

Leonardo Torres Bispo dos Santos

Sistema de Apoio à Decisão para o Diagnóstico de Faltas em Transformadores de Potência

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC-Rio.

Orientadora: Marley Maria Bernardes Rebuzzi Vellasco

Co-orientador: Prof. Ricardo Tanscheit

Rio de Janeiro Abril de 2009

Leonardo Torres Bispo dos Santos

Sistema de Apoio à Decisão para o Diagnóstico de Faltas em Transformadores de Potência

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Profa. Marley Maria Bernardes Rebuzzi Vellasco Orientadora

Departamento de Engenharia Elétrica - PUC-Rio

Prof. Ricardo Tanscheit
Co-Orientador
Departamento de Engenharia Elétrica – PUC-Rio

Prof. Helvio Jailson Azevedo Martins CEPEL

Prof. Hélio de Paiva Amorim Júnior CEPEL

Prof. Nival Nunes de Almeida UERJ

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico

Rio de Janeiro, 06 de abril de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e da orientadora.

Leonardo Torres Bispo dos Santos

Nasceu em 16 de Fevereiro de 1977. Obteve formação técnica em Eletrotécnica em 1994 pelo CEFET-RJ e grau de Engenheiro Eletricista em 2001 pela Universidade Federal Fluminense. Trabalha desde 2002 no Centro de Pesquisas de Energia Elétrica - CEPEL, empresa do sistema Eletrobrás, chegando ao cargo de pesquisador do Departamento de Linhas e Estações em 2006.

Ficha Catalográfica

Santos, Leonardo Torres Bispo dos

Sistema de Apoio à Decisão para o Diagnóstico de Faltas em Transformadores de Potência / Leonardo Torres Bispo dos Santos ; orientadora: Marley Maria Bernardes Rebuzzi Vellasco ; co-orientador: Ricardo Tanscheit. – 2009.

122 f.:; 30 cm

Dissertação (Mestrado em Engenharia Elétrica)— Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Transformadores de potência. 3. Sistema de apoio à decisão. 4. Lógica. I. Vellasco, Marley M.B.R. (Marley Maria Bernardes Rebuzzi). II. Tanscheit, Ricardo. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

CDD: 621.3

A Deus em Cristo Jesus,

"... Porque estou certo de que, nem a morte, nem a vida, nem os anjos, nem os principados, nem as potestades, nem o presente, nem o por vir, Nem a altura, nem a profundidade, nem alguma outra criatura nos poderá separar do amor de Deus, que está em Cristo Jesus nosso Senhor."

Romanos 8, 38-39

Agradecimentos

A Deus em Cristo Jesus por todas as coisas em minha vida,

Aos meus pais, minha esposa e irmãos, sempre com orações, muito amor e força em todos os momentos,

À toda a minha família, sólida base de apoio e carinho e

m toda a minha vida,

A todos os meus grandes amigos, que sempre me incentivaram e deram forças ao longo de mais um compromisso em minha vida,

Aos amigos do CEPEL pelo apoio técnico e companheirismo,

Helvio J. A. Martins, obrigado pela co-orientação, ajuda e compreensão de toda a minha dificuldade durante a elaboração do trabalho,

Gloria Suzana, obrigado pelo incentivo e apoio na realização do curso,

À professora Marley e ao professor Ricardo, pela ótima orientação, sempre pacientes e solícitos nos momentos de dificuldade que encontrei durante todo o trabalho,

Aos professores da PUC-Rio de Janeiro,

A todos que de alguma forma torceram e colaboraram para a realização deste trabalho.

Resumo

Santos, Leonardo Torres Bispo; Velasco, Marley Maria Bernardes Rebuzzi (Orientadora), Tanscheit, Ricardo (Co-orientador). Sistema de Apoio à Decisão para o Diagnóstico de Faltas em Transformadores de Potência. Rio de Janeiro, 2009. 122p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Face à complexidade da matriz energética brasileira e em particular de todo o sistema elétrico de potência interligado, torna-se imprescindível garantir que os equipamentos instalados, desde a geração até os consumidores finais, operem em condições satisfatórias e em elevados níveis de confiabilidade. De acordo com a reestruturação do setor e sua inserção em um mercado competitivo, além da elevada confiabilidade exigida, o novo conceito de disponibilidade dos equipamentos e sistemas impõe mais qualidade e planejamento no mercado de energia elétrica. Neste contexto, as empresas de energia elétrica preocupam-se cada vez mais em manter seus equipamentos em boas condições de operação para que tais metas sejam alcançadas. Entre os equipamentos elétricos de potência, os transformadores sem dúvida correspondem ao ativo de maior importância por serem os mais caros e complexos em termos funcionais. A Análise de Gases Dissolvidos no óleo mineral isolante (AGD) é uma ferramenta de diagnóstico de grande aceitação e potencial na detecção de faltas em equipamentos elétricos com isolação papel-óleo, sobretudo nos transformadores de potência. Com o objetivo de fornecer maiores subsídios aos gestores de manutenção na tomada de decisões quanto à intervenções em transformadores, o trabalho desenvolvido propõe um Sistema de Apoio à Decisão composto por um módulo de Inteligência Computacional (IC) que utiliza regras fuzzy para efetuar o diagnóstico do equipamento em conjunto com outro módulo de apoio à decisão que considera as características do transformador e outros parâmetros de influência, fornecendo, além do diagnóstico, recomendações para a tomada de decisão pelos gestores de manutenção.

Palayras-chave

Transformadores de Potência, Sistema de Apoio à Decisão, Lógica Fuzzy.

Abstract

Santos, Leonardo Torres Bispo; Velasco, Marley Maria Bernardes Rebuzzi (Advisor); Tanscheit, Ricardo (Co-Advisor), **Decision Support System for the Diagnosis of Faults in Power Transformers.** Rio de Janeiro, 2009, 122p. Msc. Dissertation – Department of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro.

Given the complexity of the Brazilian energy matrix and in particular of the whole interconnected electrical power system, it is essential to ensure that the equipment, from generation to final consumers, operates in a satisfactory way and high levels of reliability. In accordance with the restructuring of the sector and its integration in a competitive market, in addition to the high reliability required, the new concept of availability of equipment and systems requires more planning and quality in the market of electrical energy. In this context, electrical power companies are increasingly concerned about maintaining their equipment in good operating conditions so that the above targets are attained. Within electrical equipments, power transformers are undoubtedly the most important asset, since they are the most expensive and complex in functional terms. Dissolved Gases Analysis in insulating mineral oil (DGA), is a widely accepted tool for detecting faults in electrical equipments with paper-oil insulation, particularly in power transformers. With the aim of providing more subsidies to maintenance managers when making decisions on interventions in power transformers, this work proposes a Decision Support System composed of a module of Computational Intelligence (CI) which uses fuzzy rules to diagnose the equipment, together with another decision-support module, which considers the power transformer features and other parameters in order to help managers in the decision making process.

Keywords

Power Transformers, Decision Support System, Fuzzy Logic.

Sumário

 Introdução 1.1. Motivação 1.2. Objetivos do Trabalho 1.3. Estrutura da Dissertação 1.4. Organização da Dissertação 	16 16 21 22 23
2 Diagnóstico de Transformadores de Potência 2.1. A Descrição dos Transformadores por Sistemas 2.2. O Estado da Arte no Diagnóstico de Transformadores de Potência 2.3. A AGD Aplicada no Diagnóstico de Transformadores de Potência 2.3.1. Comentários Sobre os Critérios e Métodos Tradicionais de AGD 2.3.2. Sistemas de Monitoramento On-line da AGD em Transformadores de Potência 2.3.3. Técnicas de IC Aplicadas no Diagnóstico de Transformadores de Potência	25 25 32 37 40 43
3 Sistema de Apoio à Decisão Aplicado no Diagnóstico de Transformadores de Potência (SADTRAFOS) 3.1. Módulo de Pré-processamento 3.2. Módulo de Diagnóstico 3.3. O Módulo de Apoio à Decisão	50 52 56 59
4 Estudo de Casos 4.1. Estudo de Caso 1 4.1.1. Descrição da Base de Dados 4.1.2. Resultados do Pré-Processamento 4.1.3. Resultados do módulo de Diagnóstico 4.1.4. Resultados do Módulo de Apoio à Decisão 4.2. Estudo de Caso 2	66 67 69 78 94 102
5 Conclusões e Trabalhos Futuros 5.1. Conclusões 5.2. Trabalhos Futuros	108 108 111

ficação Digital Nº 0621333/CB			
ficação Digi			

Referências Bibliográficas

Anexo 1 Sistemas de Inferência Fuzzy

113

118

Lista de Figuras

Figura 1 – Exemplo de sistema de Monitoramento	19
Figura 2 – Transformador de potência trifásico	25
Figura 3 – Chave comutadora com comando motorizado	26
Figura 4 - Bucha condensiva e seus principais componentes	28
Figura 5 – Distribuição dos modos de falhas em buchas condensivas	28
Figura 6 – Exemplo de sistema de resfriamento e o fluxo de óleo	29
Figura 7 – Parte ativa completa: Núcleo e enrolamentos	30
Figura 8 – Sistema de preservação selado por bolsa de borracha	31
Figura 9 – ConFiguração típica de um relé digital	32
Figura 10 – Imagem termográfica de um transformador de potência	34
Figura 11 – Medição de RF e Z em transformador monofásico	35
Figura 12 – Medição de DP pelo método eletromagnético e acústico	36
Figura 13 – Modelo de formação de gases em função da temperatura o	ok
ОМІ	38
Figura 14 – Modelo de formação de gases através da degradação da	
isolação sólida	38
Figura 15 – Triangulo de Duval e as regiões de diagnóstico	42
Figura 16 – Analisador portátil de gases dissolvidos no OMI	44
Figura 17 – Utilização do equipamento TRANSFIX de monitoramento o	n-
line acoplado ao transformador de potência	44
Figura 18 – Gráfico com a evolução dos gases dissolvidos no óleo	45
Figura 20 – Normalização por funções lineares em intervalos	54
Figura 21 – Estrutura do sistema de inferência	57
Figura 22 – Conjuntos fuzzy de entrada do SIF para a variável CH ₄	58
Figura 23 – Conjuntos fuzzy de saída para a variável diagnóstico	58
Figura 24 – Módulo de apoio à decisão do modelo SADTRAFOS	60
Figura 25 – Sistema 1 do módulo de apoio à decisão – Condição Norm	al
de Operação	62
Figura 27 – Sistema 3 do módulo de apoio à decisão – Arco Elétrico	64
Figura 28 – Fluxo de informações e dados do modelo SADTRAFOS	65

Figura 29 – Gráfico da variável hidrogênio em 122 amostras	71
Figura 30 - Gráfico da variável metano em 122 amostras	72
Figura 31 – Gráfico da variável monóxido de carbono em 122 amostras	; 73
Figura 32 - Gráfico da variável dióxido de carbono em 122 amostras	74
Figura 33 – Gráfico da variável etileno em 122 amostras	75
Figura 34 – Gráfico da variável etano em 122 amostras	76
Figura 35 - Gráfico da variável acetileno em 122 amostras	77
Figura 36 – Conjuntos fuzzy de entrada da variável metano	86
Figura 37 – Conjuntos fuzzy da variável de entrada etileno	86
Figura 38 – Conjuntos fuzzy da variável de entrada correspondente à	
relação gasosa entre o acetileno e o etileno	87
Figura 39 – Conjuntos fuzzy da variável de saída diagnóstico	87
Figura 40 – Estrutura do sistema do SIF no módulo de diagnóstico	88
Figura 41 – Estrutura do sistema ANFIS obtida no Matlab através da	
simulação 6	93
Figura 42 – Autotransformador trifásico	103
Figura 43 – Queima da camada externa do papel isolante do comutado	r
H1	106
Figura 44 – Detalhe do desalinhamento do núcleo	106
Figura 45 – Sinais de aquecimento no cabo de interligação da bobina o	le
H1	106
Figura 46 – Funções de pertinência para a variável temperatura	119
Figura 47 – Estrutura de um Sistema de Inferência Fuzzy	120

Lista de tabelas

Tabela 1 – Distribuição dos dados	69
Tabela 2 – Resultados obtidos pelas técnicas de seleção de variáveis	78
Tabela 3 – Redefinição dos dados em relação ao diagnóstico	79
Tabela 4 – Análise de desempenho considerando 4 diagnósticos	
(variáveis) de saída	79
Tabela 5 - Análise de desempenho considerando 3 diagnósticos	
(variáveis) de saída	80
Tabela 6 – Simulação 1: Critério de PCA	80
Tabela 7 – Simulação 2: Critério de seleção de variáveis pelo LSE	80
Tabela 8 – Simulação 3	81
Tabela 9 – Simulação 4	81
Tabela 10 – Simulação 5	81
Tabela 11 – Simulação 6	81
Tabela 12 – Simulação 7	82
Tabela 13 – Simulação 8	82
Tabela 14 – Simulação 9	82
Tabela 15 – Simulação 10	82
Tabela 16 – Simulação 11	83
Tabela 17 – Simulação 12: Critério de seleção de variáveis pelo LSE	83
Tabela 18 – Simulação 13	83
Tabela 19 – Simulação 14	84
Tabela 20 – Simulação 15	84
Tabela 21 – Simulação 16	84
Tabela 22 – Simulação 17	84
Tabela 23 – Simulação 18	85
Tabela 24 – Simulação 19	85
Tabela 25 – Simulação 20	85
Tabela 26 – Simulação 21	85
Tabela 27 – Simulação 22	86

Tabela 28 – Base de regras obtida com a simulação 21	88
Tabela 29 – Comparação dos resultados obtidos com 24 equipame	entos
testados	89
Tabela 30 – Simulação 1: Critério de Seleção por PCA	90
Tabela 31 – Simulação 2 : Critério de seleção pelo LSE	90
Tabela 32 – Simulação 3: critério de seleção pelo LSE	91
Tabela 33 – Simulação 4	91
Tabela 34 – Simulação 5	92
Tabela 35 – Simulação 6	92
Tabela 36 – Desempenho do ANFIS e do Fuzzy Rules	93
Tabela 37 – Saída do módulo de apoio à decisão: Caso 1	95
Tabela 38 - Saída do módulo de apoio à decisão: Caso 2	95
Tabela 39 - Saída do módulo de apoio à decisão: Caso 3	96
Tabela 40 - Saída do módulo de apoio à decisão: Caso 4	96
Tabela 41 – Saída do módulo de apoio à decisão: Caso 5	96
Tabela 42 - Saída do módulo de apoio à decisão: Caso 6	96
Tabela 43 - Saída do módulo de apoio à decisão: Caso 7	97
Tabela 44 - Saída do módulo de apoio à decisão: Caso 8	97
Tabela 45 - Saída do módulo de apoio à decisão: Caso 9	97
Tabela 46 – Saída do módulo de apoio à decisão: Caso 10	98
Tabela 47 - Saída do módulo de apoio à decisão: Caso 11	98
Tabela 48 - Saída do módulo de apoio à decisão: Caso 12	98
Tabela 49 - Saída do módulo de apoio à decisão: Caso 13	99
Tabela 50 - Saída do módulo de apoio à decisão: Caso 14	99
Tabela 51 - Saída do módulo de apoio à decisão: Caso 15	99
Tabela 52 - Saída do módulo de apoio à decisão: Caso 16	100
Tabela 53 - Saída do módulo de apoio à decisão: Caso 17	100
Tabela 54 - Saída do módulo de apoio à decisão: Caso 18	100
Tabela 55 - Saída do módulo de apoio à decisão: Caso 19	101
Tabela 56 - Saída do módulo de apoio à decisão: Caso 20	101
Tabela 57 - Saída do módulo de apoio à decisão: Caso 21	101
Tabela 58 - Saída do módulo de apoio à decisão: Caso 22	101
Tabela 59 - Saída do módulo de apoio à decisão: Caso 23	102

Tabela 60 - Saída do módulo de apoio à decisão: Caso 24	102
Tabela 61 – Dados do autotransformador retirado de operação	103
Tabela 62 – AGD antes e após a inspeção e manutenção do	
autotransformador	104
Tabela 63 – Saída do modelo SADTRAFOS para a avaliação do	
autotransformador	105
Tabela 64 – Desempenho do modelo SADTRAFOS e dos critérios	
tradicionais	110

Lista de Siglas

AE Arco Elétrico de Alta Energia

AGD Análise de Gases Dissolvidos

ANEEL Agencia Nacional de Energia Elétrica

ANFIS Adaptive Network-Based Fuzzy Inference System

CDC Comutador de Derivação em Carga

CDF Caracterização no Domínio da Freqüência

CDST Comutador de Derivações Sem Tensão

CNO Condição Normal de Operação

DP Descargas Parciais

FT Faltas Térmicas

GP Grau de Polimerização

IC Inteligência Computacional

IEC International Eletrotechnical Commission

INO Indicador de Nível de Óleo

IHM Interface Homem-Máquina

LF Lógica Fuzzy

LSE Least Square Estimator

NTT Northern Technology & Testing

OMI Óleo Mineral Isolante

ONS Operador Nacional do Sistema

PCA Principal Components Analysis

RNA Redes Neurais Artificiais

SAD Sistema de Apoio à Decisão

SADTRAFOS Sistema de Apoio à Decisão para Transformadores de

Potência

SCADA Supervisory Control and Data Acquisition

SIF Sistema de Inferência Fuzzy

TSK Takagi-Sugeno-Kang