Estudo da Barra de Geração

3.1 Introdução

No Capítulo 2 tratou-se do máximo fluxo de potência ativa e reativa que pode chegar à barra de carga, limitando então a máxima carga que pode ser alimentada, e do possível efeito contrário de ações de controle de tensão, por exemplo, quando da conexão de um capacitor na barra de carga. Neste capítulo trata-se do máximo fluxo de potência ativa e reativa que pode sair da barra terminal do gerador, entrando na rede de transmissão ou distribuição, e do possível efeito contrário de ações de controle de tensão. No caso de geradores e compensadores síncronos, trata-se do controle de tensão através da tensão de excitação [Prada, R.B., Lafitte, J.L, Ferreira, L.F., Medeiros, L., 2006].

Dados os parâmetros da linha de transmissão e a tensão na barra de carga, verifica-se o lugar geométrico da tensão de geração para diferentes níveis de potência ativa e reativa, mantendo o fator de potência constante, saindo da barra de geração.

Para cada fator de potência na geração existe um lugar geométrico das tensões na barra de geração. Essas soluções pertencem à região A, à região B, ou à fronteira. A solução de tensão na barra de geração que pertence à fronteira é um único ponto que corresponde á máxima injeção de potência ativa (e reativa) para aquele fator de potência constante. Portanto, a fronteira é formada por um conjunto de pontos, cada um correspondendo à injeção máxima para cada fator de potência na geração.

3.2

Potência Ativa e Reativa Saindo da Barra de Geração

Utilizando-se o circuito de 2 barras mostrado na Figura 3.1, deduz-se as equações da potência ativa e reativa "saindo" da barra de geração.

$$\dot{S}_{GL}^{*} = P_{GL} - j Q_{GL} = \dot{V}_{G}^{*} \left(\dot{I}_{GL} + \dot{I}_{GT} \right)$$
(3.1)

$$\dot{V}_{G}^{*} = V_{G}. \angle -\theta_{G}$$
(3.2)

$$\dot{I}_{GL} = \frac{\left(V_{G}.\angle\theta_{G} - V_{L}\angle\theta_{L}\right)}{Z_{t}\angle\alpha_{t}}$$
(3.3)

$$\dot{I}_{GT} = \frac{V_G. \angle \theta_G}{Z_g \angle \alpha_g}$$
(3.4)

Figura 3.1 - Potência Ativa e Reativa Saindo da Barra de Geração num Circuito de Duas Barras

Substituindo-se (3.2), (3.3) e (3.4) em (3.1), e separando a parte real e imaginária da potência aparente, fica:

$$P_{GL} = V_{G}^{2} \left[\frac{\cos \alpha_{t}}{Z_{t}} + \frac{\cos \alpha_{g}}{Z_{g}} \right] - \left(\frac{V_{L} V_{G}}{Z_{t}} \right) \cos(\theta_{GL} + \alpha_{t})$$
(3.5)

$$Q_{GL} = V_{G}^{2} \left[\frac{\operatorname{sen}\alpha_{t}}{Z_{t}} + \frac{\operatorname{sen}\alpha_{g}}{Z_{g}} \right] - \left(\frac{V_{L} \cdot V_{G}}{Z_{t}} \right] \operatorname{sen}(\theta_{GL} + \alpha_{t})$$
(3.6)

De (3.5) e (3.6) é definido a equação da potência aparente de geração:

$$S_{GL} = \sqrt{(P_{GL})^2 + (Q_{GL})^2}$$
 (3.7)

Para cada P_{GL} constante, variando-se θ_{GL} em (3.5), pode-se calcular V_G e, portanto, traçar-se a curva para P constante no plano θV .

Para cada Q_{GL} constante, variando-se θ_{GL} em (3.6), pode-se calcular V_G e, portanto, traçar-se a curva para Q constante no plano θV .

A tangente do ângulo do fator de potência na geração é:

$$\tan\phi = \frac{Q_{GL}}{P_{GL}}$$
(3.8)

Substituindo-se (3.5) e (3.6) em (3.8) e colocando-se em evidência a tensão na barra de geração V_G :

$$V_{G} = \frac{V_{L} \cdot [\operatorname{sen}(\theta_{GL} + \alpha_{t}) - \tan(\phi) \cdot \cos(\theta_{GL} + \alpha_{t})]}{\left[\operatorname{sen}(\alpha_{t}) - \tan(\phi) \cdot \cos(\alpha_{t}) - \tan(\phi) \cdot \frac{Z_{t}}{Z_{g}} \cdot \cos(\alpha_{g}) + \frac{Z_{t}}{Z_{g}} \cdot \operatorname{sen}(\alpha_{g})\right]}$$
(3.9)

Para ϕ constante, variando-se θ_{GL} em (3.9), pode-se calcular V_G e, portanto, traçar-se a curva para ϕ constante no plano θ V.

3.3

Tensão Crítica na Barra de Geração

Se os fluxos de potência ativa P_{GL} e reativa Q_{GL} correspondem à máxima potência saindo da barra de geração para ângulo do fator de potência ϕ , isto pode ser traduzido matematicamente: os vetores gradiente ∇P_{GL} e ∇Q_{GL} estão alinhados sob a mesma direção, como mostrado na Figura 3.2. Então, a seguinte relação pode ser escrita, onde λ é um escalar:

$$\nabla \mathsf{P}_{\mathsf{GL}} - \lambda \nabla \mathsf{Q}_{\mathsf{GL}} = 0 \tag{3.10}$$

Figura 3.2 - Gradientes $\nabla \mathsf{P}_{\mathsf{GL}}$ e $\nabla \mathsf{Q}_{\mathsf{GL}}$ alinhados no Máximo Carregamento

A condição de otimalidade "gradientes alinhados" do problema "maximizar $P(V_G,\Theta_G) \in Q(V_G,\Theta_G)$ sujeito a ϕ =arctg(Q_{GL}/P_{GL}) = constante" pode, então, ser reescrita como:

$$\frac{\partial P_{GL}}{\partial \theta_{G}} - \lambda \frac{\partial Q_{GL}}{\partial \theta_{G}} = 0$$
(3.11)

$$\frac{\partial P_{GL}}{\partial V_G} - \lambda \frac{\partial Q_{GL}}{\partial V_G} = 0$$
(3.12)

Isto é equivalente ao determinante da matriz Jacobiano das duas equações de fluxo de carga correspondente à barra de geração, ser igualado a zero, isto é:

$$\left(\frac{\partial P_{GL}}{\partial \theta_{G}} * \frac{\partial Q_{GL}}{\partial V_{G}}\right) - \left(\frac{\partial P_{GL}}{\partial V_{G}} * \frac{\partial Q_{GL}}{\partial \theta_{G}}\right) = 0$$
(0.13)

Os componentes do vetor gradiente de potência ativa em relação ao ângulo e ao módulo da tensão na barra de geração são:

$$\frac{\partial P_{GL}}{\partial \theta_{G}} = \left(\frac{V_{L}.V_{G}}{Z_{t}}\right).sen(\theta_{GL} + \alpha_{t})$$
(3.14)

$$\frac{\partial P_{GL}}{\partial V_{G}} = 2.V_{G} \cdot \left[\frac{\cos \alpha_{t}}{Z_{t}} + \frac{\cos \alpha_{g}}{Z_{g}} \right] - \left(\frac{V_{L}}{Z_{t}} \right) \cdot \cos(\theta_{GL} + \alpha_{t})$$
(3.15)

Os componentes do vetor gradiente de potência reativa em relação ao ângulo e ao módulo da tensão na barra de geração são:

$$\frac{\partial \mathbf{Q}_{GL}}{\partial \theta_{G}} = -\left(\frac{\mathbf{V}_{L} \cdot \mathbf{V}_{G}}{\mathbf{Z}_{t}}\right) \cdot \cos(\theta_{GL} + \alpha_{t})$$
(3.16)

$$\frac{\partial Q_{GL}}{\partial V_{G}} = 2.V_{G} \cdot \left[\frac{\operatorname{sen}\alpha_{t}}{Z_{t}} + \frac{\operatorname{sen}\alpha_{g}}{Z_{g}} \right] - \left(\frac{V_{L}}{Z_{t}} \right) \cdot \operatorname{sen}(\theta_{GL} + \alpha_{t})$$
(3.17)

Substituindo-se (3.14), (3.15), (3.16) e (3.17) em (3.13) fica:

$$V_{G}^{C} = \frac{V_{L}}{2 \cdot \left[\cos(\theta_{GL}) + \left(\frac{Z_{t}}{Z_{g}} \right) \cdot \cos(\theta_{GL} + \alpha_{t} - \alpha_{g}) \right]}$$
(3.18)

que é o módulo da tensão na barra de geração quando o fluxo de potência que sai dela é máximo.

Para obter-se o valor do ângulo da tensão nessa condição de máximo, substituise o módulo da tensão crítica de (3.18) na outra condição de otimalidade do problema, ou seja, em (3.9).

Após manipulações algébricas e trigonométricas (ver Apêndice B) chega-se à fórmula:

$$tg(2.\theta_{GL}^{C}) = \left(\frac{sen(-\phi + \alpha_{t}) + (Z_{t} / Z_{g}).sen(-\phi + 2.\alpha_{t} - \alpha_{g})}{-cos(-\phi + \alpha_{t}) - (Z_{t} / Z_{g}).cos(-\phi + 2.\alpha_{t} - \alpha_{g})}\right)$$
(3.19)

A defasagem angular crítica entre a barra terminal do gerador e a barra de carga θ_{GL}^{C} pode ocorrer em qualquer dos quatro quadrantes, mas somente uma está associada à condição da máxima potência gerada e que garante alimentar a carga. Tudo depende do ângulo do fator de potência da geração e dos parâmetros do circuito π , como analisado a seguir.

3.3.1 Análise das Soluções de Ângulo na Barra Terminal de Geração

Considerando as impedâncias dos ramos paralelos infinitos no circuito π de duas barras da Figura 3.1, é possível tratar o circuito como série. Assim, (3.19) é reduzido a:

$$tg(2.\theta_{GL}^{C}) = \left(\frac{sen(-\phi + \alpha_{t})}{-cos(-\phi + \alpha_{t})}\right)$$
(3.20)

Conforme o desenvolvimento mostrado no Apêndice B, é possível transformar (3.20) numa equação quadrática:

onde:

$$X = tg(\theta_{GL}^{C})$$
(3.22)

Os valores das constantes A, B e C foram definidos, respectivamente, em (B.36), (B.37) e (B.38). As quatro soluções de ângulo crítico foram deduzidas de (B.42) a (B.45).

A análise foi feita considerando tensão constante na barra de carga V_L = 0,95 pu, e simulando-se variações da geração.

3.3.1.1 Primeiro Caso

Considerou-se os parâmetros: impedância da linha $Z_t = 0,2 \angle 70^\circ$ pu e ângulo do fator de potência na geração $\phi = 185^\circ$.

No ponto "a₁" da Figura 3.3 se obtém graficamente os valores críticos da máxima potência gerada: $P_{GL}^{C} = 3,8928 \text{ pu}$, da tensão do gerador na barra terminal

 V_G^C = 0,8848 pu e da defasagem angular entre a barra terminal do gerador e a barra de carga θ_{GL}^C = 57,5°.

Quando o ângulo da linha de transmissão $\alpha_t < 90^\circ$, que é o usual, é importante notar na Figura 3.4, que as curvas para P constante no plano θ V, crescem "de dentro para fora".

Figura 3.4 - Caso 1: Candidatos a Ponto de Máximo no Plano θV

Numericamente, de (3.21) e (3.22), pode-se encontrar os valores da defasagem angular entre a barra terminal do gerador e a barra de carga e que correspondem as mesmas soluções de ângulo deduzidas em (B.44) como θ_{GL-3} e (B.45) como θ_{GL-4} . As soluções de ângulo θ_{GL-1} em (B.42) e θ_{GL-2} (B.43) são descartadas porque produzem pontos de máxima potência negativa, significando que o gerador passou a trabalhar como carga.

A=-2,1445
B=+2
C=+2,1445
$$\theta_{GL-3}= \arctan\left[\frac{-B - \sqrt{B^2 - 4.A.C}}{2.A}\right] = +57,5^{\circ}$$
 (ponto "a₁" da Figura 3.4)

 $\theta_{GL-4} = \operatorname{arctg}\left[\frac{-B - \sqrt{B^2 - 4.A.C}}{2.A}\right] - 180^\circ = -122,5^\circ \quad (\text{ponto "b}_1" \text{ da Figura 3.4})$

Pode-se deduzir da Figura 3.4 que:

- $\theta_{GL}^{C} = +57,5^{\circ}$ é solução porque é o ponto de máxima geração $P_{GL}^{C} = 3,8929$ pu com tensão do gerador na barra terminal V_G=0,8841 pu. É o ponto "a₁" nas Figuras 3.3 e 3.4.
- $\theta_{GL}^{C} = -122,5^{\circ}$ não é solução porque, apesar de ser um ponto de máxima geração $P_{GL}^{C} = 3,8929$ pu, tem tensão negativa na barra terminal do gerador V_G=-0,8841 pu.

3.3.1.2 Segundo Caso

Se entre o gerador e a carga houver uma linha de transmissão, então α_t será sempre menor ou igual a 90°. No entanto, se houver um circuito equivalente de parte de uma rede, então é possível ter-se α_t maior que 90° [Kimbark, E.W.,1968]. A partir desta premissa foi feita a simulação considerando os

parâmetros: impedância da linha $Z_t = 0,2 \angle 95^\circ$ pu e ângulo do fator de potência na geração $\phi = 185^\circ$.

No ponto "a₂" da Figura 3.5 se obtém graficamente os valores críticos da máxima potência gerada $P_{GL}^{C} = 2,2477 \text{ pu}$, da tensão do gerador na barra terminal $V_{G}^{C} = 0,6718 \text{ pu}$ e da defasagem angular entre a barra terminal do gerador e a barra de carga $\theta_{GL}^{C} = 45,0^{\circ}$.

Quando o ângulo da linha de transmissão $\alpha_t > 90^\circ$ as curvas de P constante no gráfico θ V referente à barra de geração, crescem no sentido "de fora para dentro", como se pode observar na Figura 3.6.

Figura 3.6 - Caso 2: Candidatos a Ponto de Máximo no Plano θV

Numericamente, de (3.21) e (3.22), pode-se encontrar os valores da defasagem angular entre a barra terminal do gerador e a barra de carga e que correspondem as mesmas soluções de ângulo deduzidas em (B.44) como θ_{GL-3} e (B.45) como θ_{GL-4} . As soluções de ângulo θ_{GL-1} em (B.42) e θ_{GL-2} (B.43) são descartadas porque produzem pontos de máxima potência negativa, significando que o gerador passou a trabalhar como carga.

A=-57,2899 B=+2 C=+57,2899 $\theta_{GL-3}= \arctan\left[\frac{-B - \sqrt{B^2 - 4.A.C}}{2.A}\right] = +45,0^{\circ}$ (ponto "a₂" da Figura 3.6) $\theta_{GL-4}= \arctan\left[\frac{-B - \sqrt{B^2 - 4.A.C}}{2.A}\right] - 180^{\circ} = -135,0^{\circ}$ (ponto "b₂" da Figura 3.6)

Pode-se deduzir na Figura 3.6 que:

- $\theta_{GL}^{C} = +45,0^{\circ}$ é solução porque é o ponto de máxima geração $P_{GL}^{C} = 3,2477 \, pu$ com tensão positiva na barra terminal do gerador $V_{G}^{C} = 0,6718 \, pu$. É o ponto "a₂" nas Figuras 3.5 e 3.6.
- $\theta_{GL}^{C} = -135,0^{\circ}$ não é solução porque, apesar de ser um ponto de máxima geração $P_{GL}^{C} = 3,2477$ pu, tem tensão negativa na barra terminal do gerador V_G=-0,6718 pu.

Conclui-se, a partir da análise dos dois casos anteriores e de (3.20), que para um circuito série de duas barras, a defasagem angular crítica entre a barra do gerador e a barra de carga pode ser calculada como:

$$\theta_{GL}^{C} = \frac{(\phi - \alpha_{t})}{2}$$
(3.23)

Deve-se notar que em (3.23) o ângulo do fator de potência na geração ϕ , encontra-se no segundo ou terceiro quadrante. A análise foi feita considerando que a barra G e a barra L, respectivamente, trabalham como gerador e carga; e só assim a relação (3.23) é correta.

Tanto gráfica como numericamente foi possível verificar os valores críticos da máxima potência gerada, e do módulo e ângulo de tensão na barra terminal do gerador.

Deve-se tomar cuidado na interpretação da questão do fator de potência em barras de geração: quando o fator de potência é capacitivo significa que o gerador está absorvendo potência reativa do sistema e quando o fator de potência é indutivo o gerador está gerando potência reativa para o sistema. Logo, o sentido de crescimento da potência reativa é "de dentro para fora", do mínimo Q capacitivo até o máximo Q indutivo, independente se α_t é maior ou menor que 90°.

3.4

Avaliação das Condições de Estabilidade de Tensão em Barras de Tensão Controlada

A avaliação das chamadas "condições de estabilidade de tensão" consiste em comparar a geração no ponto de operação em análise com a geração máxima possível que poderia estar entrando na rede. Também é importante determinar se o ponto de operação está na parte superior (região normal de operação) ou inferior da curva SV (região anormal de operação).

Em [Ferreira, L.C.A., 2008] defende-se que a confiança em somente uma das técnicas de análise estática baseadas em curvas PV ou PQ, não é suficiente para a avaliação segura da estabilidade de tensão, sendo cada tipo de análise importante e necessária para complementar uma o resultado da outra. Desta maneira, garantindo que o sistema é transitória e dinamicamente estável e que o colapso de tensão não é causado por uma instabilidade angular, o método proposto recomenda o uso de ambas as análises PV e PQ, no cálculo das margens de estabilidade de tensão.

Usando-se os valores de tensão em módulo e ângulo crítico definidos, respectivamente, em (3.18) e (3.19) é fácil determinar os valores da máxima geração, substituindo-os em (3.5) e (3.6):

$$\mathsf{P}_{\mathsf{GL}}^{\mathsf{C}} = \mathsf{V}_{\mathsf{G}}^{\mathsf{C}^2} \left[\frac{\cos \alpha_t}{\mathsf{Z}_t} + \frac{\cos \alpha_g}{\mathsf{Z}_g} \right] - \left(\frac{\mathsf{V}_{\mathsf{L}} \cdot \mathsf{V}_{\mathsf{G}}^{\mathsf{C}}}{\mathsf{Z}_t} \right) \cdot \cos(\theta_{\mathsf{GL}}^{\mathsf{C}} + \alpha_t)$$
(3.24)

$$Q_{GL}^{C} = V_{G}^{C^{2}} \left[\frac{\operatorname{sen}\alpha_{t}}{Z_{t}} + \frac{\operatorname{sen}\alpha_{g}}{Z_{g}} \right] - \left(\frac{V_{L} \cdot V_{G}^{C}}{Z_{t}} \right] \operatorname{sen}(\theta_{GL}^{C} + \alpha_{t})$$
(3.25)

De (3.24) e (3.25) é definido a máxima potência aparente de geração:

$$S_{GL}^{C} = \sqrt{\left(P_{GL}^{C}\right)^{2} + \left(Q_{GL}^{C}\right)^{2}}$$
 (3.26)

Então, para saber as condições de carregamento do circuito, calcula-se a "distância" entre a geração no ponto de operação em analise e máxima geração, como já dito. Utiliza-se o conceito de "margem de potência":

$$M = \left(S_{GL}^{C} - S_{GL}\right) \text{ em MVA}$$
(3.27)

A margem pode ser expressa em valores por unidade para dar significado à comparação entre diferentes pontos de operação:

Se o ponto de operação em análise está na parte superior da curva SV, tem-se:

$$M = \left(1 - \frac{S_{GL}}{S_{GL}^{c}}\right) \text{ em pu de } S_{m}$$
(3.28)

Se o ponto está na parte inferior da curva SV, tem-se:

$$M = \left(\frac{S_{GL}^{c}}{S_{GL}} - 1\right) \text{ em pu de } S_{i}$$
(3.29)

Obviamente M=0 se $S_{GL}^{C} = S_{GL}$ na "ponta do nariz" da curva SV. Para determinar se o ponto de operação pertence à parte superior ou inferior da curva SV, o seguinte procedimento resolve a questão:

- Substitui-se θGL do ponto de operação em análise na fórmula do módulo da tensão crítico V^C_G em (3.18), como ilustrado nas Figuras 3.7 e 3.8.
- Compara-se o valor encontrado $V_G^{C^*}$ com o módulo de tensão V_G no ponto de operação em análise. Se $V_G > V_G^{C^*}$ o ponto pertence à parte superior da curva SV, como na Figura 3.7 ou se $V_G < V_G^{C^*}$, pertence à parte inferior, como na Figura 3.8 ou se $V_G = V_G^{C^*}$ o ponto pertence à máxima potência que sai da barra do gerador. Nesse último caso, também se tem $\theta_G = \theta_G^C$ e $V_G = V_G^{C^*} = V_G^C$.

Figura 3.7 - Localização do Ponto de Operação na Parte Superior da Curva SV

Figura 3.8 - Localização do Ponto de Operação na Parte Inferior da Curva SV

3.5

Simultaneidade da Máxima Geração e da Máxima Carga

Nesta seção estuda-se a possibilidade da máxima carga alimentada estar limitada pelo fluxo de potência que sai do gerador ou pelo que chega a ela. Mesmo para um sistema série de duas barras sem compensação reativa, devese notar que o fator de potência dos fluxos que chegam à carga não pode ser considerado igual ao dos fluxos que deixam a geração por causa das perdas na transmissão.

Considerando o circuito de duas barras da Figura 3.1 como série, com impedância da linha igual a $Z_t=0,2$ pu e $\alpha_t=70^\circ$, foi traçado o LET da carga, usando (2.26) e (2.33), e o LET da geração, usando (3.18) e (3.23), como mostrados nas Figuras 3.9, 3.10 e 3.11. Utilizou-se V_G=1,0000 pu e $\theta_G=0^\circ$.

Como o objetivo é verificar a ocorrência do máximo da carga e do máximo da geração, o procedimento adotado foi traçar a curva P_LV_L para certo fator de potência na carga ϕ_L , e localizar um ponto de operação na carga, nomeado como

"1". Ao ponto de operação "1" corresponde uma certa tensão na barra de carga V_L e um certo fator de potência na geração ϕ_G . Com esses dados, foi traçada a curva P_GV_G e localizado o ponto "3" correspondente ao ponto de operação "1". O ponto "2" é uma estimativa da máxima geração (onde curva P_GV_G cruza o LET da geração) para aquele certo fator de potência na geração ϕ_G no caso das Figuras 3.9 e 3.10. No caso da Figura 3.11 é uma estimativa da máxima carga (onde curva P_LV_L cruza o LET da carga) para aquele fator de potência na carga ϕ_L .

Na Figura 3.9 é mostrada a curva P_LV_L para $\phi_L=5,00^\circ$ e a curva P_GV_G para $\phi_G=217,58^\circ$ com $V_L=0,5915$ pu. Os valores das grandezas elétricas dos pontos "1", "2" e "3" são mostrados na Tabela 3.1.

Figura 3.9 - Máxima Carga Limitada pela Potência que Chega na Barra de Carga

Na Tabela 3.1, pode se ver que o ponto "3", com ϕ_G =217,58°, correspondente ao ponto de operação de máxima carga "1", com ϕ_L =5,00°, encontra-se na região superior da curva P_GV_G com P_G=2,3539 pu e V_G=1,0000 pu, ainda afastado do ponto da máxima geração com P_G^C=4,4401 pu e V_G^C=1,0695 pu. Conclui-se, então, que a máxima carga que pode ser atendida é limitada pelo fluxo de potência que chega à barra de carga.

Ponto: 1				Ponto: 2				Ponto: 3			
φ _L (graus)	PL ^C (pu)	V _L ^C (pu)	θ_{LG}^{C} (graus)	φ _G (graus)	P _G ^C (pu)	V _G ^C (pu)	θ_{GL}^{C} (graus)	φ _G (graus)	P _G (pu)	V _G (pu)	θ _{GL} (graus)
5,00	1,7506	0,5915	-32,58	217,58	4,4401	1,0695	73,79	217,58	2,3539	1,0000	32,58

Tabela 3.1 - Pontos de Operação 1, 2 e 3 da Figura 3.9

Na Figura 3.10 é mostrada a curva P_LV_L para ϕ_L =-50,00° e a curva P_GV_G para ϕ_G =190,00° com V_L =1,0000 pu. Os valores das grandezas elétricas dos pontos "1", "2" e "3" são mostrados na Tabela 3.2.

Figura 3.10 - Máxima Carga Limitada Simultaneamente pela Potência que Sai da Barra de Geração e pela que Chega na Barra de Carga

Na Tabela 3.2 são mostrados os pontos "2" e "3" coincidentes e correspondentes ao ponto de operação da máxima carga "1". Isso indica que o ponto "3" representa a máxima geração com P_G^C =4,9240 pu e V_G^C =1,0000 pu, e portanto, também pertence à curva do LET da geração. Conclui-se, então, que o fluxo de potência que sai do gerador e o fluxo de potência que chega na carga atingem seus máximos simultaneamente, limitando a carga que pode ser alimentada.

Tabela 3.2 - Pontos de Operação 1, 2 e 3 da Figura 3.10

	Pon	to: 1		Ponto: 2, 3					
¢∟ (graus)	P ^C _L	V _L ^C	θ_{LG}^{C}	φ _G (graus)	P _G ^C	V _G ^C	θ_{GL}^{C}		
(grado)	(pu)	(pu)	(graus)	(gradd)	(pu)	(pu)	(graus)		
-50,00	3,2139	1,0000	-60,00	190,00	4,9240	1,0000	60,00		

Na Figura 3.11 é mostrada a curva P_LV_L para ϕ_L =-70,00° e a curva P_GV_G para ϕ_G =149,87° com V_L =1,5315 pu. Os valores das grandezas elétricas dos pontos "1", "2" e "3" são mostrados na Tabela 3.3.

Figura 3.11 - Máxima Carga Limitada pela Potência que Sai da Barra de Geração

Na Tabela 3.3 pode se ver que o ponto de operação "1", com P_L=2,6119 pu e V_L=1,5315 pu, encontra-se na região superior da curva P_LV_L ainda afastado do ponto "2" de máxima carga, com P_L^C=3,3548 pu e V_L^C=1,4617 pu. O ponto "3", com ϕ_G =149,87°, correspondente ao ponto de operação de carga "1", com ϕ_L =-70°, é a máxima geração com P_G^C=4,3129 pu e V_G^C=1,0000 pu. Conclui-se, então, que a máxima carga que pode ser atendida é limitada pelo fluxo de potência que sai do gerador.

Tabela 3.3 - Pontos de Operação 1, 2 e 3 da Figura 3.11

Ponto: 1				Ponto: 2				Ponto: 3			
φ _L (graus)	P _L (pu)	V _L (pu)	θ _{LG} (graus)	φ _L (graus)	PL ^C (pu)	V _L ^C (pu)	θ_{LG}^{C} (graus)	φ _G (graus)	P _G ^C (pu)	V _G ^C (pu)	θ_{GL}^{C} (graus)
-70,00	2,6119	1,5315	-39,93	-70,00	3,6548	1,4617	-70,00	149,87	4,3129	1,0000	39,93

Na ocorrência simultânea da máxima carga e da máxima geração, as defasagens angulares críticas para a barra de carga θ_{LG} e para a barra de geração θ_{GL} são iguais em módulo. Igualando (2.33) a (3.23), obtém-se:

$$\phi_{\rm G} = 2\alpha_{\rm t} - \phi_{\rm L} \tag{3.30}$$

Para um certo fator de potência na carga ϕ_L , a ocorrência da simultaneidade entre a máxima carga e a máxima geração, somente é verificada para um fator de potência na geração ϕ_G que satisfaça (3.30).

Pode-se concluir que a máxima carga alimentada é limitada por uma das três condições a seguir:

- pelo fluxo de potência que chega à barra de carga,
- pelo fluxo de potência que sai do gerador,
- pelo fluxo de potência que sai do gerador e pelo que chega à barra de carga simultaneamente.