

Yves Denis Heckel

Método Híbrido de Correspondência para Pares Estereoscópicos de Imagens Aéreas e de Satélite de Alta Definição

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC-Rio.

> Orientador: Prof. Raul Queiroz Feitosa Co-orientador: Prof. Jorge Luíz Nunes e Silva Brito

Rio de Janeiro Dezembro de 2008

Yves Denis Heckel

Método Híbrido de Correspondência para Pares Estereoscópicos de Imagens Aéreas e de Satélite de Alta Definição

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Raul Queiroz Feitosa Orientador Departamento de Engenharia Elétrica – PUC-Rio

> Prof. Jorge Luíz Nunes e Silva Brito Co- Orientador UERJ

Prof. Marcos Azevedo da Silveira Departamento de Engenharia Elétrica – PUC-Rio

> Prof. Sidnei Paciornik DCMM

Prof. Guilherme Lúcio Abelha Mota UERJ

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico

Rio de Janeiro, 16 de dezembro de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Yves Denis Heckel

Graduou-se em Engenharia Elétrica na universidade de Paris XI – ENS Cachan (*Ecole Normale Supérieure de Cachan* – França). Cursou Visão computacional na PUC-Rio em 2006-2007, em intercâmbio com a ENS Cachan na França onde obteve também o diploma de "máster" europeu. É agora professor de física fundamental no ensino superior na região parisiense, preparando os alunos aos concursos das grandes escolas de engenheiros.

Ficha Catalográfica

Heckel, Yves Denis

Método híbrido de correspondência para pares estereoscópicos de imagens aéreas e de satélite de alta definição / Yves Denis Heckel ; orientador: Raul Queiroz Feitosa ; co-orientador: Jorge Luis Nunes e Silva Brito. – 2008.

115 f. : il. ; 30 cm

Dissertação (Mestrado em Engenharia Elétrica) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Método híbrido de correspondência. 3. Par estereoscópico. 4. Correlação por mínimos quadrados. 5. Crescimento de região. 6. Imagens aéreas e de satélite. 7. Modelos 3D. 8. SIFT. I. Feitosa, Raul Queiroz. II. Brito, Jorge Luis Nunes e Silva. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

CDD: 621.3

Agradecimentos

Aos meus professores Marcos Azevedo da Silveira, Raul Queiroz Feitosa e Jorge Luis Nunes e Silva Brito, pela ajuda, compreensão, paciência, e pelo tempo passado

À Luizinha, pelo carinho de todos os momentos

Ao Cristo Redentor por iluminar os meus dias no Rio

Resumo

Yves Denis Heckel; Raul Queiroz Feitosa (Orientador); Jorge Luis Nunes e Brito Silva (Co-orientador). **Método híbrido de correspondência para pares estereoscópicos de imagens aéreas e de satélite de alta definição**. Rio de Janeiro, 2008, 115p. Dissertação de mestrado – Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro.

A partir da disponibilização comercial de imagens de alta resolução, modelos 3D de superfícies geradas a partir de imagens aéreas e de satélite tornaram-se uma alternativa mais atraente para aplicações como planejamento de telecomunicações, monitoramento de desastres e planejamento urbano. A exatidão dos modelos 3D da superfície terrestre baseados em pares de imagens estereoscópicas depende da exatidão com que pontos homólogos são localizados em ambas as imagens. Os métodos automáticos de localização de pontos homólogos em imagens digitais baseados em área, combinados com técnicas de crescimento de região, são capazes de produzir uma nuvem densa e exata de pontos homólogos. Entretanto, o processo de crescimento de região pode ser interrompido em regiões da imagem cujo efeito de uma variação abrupta da paralaxe no eixo x aparece de maneira importante. Neste caso, novas sementes devem ser introduzidas, normalmente por um operador humano. A partir dessas novas sementes, o processo será reiniciado. Dependendo do tipo da imagem utilizada e da estrutura 3D da região mapeada, a intervenção humana pode ser considerável. Propõe-se então uma alternativa completamente automatizada no qual se combinam as técnicas do SIFT (Scale Invariant Feature Transform), mínimos quadrados e crescimento de região. Experimentos realizados em pares de imagens aéreas e de satélite cobrindo diversos tipos de terrenos mostraram a eficácia do método proposto, especialmente em regiões com mudanças abruptas de elevação, como fachadas de prédios altos.

Palavras-chave

Método híbrido de correspondência, par estereoscópico, correlação por mínimos quadrados, crescimento de região, SIFT, imagens aéreas e de satélite, modelos 3D.

Abstract

Yves Denis Heckel; Raul Queiroz Feitosa (Advisor); Jorge Luis Nunes e Silva Brito (Co-advisor). **Hybrid Matching Method for stereo pairs of high-definition aerial and satellite images**. Rio de Janeiro, 2008, 115p. MSc. Dissertation, Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro.

After the high resolution images became commercially available, 3D surface models generated from space-born stereo images turned into an attractive alternative for applications such as telecommunication planning, disaster monitoring and urban planning. The accuracy of the 3D models of the earth surface depends on the accuracy of corresponding points located in both images. Area-based automatic image matching combined with a region-growing technique are able to provide a dense and accurate grid of corresponding points. However the region-growing process may stop at image patches where the effect of a sudden change in the x-parallax is important. In such a case new seed points must be provided, usually by human operator. From the additional seed points the region-growing procedure may continue. Depending upon the type of image and the 3D-structure of the mapped area, the human intervention may be considerable. A fully automatic alternative that combines the SIFT (Scale Invariant Feature Transform), least square matching and region-growing technique is proposed in this work. Experiments conducted on stereo pairs of Ikonos and aerial images covering different terrain types have shown the effectiveness of the proposed method especially in locations with abrupt height changes, such as façades of high buildings.

Keywords

Hybrid matching method, stereo pair, least-square matching, region growing, SIFT, aerial images, satellite images, 3D models,

Sumário

1	Intro	dução	
	1.1	Motivação	12
	1.2	Estrutura da dissertação	14
2	Trab	alhos Relacionados	16
	2.1	Métodos baseados em área	16
	2.1.	Correlação por Mínimos Quadrados	17
	2.1.	2 Crescimento de Região	
	2.1.	B Limitações dos métodos baseados em área	
	2.2	Métodos baseados em feições – SIFT	
	2.2.	Detecção dos pontos chave do SIFT	
	2.2.	2 Descritores dos pontos chave	
	2.2.	B Correspondência	
3	O m	todo híbrido	
	3.1	Princípio do método proposto	
	3.1.	Método híbrido em um passo	
	3.1.	2 Método híbrido em 2 passos	
	3.2	Detalhe do método híbrido em um passo	35
	3.2.	Homogeneidade dos deslocamentos dos pontos homólogos	
	3.2.	2 Análise da correspondência baseada em feições	
	3.2.	Análise da correspondência baseada em área	
	3.3	Detalhamento do método híbrido em dois passos	
	3.3.	Primeiro passo	
	3.3.	2 Extração de informações	
	3.3.	8 Segundo passo	
4	Anál	se do desempenho	
	4.1	Descrição dos dados	
	4.1.	Imagens de satélite Ikonos	
	4.1.	2 Imagens aéreas	
	4.1.	8 Seleção de sub-regiões nas imagens	
	4.2	Medida do desempenho	
	4.2.	Cobertura simples	
	4.2.	2 Cobertura nos topos	
	4.2.	Porcentagem de topos atingidos	
	4.3	O protótipo	
	4.3.	Seqüência das operações	
	4.3.	2 Janelas da interface	

Expe	rimentos	66				
4.4.1	Experimento 1 : As coberturas manuais – As referências	66				
4.4.2	Experimento 2 : Desempenho do método híbrido em 1 passo	70				
4.4.3	Experimento 3 : Desempenho do método híbrido em 2 passos	74				
Conclusão		86				
Referências7						
APÊNDICE A: Detalhe do programa DPCOR90						
APÊNDICE B: Detalhe do protótipo94						
APÊNDICE C: Coordenadas detalhadas das 12 sub-imagens113						
APÊNDICE D: Detalhes do primeiro experimento114						
	Expe 4.4.1 4.4.2 4.4.3 Conclusão ências DICE A: DICE B: DICE C: DICE D:	Experimentos 4.4.1 Experimento 1 : As coberturas manuais – As referências 4.4.2 Experimento 2 : Desempenho do método híbrido em 1 passo 4.4.3 Experimento 3 : Desempenho do método híbrido em 2 passos 4.4.3 Experimento 3 : Desempenho do método híbrido em 2 passos Conclusão				

Lista das figuras

Figura 1.1: Esquerda - Imagem Ikonos duma área com prédios de resolução 1m/pixel Direta -	
Reconstituição 3D a partir duma correspondência com correlação por mínimos quadrados	12
Figura 2.1 : Influência duma mudança no ponto de vista 3D sobre o par de imagens	20
Figura 2.2 : Par de imagens originais e 1º exemplo do crescimento de região com cobertura	
limitada	
Figura 2.3 : Segundo exemplo do crescimento de região com uma cobertura maior	23
Figura 2.4 : Crescimento de região falhando em topos de prédios altos	25
Figura 2.5 : Efeito de uma mudança do ponto de vista 3D na imagem de um prédio alto	
Figura 2.6 : Etapas de um método de correspondência baseado em feições	27
Figura 2.7 : Pirâmide de imagens filtradas pelas gaussianas com 3 oitavas e 5 níveis cada	28
Figura 2.8 : Pirâmide de diferenças de gaussianas das imagens (DoG)	
Figura 2.9 : Seleção dos extremos na pirâmide DoG entre os 26 vizinhos	
Figura 2.10 : O descritor do SIFT	32
Figura 3.1: Comparação do método manual e do método híbrido em um passo	33
Figura 3.2: Método híbrido de localização dos pontos homólogos em 2 passos	35
Figura 3.3: Ilustração da homogeneidade de deslocamento entre as correspondências em duas	
imagens	37
Figura 3.4: Exemplo de correspondência onde a homogeneidade não é respeitada	37
Figura 3.5: Restrição na área de busca com uso da homogeneidade dos deslocamentos a priori	39
Figura 3.6: Restrição da área de busca com uma imagem de 500 × 500 pixels	40
Figura 3.7: Funções realizadas pela correlação por mínimos quadrados e crescimento de região	42
Figura 3.8: Esquerda - cobertura obtida com o crescimento de região – Direta - a máscara dos	
buracos	44
Figura 4.1 : uma das imagens IKONOS da região do Rio de Janeiro utilizadas na análise	47
Figura 4.2 : Zoom em uma das partes da imagem – resolução de 1m/pixel	47
Figura 4.3 : uma das imagens aéreas da região do Rio de Janeiro utilizada nos experimentos	49
Figura 4.4 : Zoom na imagem aérea da figura 4.3	49
Figura 4.5 : Máscara dos topos aparecendo em branco	56
Figura 4.6 : Exemplo de topo atingido somente por um ponto	57
Figura 4.7 : Acima : imagem original sem cobertura, Abaixo : Os topos são totalmente cobertos,	
não atingidos ou somente por poucos pontos	58
Figura 4.8 : Organização das operações no protótipo	60
Figura 4.9 : Janela Principal da interface gráfica	61
Figura 4.10 : Janela da correspondência de feições	63
Figura 4.11 : Janela de definição da grade de avaliação	64
Figura 4.12 : Janela dos resultados	65
Figura 4.13 : Coberturas simples obtidas com uma semente manual segundo o tipo de região	68

Figura 4.14 : Exemplo de problemas encontrados em áreas residenciais com imagens de satélite.	
Acima : par de imagens originais, abaixo : imagens com a cobertura obtida em branco	69
Figura 4.15 : Porcentagem de topos atingidos e cobertura nos topos com uma semente manual	70
Figura 4.16 : Coberturas simples obtidas com o método híbrido em 1 passo segundo o tipo de	
região	73
Figura 4.17 : Porcentagem de topos atingidos e cobertura nos topos com uma semente manual	73
Figura 4.18 : Comparação do desempenho em imagens aérea segundo o tipo de região	77
Figura 4.19 : Comparação dos métodos em imagens de satélite segundo o tipo de região	77
Figura 4.20 : Cobertura obtida com uma semente manual numa área residencial (acima: par de	
imagens originais sem cobertura, abaixo : as imagens com a primeira cobertura obtida)	80
Figura 4.21 : Cobertura obtida com o método híbrido na mesma área residencial	81
Figura 4.22 : Cobertura obtida com o método manual em torno de um prédio alto	82
Figura 4.23 : Cobertura obtida com o método híbrido em torno de um prédio alto	83
Figura 4.24 : Comparação do desempenho dos três métodos em imagens de satélite com prédios	
altos	84
Figura 4.25 : Comparação do desempenho dos três métodos em imagens aéreas com prédios altos	84
Figura 4.26 : Detalhe dos topos atingidos pelos três métodos em todas as imagens com prédios	
altos	85
Figura 5.1 : Imagem original (acima) e a reconstituição 3D abaixo do nosso mapa de	
correspondência	87
Figura B.1 : Grupos de operações do programa	97
Figura B.2 : Detalhe da parte do pre-processamento	
Figura B.3 : Detalhe da parte da correspondência de feições	100
Figura B.4 : Janela de definição dos parâmetros da correspondência de áreas	102
Figura B.5 : Janela de definição dos parâmetros da correspondência de feições	103
Figura B.6 : Janela de definição e de cálculo dos pre-processamentos	105
Figura B.7 : Janela de definição da grade de avaliação	106
Figura B.8 : Janela da correspondência de feições	108
Figura B.9 : Janela de avaliação de resultados	112

Lista das tabelas

Tabela 2.1: Comparação entre Correlação Cruzada Normalizada e Correlação por Mínimos	
Quadrados	17
Tabela 4.1 : As 12 sub-imagens selecionadas para os testes – Parte 1	51
Tabela 4.1 : As 12 sub-imagens selecionadas para os testes – Parte 2	
Tabela 4.1 : As 12 sub-imagens selecionadas para os testes – Parte 3	53
Tabela 4.1 : As 12 sub-imagens selecionadas para os testes – Parte 4	54
Tabela 4.2 : Resultados da primeira experiência – o método manual com uma semente	67
Tabela 4.3 : Parâmetros utilizados no método híbrido em 1 passo	71
Tabela 4.4 : Resultados da segunda experiência – método híbrido em 1 passo	
Tabela 4.5 : Parâmetros utilizados no método híbrido em 2 passos para imagens de satélite	74
Tabela 4.6 : Parâmetros utilizados no método híbrido em 2 passos para imagens aéreas	75
Tabela 4.7 : Resultados da terceira experiência – método híbrido em 2 passos	76
Tabela 4.8 : Topos de edifícios atingidos por cada método	85
Tabela C.1 : Coordenadas das 12 sub-imagens selecionadas para os testes	113
Tabela D.1 : Resultados completos da primeira experiência – o método manual	114