

Jaques Savino

Deslocamento de fluidos em poços horizontais não retilíneos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientadores: Paulo Roberto de Souza Mendes Mônica Feijó Naccache

Rio de Janeiro Abril de 2009

Jaques Savino

Deslocamento de fluidos em poços horizontais não retilíneos

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Paulo Roberto de Souza Mendes Orientador Departamento de Engenharia Mecânica – PUC-Rio

> > Prof. Mônica Feijó Naccache

Co-Orientadora Departamento de Engenharia Mecânica – PUC-Rio

Prof. Angela Ourívio Nieckele Departamento de Engenharia Mecânica – PUC-Rio

> André Leibsohn Martins CENPES – PETROBRAS

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 07 de abril de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Jaques Savino

Graduou-se em Engenharia Mecânica pela Universidade Federal do Rio Grande do Sul (UFRGS) em 2002. Ingressou na Petrobras em 2003, realizando a especialização no curso de Engenheiro de Terminais e Dutos. Em 2004 foi lotado no setor ENGENHARIA/IEABAST/EAB/ENPRO. Desde então, realiza projetos de engenharia básica na disciplina de processo para refinarias do sistema Petrobras.

Ficha Catalográfica

Savino, Jaques

Deslocamento de fluidos em poços horizontais não retilíneos

/ Jaques Savino ; orientadores: Paulo Roberto de Souza
Mendes, Mônica Feijó Naccache – 2009.

119 f. : il. (color.) ; 30 cm

Dissertação (Mestrado em Engenharia Mecânica)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Cimentação de poços. 3. Deslocamento de fluidos. 4. Espaço anular. 5. Reologia. 6. Escoamento multifásico. I. Mendes, Paulo Roberto de Souza. II. Naccache, Mônica Feijó. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD: 621

Dedico esta obra ao meu avô Janetto (in memorium) pelo exemplo de determinação

Agradecimentos

Aos professores Paulo Roberto e Mônica pelas orientações durante a longa execução deste trabalho.

Aos professores, sem exceção, que ao longo da minha vida acadêmica contribuíram para a minha formação.

Ao meu chefe Ary, pelo exemplo de liderança, e aos meus amigos da EAB, em especial ao Dr Márcio pelo "incentivo".

Aos membros da banca examinadora, pela contribuição com comentários e sugestões.

Aos meus pais, pela educação e dedicação para com os filhos.

À minha Juliana, pelo amor e companheirismo, sem a qual não seria possível ter forças para terminar este trabalho.

À todos amigos do Laboratório de Termociências.

À PETROBRAS por acreditar na formação de seus funcionários, financiando este mestrado.

Finalmente aos inúmeros amigos verdadeiros que conheci.

Resumo

Savino, Jaques; Mendes, Paulo Roberto de Souza; Naccache, Mônica Feijó. **DESLOCAMENTO DE FLUIDOS EM POÇOS HORIZONTAIS NÃO RETILÍNEOS.** Rio de Janeiro, 2009. 119p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O estudo de escoamentos no espaço anular é de fundamental importância para a compreensão do processo de cimentação de poços. A lama de perfuração deve possuir propriedades reológicas tais que garantam um bom desempenho na lubrificação/ resfriamento das brocas, no carreamento de cascalho até a superfície, bem como na manutenção da pressão do poço através da coluna hidrostática. Durante o processo de cimentação, esta lama deve ser removida e substituída por uma pasta de cimento. O cimento tem a função de revestir a parede da formação, promovendo estabilidade mecânica e prevenindo infiltrações. O processo de substituição ocorre pelo deslocamento de um fluido por outro no espaço anular entre a formação rochosa e o revestimento. Para melhorar o processo de cimentação, utilizam-se fluidos intermediários (colchões lavadores ou espaçadores), entre os fluidos principais. Deste modo, é importante conhecer o efeito da reologia de tais fluidos sobre o processo de deslocamento. Lama de perfuração e pasta de cimento têm comportamento viscoplástico. Tais materiais possuem uma tensão limite de escoamento, abaixo da qual sua viscosidade é extremamente elevada. Entretanto, após este limite, estes materiais passam a ter comportamento pseudoplástico, isto é, a viscosidade decresce em função da taxa de deformação. Colchão lavador apresenta comportamento newtoniano. Foi utilizado o modelo reológico SMD (Souza Mendes e Dutra) para descrever a viscosidade dos fluidos não newtonianos. Nesse trabalho foi analisado numericamente o processo de deslocamento de um fluido por outro em geometria horizontal não retilínea. A perfuração de poços horizontais utiliza técnicas para alterar a direção da broca, onde a aplicação de forças corrige o direcionamento da broca. Entretanto, é obtido um perfil senoidal após a perfuração, devido à técnica de compensação vertical da direção. A geometria analisada será desenvolvida em ziguezague, para representar esta característica. Para simular o processo de deslocamento tridimensional foi utilizado um software comercial baseado na técnica dos volumes finitos, e o método VOF (Volume of Fluid). Foram estudadas duas etapas do processo. Na primeira situação, o fluido

deslocador (não newtoniano) simula a pasta de cimento enquanto o deslocado (newtoniano) simula o colchão espaçador. Na segunda situação, o fluido deslocador (newtoniano) simula o colchão espaçador enquanto o deslocado (não newtoniano) simula a lama de perfuração. A forma da interface entre os fluidos foi analisada variando-se as propriedades reológicas e a vazão, para determinar a eficiência do deslocamento. Perfis pontiagudos sugerem uma indesejável deficiência de remoção do fluido deslocado. Por outro lado, perfis achatados indicam um deslocamento mais eficiente. Com base nesses resultados foi possível prever quais parâmetros operacionais aperfeiçoam o processo de deslocamento.

Palavras-chave

Cimentação de poços; deslocamento de fluidos; espaço anular; reologia; escoamento multifásico.

Abstract

Savino, Jaques; Mendes, Paulo Roberto de Souza; Naccache, Mônica Feijó. **DISPLACEMENT OF FLUIDS IN NON-STRAIGHT HORIZONTAL WELLBORE.** Rio de Janeiro, 2009. 119p. MSc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The study of flows in the annulus is essential for the understanding of the cementing process of oil wells. The drilling mud must have rheological properties to guarantee a good performance in the drill lubricating/ cooling, dragging cuttings until the surface, as well as keeping the well pressure due the hydrostatic column. During the cementing, this mud must be removed and substituted by cement slurry. The cement has the function to coat the wall of the formation, promoting the mechanical stability and preventing infiltrations. The process of substitution occurs by the displacement of a fluid by another one in the annulus between the rock formation and the casing. To improve the cementing process, intermediate fluids (washing or spacers) are used between the drilling mud and the cement slurry. Therefore, it is important to know the effect of the rheology of such fluids on the displacement process. Drilling mud and cement slurry have a viscoplastic behavior. Such materials have yield stress, below which the viscosity is extremely high. However, after this limit, these materials have pseudoplastic behavior, that is, viscosity decreases as a function of the deformation rate. The washing fluid presents newtonian behavior. The rheological model SMD (Souza Mendes and Dutra) was used to describe the viscosity of the non-newtonian fluids. In this work, the process of displacement of a fluid for another one in non-straight horizontal wellbore was numerically analyzed. The drilling of horizontal wells uses a rotary steering technique aiming the drill positioning, adjusting the steering vector. However, a sine profile drilling is gotten, due to the technique of vertical compensation of the direction. Analyzed geometry will be developed in zigzag, to represent this behavior. It was used a commercial software to simulate the tree-dimensional displacement process, using the finite-volume technique, and the VOF (Volume of Fluid) method. Two steps of the process had been studied. In the first situation, the displacer fluid (non-newtonian) simulates the cement slurry while the displaced (newtonian) simulates the spacer fluid. In the second situation, the displacer fluid (newtonian) simulates the spacer fluid while the displaced (non-newtonian) simulates

the drilling mud. The interface shape between the fluids has being evaluated varying the rheological properties and the flow, to determine the displacement efficiency. Accented profiles suggest an undesirable fingering of the displacer fluid through the displaced one. On the other hand, flattened profiles indicate a more efficient displacement. Based on these results, it was possible to predict which operational parameters optimize the displacement process.

Keywords

Well cementing; fluid displacement; annuli; rheology; multiphase flow.

Sumário

1 Introdução	22
1.1. Motivação	22
1.2. Poços Horizontais	23
1.2.1. Tipos de Poços Direcionais	23
1.2.2. Instrumentos de Orientação	24
1.2.3. Operação de Desvio	24
1.2.3.1. Motores de Fundo (Mud Motors)	25
1.2.3.2. Rotary Steerable Systems	25
1.3. Etapas de Perfuração	27
1.3.1. Perfuração	27
1.3.2. Instalação da Coluna de Revestimento	28
1.3.3. Cimentação Primária	29
1.4. Técnica de Gravel-Packing	29
1.5. Processo de Deslocamento de Fluidos	30
1.6. Objetivos	31
1.7. Roteiro	31
2 Revisão Bibliográfica	33
2.1. Caracterização dos Fluidos	33
2.1.1. Fluido de Perfuração	33
2.1.2. Cimento	34
2.1.3. Fluidos Espaçadores/ Lavadores	35
2.1.4. Gravel Pack	37
2.2. Eficiência da Cimentação – Principais Parâmetros	37
2.2.1. Formação de Filtrado	38
2.2.2. Compatibilidade dos Fluidos	38
2.2.3. Colagem do Cimento - Superfície de Contato	39
2.2.4. Variação do Diâmetro (Wash-outs)	39

2.2.5. Efeito da Movimentação da Tubulação	39
2.2.6. Temperatura	40
2.2.7. Excentricidade do Anular	41
2.2.8. Diferença de Densidade	42
2.2.9. Tensão Limite de Escoamento dos Fluidos	43
2.2.10. Modelos Reológicos	44
2.3. Regimes de Escoamento	45
2.3.1. Regime Turbulento	45
2.3.2. Regime Laminar	46
2.3.3. Regime de transição	47
2.3.4. Teste do Regime de Escoamento	49
2.3.5. Escoamentos Horizontais	49
2.4. Estudos Numéricos do Processo de Deslocamento	50
3 Formulação Teórica	56
3.1. Equações de Conservação	56
3.1.1. Conservação de Massa	56
3.1.2. Conservação da Quantidade de Movimento Linear	57
3.2. Abordagem Multifásica	59
3.2.1. Modelo VOF (Volume of Fluid)	59
3.2.2. Conservação de Massa	59
3.2.3. Cálculo das Propriedades	60
3.2.4. Conservação de Quantidade de Movimento Linear	60
3.3. Modelo Reológico	60
3.4. Adimensionalização	62
3.4.1. Conservação de Massa	63
3.4.2. Conservação de Quantidade de Movimento Linear	64
3.4.3. Modelo Reológico SMD	64
3.4.4. Grupos adimensionais	64
4 Formulação Numérica	65
4 1 Modelo Multifásico	65
4 1 1 Interpolação na Interface	80 88
4.2 Discretização	90 99
T.Z. DISUICIIZAYAU	00

4.2.1. Discretização da Equação da Quantidade de Movimento Linear	67
4.2.2. Interpolação da Pressão	68
4.2.3. Discretização da Equação da Continuidade	68
4.2.4. Acoplamento Pressão-Velocidade	68
4.3. Discretização Temporal	69
4.3.1. Esquemas de Avanço de Tempo	70
4.4. Método Numérico	71
4.5. Linearização	71
4.6. Sub-relaxação	72
4.7. Resumo dos Parâmetros Numéricos	72
5 Metodologia de Solução Numérica	73
5.1. Definição do Problema	73
5.2. Adimensionalização do Problema	74
5.3. Condições de Contorno	76
5.3.1. Entrada (Velocidade Prescrita com Perfil Uniforme)	76
5.3.2. Saída (Difusão Desprezível na Saída)	77
5.3.3. Parede (Não Deslizamento e Impermeabilidade)	77
5.3.4. Simetria	78
5.4. Hipóteses do Modelo	79
5.5. Testes de Malha	79
5.5.1. Teste 1: Análise do Refinamento da Malha	80
5.5.2. Teste 2: Análise do Passo de Tempo	82
5.5.3. Teste 3: Análise do Modelo Reológico	84
5.5.4. Teste 4: Análise do Número de Salto	86
5.5.4.1. Fluido Newtoniano Deslocando Fluido Não Newtoniano	87
5.5.4.2. Fluido Não Newtoniano Deslocando Fluido Newtoniano	89
6 Resultados	91
6.1. Fluido Não Newtoniano Deslocando Fluido Newtoniano	93
6.1.1. Caso 1 – Fluido Não Newtoniano \rightarrow Fluido Newtoniano (η =0,1)	94
6.1.2. Caso 2 – Fluido Não Newtoniano \rightarrow Fluido Newtoniano (η =1,0)	96
6.1.3. Caso 3 – Fluido Não Newtoniano \rightarrow Fluido Newtoniano (η =10,0)	98

6.2. Fluido Newtoniano Deslocando Fluido Não Newtoniano	100
6.2.1. Caso 4 – Fluido Newtoniano (η =0,1) \rightarrow Fluido Não Newtoniano	101
6.2.2. Caso 5 – Fluido Newtoniano (η =1,0) \rightarrow Fluido Não Newtoniano	103
6.2.3. Caso 6 – Fluido Newtoniano (η =10,0) \rightarrow Fluido Não Newtoniano	o105
7 Considerações Finais	107
Referências Bibliográficas	110
Apêndice A – Modelos Reológicos	114
A.1 Modelo <i>Power-law</i>	114
A.2 Modelo de Herschel-Bulkley	115
Apêndice B – User Defined Functions	116
B.1 Definição	116
B.2 UDF – Função Viscosidade SMD	116
Apêndice C – Validação do modelo reológico SMD	118
C.1 Método unidimensional para escoamento em tubos	118

Lista de Figuras

Figura 1.1 – Evolução da perfuração de poços horizontais (JPT, 1999)	22
Figura 1.2 – Finalidades da perfuração direcional (Rocha et al, 2006)	24
Figura 1.3 – Operações de desvio - mud motor (Schlumberger, 2004)	25
Figura 1.4 – Operações de desvio – push-the-bit (Baker Hughes, 2004)	26
Figura 1.5 – Operações de desvio – point-the-bit (Halliburton, 2007)	26
Figura 1.6 – Pressão de poro e de fratura de um poço (Bourgoyne, 1991)	28
Figura 1.7 – Open Hole Gravel Packing (Halliburton, 2009)	30
Figura 3.1 – Gráfico comparativo entre os modelos reológicos	61
Figura 4.1 – Interface real versus interface Geometric Reconstruction	66
Figura 4.2 – Esquema iterativo de avanço do tempo	70
Figura 4.3 – Algoritmo segregado	71
Figura 5.1 – Processo de deslocamento do cimento (Bourgoyne, 1991)	73
Figura 5.2 – Modelo em ziguezague (área do escoamento em cinza)	76
Figura 5.3 – Malha tridimensional do escoamento	79
Figura 5.4 – Teste da malha – Análise da interface (óleo-água)	82
Figura 5.5 – Teste da malha – Análise da interface (água-óleo)	82
Figura 5.6 – Malha bidimensional para verificação do modelo reológico	84
Figura 5.7 – Teste do modelo reológico – Perfil de velocidade (u/\overline{u})	85
Figura 5.8 – Teste do modelo reológico – Taxa de deformação ($\dot{\gamma}^*$)	85
Figura 5.9 – Teste do modelo reológico – Viscosidade (η^*)	86
Figura 5.10 – Malha bidimensional para verificação de J	87
Figura 5.11 – Teste de J , newtoniano deslocando não newtoniano ($u^* = 0,1$)	88
Figura 5.12 – Teste de J , newtoniano deslocando não newtoniano ($u^* = 1,0$)	89
Figura 5.13 – Teste de J , não newtoniano deslocando newtoniano ($u^* = 0,1$)	90
Figura 5.14 – Teste de J , não newtoniano deslocando newtoniano ($u^* = 1,0$)	90
Figura 6.1 – Modelo em ziguezague (área do escoamento em cinza)	91
Figura 6.2 – Gráfico da viscosidade dos fluidos não newtonianos	92
Figura 6.3 – CASO 1: Fluido não newtoniano \rightarrow Fluido newtoniano (η =0,1)	94

Figura 6.4 – CASO 1A: Não newtoniano (n=1,0) \rightarrow Newtoniano (η =0,1)	95
Figura 6.5 – CASO 1B: Não newtoniano (n=0,5) \rightarrow Newtoniano (η =0,1)	95
Figura 6.6 – CASO 2: Fluido não newtoniano \rightarrow Fluido newtoniano (η =1,0)	96
Figura 6.7 – CASO 2A: Não newtoniano (n=1,0) \rightarrow Newtoniano (η =1,0)	97
Figura 6.8 – CASO 2B: Não newtoniano (n=0,5) \rightarrow Newtoniano (η =1,0)	97
Figura 6.9 – CASO 3: Fluido não newtoniano \rightarrow Fluido newtoniano (η =10,0)	98
Figura 6.10 – CASO 3A: Não newtoniano (n=1,0) \rightarrow Newtoniano (η =10,0)	99
Figura 6.11 – CASO 3B: Não newtoniano (n=0,5) \rightarrow Newtoniano (η =10,0)	99
Figura 6.12 – CASO 4: Fluido newtoniano \rightarrow Fluido não newtoniano (η =0,1)	101
Figura 6.13 – CASO 4A: Newtoniano (η =0,1) \rightarrow Não newtoniano (n=1,0)	102
Figura 6.14 – CASO 4B: Newtoniano (η =0,1) \rightarrow Newtoniano (n=0,5)	102
Figura 6.15 – CASO 5: Fluido newtoniano \rightarrow Fluido não newtoniano ($\eta = 1,0$)	103
Figura 6.16 – CASO 5A: Newtoniano (η =1,0) \rightarrow Não newtoniano (n=1,0)	103
Figura 6.17 – CASO 5B: Newtoniano (η =1,0) \rightarrow Não newtoniano (n=0,5)	104
Figura 6.18 – CASO 6: Fluido newtoniano \rightarrow Fluido não newtoniano (η =10,0)	105
Figura 6.19 – CASO 6A: Newtoniano (η =10,0) \rightarrow Não newtoniano (n=1,0)	106
Figura 6.20 – CASO 6B: Newtoniano (η =10,0) \rightarrow Não newtoniano (n=0,5)	106
Figura 7.1 – Malha da geometria em formato ondulado	109

Lista de Tabelas

Tabela 2.1 – Classes de cimento, conforme API 10A	34
Tabela 2.2 – Modelos reológicos estudados	48
Tabela 5.1 – Comprimento característico (L_c) para modelos reduzido/ real	75
Tabela 5.2 – Velocidade do anular (u_{anular}) para modelos reduzido/ real	75
Tabela 5.3 – Teste de malha (óleo deslocando água)	80
Tabela 5.4 – Teste de malha (água deslocando óleo)	81
Tabela 5.5 – Teste de passo de tempo (óleo deslocando água)	83
Tabela 5.6 – Teste de passo de tempo (água deslocando óleo)	83
Tabela 5.7 – Dados reológicos do fluido não newtoniano	84
Tabela 5.8 – Dados reológicos dos fluidos não newtonianos	87
Tabela 5.9 – Teste de J (newtoniano deslocando não newtoniano)	88
Tabela 5.10 – Teste de J (não newtoniano deslocando newtoniano)	89
Tabela 6.1 – Dados reológicos dos fluidos newtonianos	92
Tabela 6.2 – Dados reológicos dos fluidos não newtonianos	92
Tabela 6.3 – Casos simulados - não newtoniano deslocando newtoniano	93
Tabela 6.4 – Casos simulados - newtoniano deslocando não newtoniano	100

Lista de Símbolos

Coordenadas

- x -coordenada na direção x (m)
- y coordenada na direção y (m)
- z coordenada na direção z (m)
- u_x componente da velocidade na direção x (m/s)
- u_y componente da velocidade na direção y (m/s)
- u_z componente da velocidade na direção z (m/s)

Vetores

- \vec{A} vetor área de superfície (m²)
- \vec{g} vetor aceleração gravitacional (m/s²)
- \vec{F} vetor forças de corpo externas ou termos fonte (N)
- \vec{u} vetor velocidade (m/s)

Tensores

- $\overline{\overline{I}}$ matriz identidade
- $\overline{\overline{T}}$ tensor das tensões
- $\overline{\dot{\gamma}}$ tensor taxa de deformação
- $\overline{\overline{\tau}}$ tensor extratensão

Subscritos

- | | _ red subscrito referente às dimensões reduzidas
- $| |_{poco}$ subscrito referente às dimensões reais do poço
- $| |_{anular}$ subscrito referente à seção anular
- $\left| \right|_{vb}$ subscrito referente às células vizinhas

Símbolos Romanos

- N fluido newtoniano
- NN fluido não newtoniano
- D_i diâmetro interno do poço (m)
- D_e diâmetro externo do poço (m)
- d_e diâmetro externo do tubo (m)
- d_i diâmetro interno do tubo (m)
- D_i/d_e razão entre diâmetros no espaço anular
- E_P energia potencial (W)
- E_{K} energia cinética (W)
- g aceleração da gravidade (m/s²)
- k índice de consistência (Pa.sⁿ)
- k_1/k_2 razão de consistência dos fluidos
- n índice de comportamento
- p pressão estática (Pa)
- t tempo(s)
- L comprimento do tubo anular (m)
- r_I raio interno (m)
- r_o raio externo (m)
- Q vazão (m³/s)
- u velocidade (m/s)
- u_E velocidade média na superfície da entrada (m/s)
- $V_{FASE 2}$ volume da fase deslocadora (m³)
- V_{TOTAL} volume total (m³)

Símbolos Gregos

 ρ – densidade (kg/m³)

 ho_{CIMENTO} – densidade da pasta de cimento (kg/m³)

 ρ_{LAMA} – densidade da lama de perfuração (kg/m³)

 μ – viscosidade newtoniana (Pa.s)

- μ_p viscosidade plástica, do modelo do plástico de Bingham (Pa.s)
- η viscosidade (Pa.s)
- $\overline{\eta}$ viscosidade média (Pa.s)
- η_0 viscosidade a baixas taxas de deformação (Pa.s)
- η_P viscosidade plástica (Pa.s)
- $\dot{\gamma}$ taxa de deformação ou taxa de cisalhamento (1/s)
- $\dot{\gamma}_0$ e $\dot{\gamma}_1$ transições da taxa de cisalhamento (1/s)
- τ_0 tensão limite de escoamento (Pa)
- θ ângulo (rad)
- $\partial p/\partial x$, $\partial p/\partial y$ e $\partial p/\partial z$ os componentes cilíndricos do gradiente de pressão
- ∂V volume infinitesimal (m³)
- α_q fração de volume

Variáveis numéricas

- ϕ variável (escalar ou vetor)
- S termo fonte: massa (kg/m³-s); momento (N/m³)
- \dot{m}_{qp} transferência mássica da fase q à fase p (kg/m³-s)
- \dot{m}_{pq} transferência mássica da fase p à fase q (kg/m³-s)
- N_{faces} número de faces da célula
- a_p coeficiente linearizado de ϕ
- a_{nb} coeficiente linearizado de ϕ_{nb}
- u_{nb} velocidade na célula vizinha (m/s)
- p_f pressão na face (Pa)
- A_f área da face (m²)
- J_f escoamento mássico através da face f
- Γ_{ϕ} coeficiente de difusão para ϕ
- $\nabla \phi$ gradiente de ϕ
- S_{ϕ} termo fonte de ϕ por unidade de volume
- n_{25} número de iterações para o passo de tempo de 0,0025
- n_{50} número de iterações para o passo de tempo de 0,0050
- n_{100} número de iterações para o passo de tempo de 0,0100
- ϕ_{old} valor anterior de ϕ
- $\Delta \phi$ mudança computada em ϕ
- α fator de sub–relaxação

Variáveis características

- L_c comprimento característico (m)
- v_c velocidade característica (m/s)
- t_c tempo característico (s)
- $\dot{\gamma}_{c}$ taxa de cisalhamento característica (1/s)
- η_{c} viscosidade característica (Pa.s)
- $\tau_{\scriptscriptstyle C}$ tensão característica (Pa)

Variáveis adimensionas

- x^* coordenada na direção x, adimensional
- y^* coordenada na direção y, adimensional
- z^* coordenada na direção z, adimensional
- r_{I}^{*} raio interno, adimensional
- r_o^* raio externo, adimensional
- p^* pressão adimensional
- t^* tempo adimensional
- L^* comprimento do tubo anular, adimensional
- V^* volume percentual da fase deslocadora contido no volume total
- u^* velocidade adimensional
- u_x^* componente da velocidade na direção x, adimensional
- u_{y}^{*} componente da velocidade na direção y, adimensional
- u_z^* componente da velocidade na direção z, adimensional
- u_E^* velocidade na superfície de entrada, adimensional
- ∇^* gradiente adimensional
- η^* viscosidade adimensional
- k^* índice de consistência adimensional
- $\dot{\gamma}^*$ taxa de deformação adimensional
- τ^* tensão cisalhante adimensional

Números adimensionais

- *Bu* número de empuxo (Buoyancy)
- Fr número de Froude
- Ga_r número de Galilei reológico
- J número de salto
- Re-número de Reynolds
- Re_r número de Reynolds reológico