS12}$	54			
$^{2}H_{2}PNH \rightarrow TS12$	31			
$^{2}H_{2}PNH \rightarrow TS13$	55			
2 HPN + H ₂ \rightarrow TS13	91			
$^{2}H_{2}PNH \rightarrow TS14$	40			
2 PNH + H ₂ \rightarrow TS14	30			
2 HPN \rightarrow TS15	22			
$^{2}\text{PNH} \rightarrow \text{TS15}$	48			
$^{2}\text{PNH} \rightarrow \text{TS16}$	54			
$^{1}\text{PN} + \text{H} \rightarrow \text{TS16}$	5			

Tabela 6. Barreiras de energia para as reações estudadas.

Como já foi visto antes, as reações $NH_3 + {}^{3}PH \rightarrow {}^{1}HPNH_3$, ${}^{4}N + {}^{1}PH_3 \rightarrow {}^{2}H_3PN$, $NH_3 + {}^{4}P \rightarrow {}^{2}PNH_3 e {}^{4}N + {}^{2}PH_2 \rightarrow {}^{1}H_2PN$ são proibidas por spin. Através do cálculo *single-point* das espécies não relaxadas nas superfícies de energia potencial, foram feitos diagramas para obter o ponto de cruzamento de energia

mínima (MECP) das reações proibidas por spin. Destes diagramas, as energias das espécies transientes nesse ponto e outras informações necessárias para o cálculo da probabilidade Landau-Zener $(P_{LZ})^{68}$ para a transição entre as superfícies foram determinadas. Esses diagramas são mostrados nas figuras 11, 12, 13 e 14.

Das figuras 11 e 12 obtemos as seguintes informações que serão úteis para o cálculo da probabilidade de Landau-Zener para a reação $NH_3 + {}^{3}PH \rightarrow {}^{1}HPNH_3$:

1) a energia do MECP (E_{MECP}) é -397,79748267 u. a.;

2) o comprimento da ligação P-N da espécie no MECP é de 2,44 Å;

3) o coeficiente angular (ΔF) entre as superfícies no ponto de cruzamento é $4,42 \times 10^{-9} \text{ J m}^{-1}$.

Figura 11: Cruzamento das superfícies para a reação $NH_3 + {}^{3}PH \rightarrow {}^{1}HPNH_3$

Figura 12: Representa o mesmo cruzamento entre as superfícies mostradas na figura 11, porém, numa pequena variação para encontrar a equação da reta e calcular o coeficiente angular.

A partir das figuras 13 e 14 obtemos as seguintes informações para a reação ${}^{4}N + {}^{1}PH_{3} \rightarrow {}^{2}H_{3}PN$:

1) a energia do MECP (E_{MECP}) é -397,074024 u. a.;

2) o comprimento da ligação P-N da espécie no MECP é de 2,15 Å;

3) o coeficiente angular (ΔF) entre as superfícies no ponto de cruzamento é $1,02 \times 10^{-8} \text{ J m}^{-1}$.

Figura 13: Cruzamento das superfícies para a reação ${}^{4}N + {}^{1}PH_{3} \rightarrow {}^{2}H_{3}PN$

Figura 14: Representa o mesmo cruzamento entre as superfícies mostradas na figura 13, porém, numa pequena variação para encontrar a equação da reta e calcular o coeficiente angular.

E das figuras 15 obtemos as seguintes informações para a reação $NH_3 + {}^4P \rightarrow {}^2PNH_3$:

- 1) a energia do MECP (E_{MECP}) é -397,17665117 u. a.;
- 2) o comprimento da ligação P-N da espécie no MECP é de 2,27 Å;
- 3) o coeficiente angular (ΔF) entre as superfícies é 6,07x10⁻⁹ J m⁻¹.

Figura 15: Cruzamento das superfícies para a reação $NH_3 + {}^4P \rightarrow {}^2PNH_3$

Figura 16: Representa o mesmo cruzamento entre as superfícies mostradas na figura 15, porém, numa pequena variação para encontrar a equação da reta e calcular o coeficiente angular.

Nas figuras 17 e 18 as seguintes informações são obtidas para a reação ${}^{4}N + {}^{2}PH_{2} \rightarrow {}^{1}H_{2}PN$:

1) a energia do MECP (E_{MECP}) é -396,55281493 u. a.;

2) o comprimento da ligação P-N da espécie no MECP é de 1,62 Å;

3) o coeficiente angular (ΔF) entre as superfícies no ponto de cruzamento é $1,34 \times 10^{-8} \text{ J m}^{-1}$.

Figura 17: Cruzamento das superfícies para a reação ${}^{4}N + {}^{2}PH_{2} \rightarrow {}^{1}H_{2}PN$

Figura 18: Representa o mesmo cruzamento entre as superfícies mostradas na figura 17, porém, numa pequena variação para encontrar a equação da reta e calcular o coeficiente angular.

As constantes de acoplamento spin-órbita H₁₂ no ponto de cruzamento para essas reações foram calculadas usando os métodos CASSCF e MRCI, juntamente com o conjunto de bases cc-pVTZ, que é mostrado na tabela 7. O espaço ativo usado para cada espécie também é mostrado na tabela 7. Como pode ser observado na tabela, os valores são bem próximos, exceto em um caso onde os valores são muito diferentes. Isso pode ter ocorrido se os dois estados de menor energia forem muito próximos, pois pode ter ocorrido uma inversão destes estados no cálculo CASSCF. Ao contrário da metodologia CASSCF onde não há como indicar os estados, os estados da transição podem ser indicados no método MRCI. Por esse motivo e por causa da maior confiabilidade do método MRCI, para o cálculo da probabilidade foram usados os valores de acoplamento H₁₂ dos cálculos feitos com o método MRCI. Usando a constante H₁₂, a probabilidade de transição (p_h) foi calculada usando a teoria de Landau-Zener desprezando o efeito de tunelamento para as espécies em estudo, à baixas temperaturas. A probabilidade p_h foi então calculada em função da energia E para valores de E maiores do que a energia do ponto e cruzamento, E_{MECP} . Como p_h é pouco dependente de E, foi feita a média de p_h . A probabilidade média, p_h , também é apresentada na tabela 7.

Espécies	H₁ (cm	p_h	
	CASSCF	MRCI	
PNH ₃	112,9	104,7	6,30×10 ⁻⁵
H₃PN	32,9	32,6	4,81×10 ⁻⁴
H ₂ PN	29,9	0,0	0,00
HPNH ₃	144,7	126,1	7,65×10 ⁻³

Tabela 7. Acoplamento spin-órbita (H_{12}) e probabilidade de salto (hopping) (p_h) . O espaço ativo é representado pelo número de elétrons (N) e pelo número de orbitais (M).

As probabilidades indicam que o salto entre as duas superfícies é improvável, portanto, as reações $NH_3 + {}^{3}PH \rightarrow {}^{1}HPNH_3$, ${}^{4}N + {}^{1}PH_3 \rightarrow {}^{2}H_3PN$, $NH_3 + {}^{4}P \rightarrow {}^{2}PNH_3$ e ${}^{4}N + {}^{2}PH_2 \rightarrow {}^{1}H_2PN$ não acontecerão.

6.2

Espécie NS

No estudo do radical NS, foram propostas algumas rotas de reação que pudessem levar à formação dessa espécie. Mas antes, será falado um pouco sobre sua estrutura e a das espécies que fazem parte dos mecanismos propostos para sua formação. As espécies que fazem parte das rotas de reação propostas são o H₂S, SH, NH₃, NH₂, NH, H₃NS, H₂NS e HNS.

6.2.1

Geometrias e frequências das espécies do sistema NS

As espécies propostas no estudo da formação do radical ²NS foram H₂S, SH, NH₃, NH₂, NH, H₃NS, H₂NS, HNS e NS. A figura 19 mostra as estruturas otimizadas para os reagentes e produtos, usando a metodologia CCSD/6-311++G(d,p). A tabela 8 apresenta as frequências vibracionais para as espécies químicas mostradas na figura 19. Infelizmente, não existem muitos dados de frequência destas moléculas na literatura para comparar com esse estudo. Os valores de comprimento de ligação e ângulos de ligação obtidos nesse trabalho usando o nível de teoria CCSD e a função de base 6-311++G(*d*,*p*) estão compatíveis com os dados da literatura.

Figura 19. Estruturas das espécies otimizadas do sistema NS. *Os átomos de enxofre estão representados pelas esferas amarelas, os de hidrogênio pelas brancas e os de nitrogênio pelas azuis.

As espécies H₃NS (*cis*-¹H₂NSH, *trans*-¹H₂NSH, ¹HNSH₂, ¹NSH₃ e ¹H₃NS) são mostradas na figura 19. Essas espécies já foram estudadas por alguns pesquisadores.⁹⁷⁻⁹⁹ O comprimento da ligação N—S das moléculas *trans*- e *cis*-tiohidroxilamina (H₂NSH) é de 1,729 Å e 1,714 Å, respectivamente, que concorda com os valores teóricos encontrados na literatura, 1,732 Å⁹⁸ e 1,719 Å⁹⁷ para o isômero *trans*, e 1,71 Å⁹⁹ para o isômero *cis*. Os valores encontrados para as moléculas ¹HNSH₂ e ¹NSH₃ foram 1,591 Å e 1,469 Å, que estão em excelente acordo com os valores calculados usando a metodologia B3LYP/6-311+G, 1,59 Å e 1,47 Å.⁹⁹ Por fim, para a molécula ¹H₃NS, o valor encontrado para a ligação N—S foi 1,86 Å enquanto que o valor encontrado por Altmann J. A. et al.¹⁰⁰ foi de 1,889. Essa diferença é devida a metodologia empregada, Altmann utilizou o DFT e nesse trabalho foi empregado o CCSD que é uma metodologia superior e mais adequada para esses sistemas complexos.

As estruturas otimizadas das espécies H₂NS (²H₂NS, *cis*-²HNSH, *trans*-²HNSH e ²NSH₂) também são apresentadas na figura 19. O radical ²H₂NS possui uma estrutura planar com um comprimento de ligação N—S estimado em 1,644 Å, que está de acordo com os valores encontrados na literatura, 1,639 Å¹⁰¹ e 1,641 Å.¹⁰² As ligações N–S nos radicais *cis*- e *trans*-²HNSH são 1,653 Å e 1,661 Å, respectivamente, que estão em um bom acordo com os dados da literatura, 1,629 Å e 1,639 Å.¹⁰² Por fim, o radical ²NSH₂ possui uma estrutura não planar e sua ligação N–S é de 1,574 Å, que também concorda com Nguyen et al., 1,567 Å.¹⁰²

Denis et al.¹⁰³ estudou as moléculas HNS e NSH usando algumas metodologias. A ligação N–S para as espécies singlete ¹HNS e triplete ³HNS nesse estudo é de 1,578 Å e 1,562 Å, respectivamente. Isso mostra que estão em um acordo com os valores encontrados por Denis et al.¹⁰³ usando o método CCSD(T)/cc-pVQZ, 1,580 Å e 1,553 Å. Os valores calculados para as espécies singlete e triplete do NSH, nesse estudo, foram de 1,509 Å e 1,671 Å, respectivamente, que também estão em bom acordo com os valores encontrados por Denis et al., 1,513 Å e 1,660 Å.

O comprimento de ligação N–S calculado para o radical ²NS é de 1,506 Å, que concorda com o valor experimental de 1,494 Å,⁹³ e com os valores teóricos de 1,5021 Å e 1,501 Å, obtidos usando os métodos $CCSD(T)/cc-pVQZ^{104}$ e UB3LYP/aug-cc-pVTZ¹⁰⁵, respectivamente.

Espécies	v_1	v_2	v_3	ν_4	ν_5	ν_6	v_7	ν_8	v 9
<i>cis</i> -¹H₂NSH	531	660	885	1059	1137	1645	2665	3573	3673
<i>trans</i> -¹H₂NSH	439	685	898	1075	1146	1659	2739	3571	3662
¹ HNSH ₂	644	888	891	969	1208	1335	2410	2449	3509
¹ NSH₃	810	810	1215	1215	1240	1449	2177	2177	2349
¹ H₃NS	589	866	866	1430	1624	1624	3489	3584	3584
² H ₂ NS	189	951	1059	1652	3610	3730			
<i>cis-</i> ²HNSH	467	791	972	1178	2651	3496			
<i>trans</i> - ² HNSH	633	813	983	1249	2737	3462			
² NSH ₂	801	822	928	1342	2386	2441			
¹ NH ₃	1087	1675	1675	3514	3648	3648			
² NH ₂	1527	3390	3484						
$^{1}H_{2}S$	1237	2765	2782						
¹ HNS	1067	1226	3378						
³ HNS	786	1087	3589						
¹ NSH	1053	1172	2206						
³ NSH	767	895	2684						
² SH	2736								
¹ NH	3283								
³ NH	3283								
² NS	1256								

Tabela 8. Frequências vibracionais, v, em cm⁻¹, das espécies estudadas

6.2.2

Mecanismos de formação do radical NS

Nesta seção serão apresentados os mecanismos de formação do radical NS, que podem ser observados nas figuras de 20-23. É importante notar que neste sistema também não é proposto nenhum caminho de reação que envolva a abstração de átomos H, pois a maioria destas reações possuem barreiras de energia. Porém, assim como nas reações propostas para a formação do PN, nem todas as reações apresentadas aqui serão energeticamente favoráveis e algumas delas são proibidas por spin⁶². As estruturas dos estados de transição são apresentadas na figura 24 e suas frequências imaginárias são mostradas na tabela 9. As frequências imaginárias dos estados de transição deste sistema também confirmam os pontos de sela da superfície de energia potencial para reações neste trabalho. O cálculo da coordenada intrínseca para cada reação foi também utilizado para confirmar os estados de transição de suas respectivas reações. A

tabela 10 apresenta as barreiras de energia para as reações estudadas deste sistema.

A figura 20 apresenta três possíveis caminhos para a formação do radical ²NS. As reações de associação: 1) ¹NH + ²SH, 2) ³S + ²NH₂ e 3) ⁴N + ¹H₂S. A variação da energia da reação ${}^{1}NH + {}^{2}SH \rightarrow cis {}^{2}HNSH é de -115 kcal mol^{-1}$, que é distribuída nos modos normais da espécie cis-²HNSH. Similarmente, a reação ¹NH + ²SH também pode formar o isômero *trans*-²HNSH, com uma variação de energia de -117 kcal mol⁻¹. O radical *cis*-²HNSH pode isomerizar e formar a espécie trans-²HNSH, passando por um estado de transição TS1 com barreira de energia de 19 kcal mol⁻¹. O radical *trans*-²HNSH possui aproximadamente a mesma energia armazenada daquela de seu isômero cis- e pode ser usada para formar o radical ²H₂NS, por deslocamento do átomo de H ligado ao átomo de enxofre para o átomo de nitrogênio através do estado de transição TS2, que possui uma barreira de energia de 42 kcal mol⁻¹. Por fim, o ²H₂NS poderá formar o radical ²NS através de eliminação de uma molécula de H₂, que possui uma barreira de energia de 85 kcal mol⁻¹ para a formação do estado de transição TS3. O radical ²H₂NS também pode ser formado pela reação de associação entre as espécies ³S e ²NH₂. Esta reacão possui uma variação de energia de -77 kcal mol⁻¹, como mostra a figura 20.

A reação ${}^{4}N + H_{2}S \rightarrow {}^{2}NSH_{2}$ possui uma variação de energia de -8 kcal mol⁻¹. Em seguida, o radical ${}^{2}NS$ pode ser formado se a barreira energética de 27 kcal mol⁻¹ para a formação do estado de transição TS4 for ultrapassada, liberando uma molécula de H₂. Entretanto, a formação do TS4 possui uma barreira de energia alta em comparação a energia dos reagentes iniciais, o que torna esse caminho desfavorável em termos de energia. Além disso, a reação ${}^{4}N + {}^{1}H_{2}S$ é proibida por spin para a formação da espécie ${}^{2}NSH_{2}$. A formação dessa espécie só seria permitida se a molécula de H₂S reagisse com a espécie dublete ${}^{2}N$.

Analisando as reações propostas acima, pode-se dizer que o radical ²NS provavelmente não será formado a partir das reações ⁴N + ¹H₂S ou ³S + ²NH₂, porque a energia armazenada nos modos vibracionais dos radicais ²H₂NS e ²NSH₂ não é alta o suficiente para ultrapassar as barreiras de energia de seus estados de transição, TS4 e TS3, respectivamente. Já para a outra reação, ¹NH + ²SH, pode-

se dizer que o radical NS tem chance de ser formado, pois este é uma caminho energeticamente favorável.

¹NH + ²SH
$$\rightarrow$$
cis-²HNSH \rightarrow TS1 \rightarrow trans-²HNSH \rightarrow TS2 \rightarrow ²H₂NS \rightarrow TS3 \rightarrow ²NS + H₂
 $\Delta E = -92 \text{ kcal mol}^{-1}$

Figura 20. Diagrama de energia partindo das reações ${}^{1}NH + {}^{2}SH$, ${}^{3}S + NH_{2} e {}^{4}N + H_{2}S$.

A figura 21 mostra a formação dos radicais ¹NSH e ¹HNS a partir das reações ²NH₂ + ²SH e ³S + ¹NH₃. Entetanto, nenhuma destas reações é favorável energeticamente. O radical ²NH₂ pode reagir com o radical ²SH por uma reação de associação para formar as moléculas *cis*-¹H₂NSH e *trans*-¹H₂NSH, com variações de energia de reação muito similares, aproximadamente, -68 kcal mol⁻¹. A partir da molécula *cis*-¹H₂NSH há dois caminhos de reação possíveis: 1) através do estado de transição TS5, que possui uma barreira de energia de 78 kcal mol⁻¹ e 2) através do estado de transição TS6, que possui uma barreira de energia de 78 kcal mol⁻¹ e 2) através do a barreira de energia de formação do TS5 é ultrapassada, há a formação da molécula ¹HNSH₂ pelo deslocamento do átomo de H ligado ao átomo nitrogênio para o átomo de enxofre. Em seguida, a espécie ¹HNSH₂ pode

átomo de nitrogênio para o átomo de enxofre. Essa reação de isomerização acontece através do estado de transição TS7, que possui uma barreira de 105 kcal mol⁻¹. Finalmente, pode-se formar o radical ¹NSH através da eliminação de uma molécula de H₂, passando pelo TS8 que possui uma barreira de energia de 39 kcal mol⁻¹. A molécula ¹HNSH₂ também pode formar a molécula ¹HNS através do estado de transição TS9, que possui uma barreira de energia igual a 36 kcal mol⁻¹. No segundo caminho de reação, a isomerização do *cis*-¹H₂NSH para *trans*-¹H₂NSH acontece através da barreira de energia de 7 kcal mol⁻¹ par a formação do TS6. Então, a espécie *trans* pode eliminar H₂ para formar a molécula ¹NSH através do estado de transição TS10, que possui uma barreira de energia de 36 kcal mol⁻¹.

A molécula ¹NSH também pode ser formada a partir da reação ³S + NH₃. A espécie ¹H₃NS é formada com uma variação de energia envolvida nessa reação de -25 kcal mol⁻¹. Essa é uma reação proibida por spin. A reação ³S + NH₃ seria perimitida se levasse à formação da espécie triplete ³H₃NS, em vez da singlete, ou se a reação ocorresse a partir da espécie singlete ¹H₃NS. Em seguida, a molécula ¹H₃NS pode se transformar a *trans*-¹H₂NSH, cuja reação ocorre pela transferência de um átomo de hidrogênio do nitrogênio para o enxofre e passa pelo estado de transição TS11, que possui uma barreira de 30 kcal mol⁻¹. Então, pode ocorrer a formação da espécie ¹NSH através da formação do TS10 com a eliminação de uma molécula de H₂.

Com base na figura 21, pode-se dizer que a formação do ¹NSH e ¹HNS não ocorrerá pelas reações apresentadas acima. As energias necessárias para a formação dos estados de transição são muito superiores às variações de energias envolvidas na primeira etapa das reações, tornando essas reações energeticamente desfavoráveis.

Figura 21. Diagrama de energia partindo das reações ${}^{2}NH_{2}$ + ${}^{2}SH$ e ${}^{3}S$ + ${}^{1}NH_{3}$.

A figura 22 também mostra a formação das moléculas ¹NSH e ¹HNS. A formação das espécies ¹NSH e ¹HNS pode ocorrer a partir da reação de associação ¹NH + H₂S. Primeiramente essa reação pode formar a molécula *trans*-¹HNSH₂ com uma variação de energia de -71 kcal mol⁻¹. A molécula *trans*-¹HNSH₂ pode isomerizar passando pelo estado de transição TS12, com barreira de energia de 9 kcal mol⁻¹, e formar a espécie *cis*-¹HNSH₂. Essa espécie *cis* pode isomerizar nas espécies ¹NSH₃, *cis*-¹H₂NSH e ¹HNS passando pelos estados de transição TS7, TS5 e TS10, respectivamente. As barreiras de energia para essas reações são de 105, 36 e 36 kcal mol⁻¹, respectivamente. Com a formação do ¹NSH₃, o radical NSH pode ser formado com a eliminação de uma molécula de H₂ através do estado de transição TS8, que possui uma barreira de energia de 39 kcal mol⁻¹. Se a reação ocorrer pelo TS5, haverá a formação da molécula *cis*-¹H₂NSH, que isomeriza à *trans*-¹H₂NSH através do TS6 e pode formar o NSH a partir do TS9 com a eliminação de H₂. O ¹HNS também pode ser formado quando a reação ocorre passando pelo TS10, a partir do *cis*-¹HNSH₂.

A partir dessa figura pode-se afirmar que provavelmente não irão acontecer as reações que passam pelos estados de transição TS7 e TS8, pois é necessária uma grande energia para passar por essas barreiras. Já a reação que passa pelo TS10 é bem provável que aconteça, pois esta é energeticamente favorável.

$$^{1}NH + {^{1}H_2S} \rightarrow trans - {^{1}HNSH_2} \rightarrow TS12 \rightarrow cis - {^{1}HNSH_2} \rightarrow TS10 \rightarrow {^{1}HNS + H_2}$$

$$\Delta E = -65 \text{ kcal mol}^{-1}$$

Figura 22. O diagrama de energia partindo da reação ${}^{1}NH + {}^{1}H_{2}S$.

A figura 23 mostra a rota para a formação do ²NS a partir das moléculas ¹NSH e ¹HNS, e também a partir da reação ⁴N + ²SH. A reação de associação ⁴N + ²SH pode formar o ¹NSH com energia de –66 kcal mol⁻¹, que é uma reação proibida por spin. A reação ⁴N + ²SH seria permitida se levasse à formação da espécie triplete ³NSH, ou se ²SH reagisse com a espécie dublete ²N para a formação da molécula singlete ¹NSH. Em seguida, o ¹NSH pode isomerizar à ¹HNS, que é mais estável. Essa reação acontece através do estado de transição TS13, que tem uma barreira de energia de 45 kcal mol⁻¹. A molécula ¹HNS pode perder um átomo de H para formar o radical ²NS, com uma variação de energia de 67 kcal mol⁻¹.

$${}^{4}N + {}^{2}SH \rightarrow {}^{1}NSH \rightarrow TS13 \rightarrow {}^{1}HNS \rightarrow {}^{2}NS + {}^{2}H$$

$$\Delta E = -21 \text{ kcal mol}^{-1}$$

Figura 23. Diagrama de energia partindo da reação ⁴N + ²SH.

Figura 24. Estruturas otimizadas dos estados de transição do sistema NS.

	,
TS	ν_1
TS1	-1548
TS2	-1981
TS3	-1958
TS4	-1461
TS5	-1473
TS6	-433
TS7	-1470
TS8	-1317
TS9	-1441
TS10	-1636
TS11	-1773
TS12	-676
TS13	-1960

*Os átomos de enxofre estão representados pelas esferas amarelas, os de hidrogênio pelas brancas e os de nitrogênio pelas azuis. Tabela 9. <u>Frequências imaginárias, v, em cm⁻¹, dos estados de tran</u>sição (TS).

Reações	$\Delta E (kcal mol^{-1})$
<i>cis</i> - ² HNSH → TS1	19
<i>trans</i> - ² HNSH \rightarrow TS1	21
<i>trans</i> - ² HNSH \rightarrow TS2	42
$^{2}\text{H}_{2}\text{NS}\rightarrow\text{TS2}$	58
$^{2}\text{H}_{2}\text{NS}\rightarrow\text{TS3}$	85
$^{2}NS + H_{2} \rightarrow TS3$	44
$^{2}NSH_{2} \rightarrow TS4$	30
$^2\text{NS} + \text{H}_2 \rightarrow \text{TS4}$	56
$cis^{-1}H_2NSH \rightarrow TS5$	78
$^{1}\text{HNSH}_{2} \rightarrow \text{TS5}$	36
$cis^{-1}H_2NSH \rightarrow TS6$	7
$trans^{-1}H_2NSH \rightarrow TS6$	7
$^{1}\text{HNSH}_{2} \rightarrow \text{TS7}$	105
$^{1}NSH_{3} \rightarrow TS7$	45
$^{1}NSH_{3} \rightarrow TS8$	39
1 NSH + H ₂ \rightarrow TS8	69
$^{1}\text{HNSH}_{2} \rightarrow \text{TS9}$	36
1 HNS + H ₂ \rightarrow TS9	28
$trans$ - ¹ H ₂ NSH \rightarrow TS10	95
1 NSH + H ₂ \rightarrow TS10	23
$^{1}H_{3}NS \rightarrow TS11$	30
$trans$ - ¹ H ₂ NSH \rightarrow TS11	46
$trans$ - ¹ HNSH ₂ \rightarrow TS12	9
$cis^{-1}HNSH_2 \rightarrow TS12$	10
1 NSH \rightarrow TS13	45
$^{1}\text{HNS} \rightarrow \text{TS13}$	67

Tabela 10. Barreiras de energia para as reações estudadas.

Como foi visto, as reações ${}^{4}N + H_{2}S \rightarrow {}^{2}NSH_{2}$, ${}^{3}S + {}^{1}NH_{3} \rightarrow {}^{1}H_{3}NS$ e ${}^{4}N + {}^{2}SH \rightarrow {}^{1}NSH$ são proibidas por spin. Através do cálculo *single-point* das espécies não relaxadas nas superfícies de energia potencial, foram também feitos diagramas para obter o ponto de cruzamento de energia mínima (MECP) das reações proibidas por spin. Destes diagramas, as energias das espécies transientes nesse ponto e outras informações necessárias para o cálculo da probabilidade de Landau-Zener (P_{LZ}) para a transição entre as superfícies foram determinadas. Esses diagramas são mostrados nas figuras 25 a 30.

As figuras 25 e 26 fornecem as seguintes informações que serão úteis para o cálculo da probabilidade de Landau-Zener para a reação ${}^{4}N + H_{2}S \rightarrow {}^{2}NSH_{2}$:

1) a energia do MECP (E_{MECP}) é -453,37287544 u. a.;

2) o comprimento da ligação N-S da espécie no MECP é de 2,07 Å;

3) o coeficiente angular (ΔF) entre as superfícies no ponto de cruzamento é $1,12 \times 10^{-8} \text{ J m}^{-1}$.

Figura 25: Cruzamento das superfícies para a reação ${}^{4}N$ + $H_{2}S \rightarrow {}^{2}NSH_{2}$

Figura 26: Representa o mesmo cruzamento entre as superfícies mostradas na figura 25, porém, numa pequena variação para encontrar a equação da reta e calcular o coeficiente angular.

As figuras 27 e 28 fornecem as seguintes informações para a reação ${}^{3}S + {}^{1}NH_{3} \rightarrow {}^{1}H_{3}NS$:

1) a energia do MECP (E_{MECP}) é -454,10047669 u. a.;

2) o comprimento da ligação N-S da espécie no MECP é de 2,39 Å;

3) o coeficiente angular (ΔF) entre as superfícies no ponto de cruzamento é $5,52 \times 10^{-9} \text{ J m}^{-1}$.

Figura 27: Cruzamento das superfícies para a reação ${}^{3}S + {}^{1}NH_{3} \rightarrow {}^{1}H_{3}NS$

Figura 28: Representa o mesmo cruzamento entre as superfícies mostradas na figura 27, porém, numa pequena variação para encontrar a equação da reta e calcular o coeficiente angular.

Nas figuras 29 e 30 as seguintes informações são podem ser obtidas para a reação ${}^{4}N + {}^{2}SH \rightarrow {}^{1}NSH$:

1) a energia do MECP (E_{MECP}) é -452,86142337 u. a.;

2) o comprimento da ligação N-S da espécie no MECP é de 1,58 Å;

3) o coeficiente angular (ΔF) entre as superfícies no ponto de cruzamento é 9,40x10⁻⁹ J m⁻¹.

Figura 29: Cruzamento das superfícies para a reação ${}^{4}N$ + ${}^{2}SH \rightarrow {}^{1}NSH$

Figura 30: Representa o mesmo cruzamento entre as superfícies mostradas na figura 29, porém, numa pequena variação para encontrar a equação da reta e calcular o coeficiente angular.

As constantes de acoplamento spin-órbita H_{12} no ponto de cruzamento MECP foram calculadas usando os métodos CASSCF e MRCI, juntamente com o conjunto de bases cc-pVTZ. A tabela 11 apresenta os resultados para a constante H_{12} de cada reação proibida. Usando a constante H_{12} , a probabilidade de transição pôde ser calculada para cada reação proibida por spin usando a teoria de Landau-Zener desprezando o efeito de tunelamento para as espécies em estudo. A probabilidade p_h foi calculada em função de uma energia E para valores de E maior que a energia do MECP. Como p_h é pouco dependente de E, foi tirada a média e a probabilidade média p_h é apresentada na tabela 11.

Como podem ser observados na tabela 11, os valores não são muito próximos, somente para a espécie H₃NS há uma concordância entre os valores calculados com o CASSCF e o MRCI. Isso pode ter ocorrido se os estados de menor energia forem muito próximos, pois pode ser que tenha acontecido uma inversão dos estados de menor energia. Na metodologia CASSCF não há como indicar os estados. Já no método MRCI, os estados da transição podem ser indicados. Por esse motivo, para o cálculo da probabilidade foram usados os valores de acoplamento H_{12} dos cálculos feitos com o MRCI, que são mais confiáveis.

Espécies	H ₁	D ₁	
Lapeolea	CASSCF	MRCI	Pn
NSH ₂	33,1	4,3	$2,53 imes 10^{-6}$
H₃NS	216,1	207	$1,64 imes 10^{-2}$
NSH	63,3	1,9	$1,65 imes 10^{-6}$

Tabela 11. Acoplamento spin-órbita (H_{12}) e probabilidade de salto (hopping) (p_h). O espaço ativo é representado pelo número de elétrons (N) e pelo número de orbitais (M).

Os valores de probabilidades indicam que a transição de uma superfície à outra é pouco provável de acontecer. Então, é difícil que essas reações proibidas por spin aconteçam em condições normais.