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On the Conditional Value-at-Risk Probability-dependent Utility 
Function 

Alexandre Street1 
 

Abstract: The Expected Shortfall or Conditional Value-at-Risk (CVaR) has been playing the role of main risk 
measure in the recent years and paving the way for an enormous number of applications in risk management 
due to its very intuitive form and important coherence properties. This work aims to explore this measure as a 
probability-dependent utility functional, introducing an alternative view point for its Choquet Expected Utility 
representation. Within this point of view, its main preference properties will be characterized and its utility 
representation provided through local utilities with an explicit dependence on the assessed revenue’s 
distribution (quantile) function. Then, an intuitive interpretation for the related probability dependence and the 
piecewise form of such utility will be introduced on an investment pricing context, in which a CVaR maximizer 
agent will behave in a relativistic way based on his previous estimates of the probability function. Finally, such 
functional will be extended to incorporate a larger range of risk-averse attitudes and its main properties and 
implications will be illustrated through examples, such as the so-called Allais Paradox. 
 
Key words: Conditional Value-at-Risk, Probability-dependent utility function, Choquet Expected Utility, 
Certainty Equivalent, Allais Paradox. 

 

1. INTRODUCTION 
In the past years, the Expected Shortfall or, as it has been called by the main risk 

management recent works, the Conditional Value-at-Risk (CVaR), has been paving the way 

for many financial and engineering applications that used to be very hard or even intractable. 

Some of these applications, such as investment and portfolio decision problems [7][8][15], 

energy trade [1][2][18][22][28] and integrated Gas-Energy portfolios [3] are at the top of the 

list of today’s market economic problems. Two important and relevant references that 

triggered the worldwide use of such measure by both theoretical and quantitative researchers 

were Artzner et al. (1999) in [10] – which stated the coherence background for risk measures 

– and Rockafellar et al. (2000) in [26] – which introduced an efficient CVaR formulation by 

means of a convex expected value minimization that can be performed by a simple linear 

programming (LP) problem. While the latter has provided the analytical formulation and 

theoretical background that allowed this measure to be straightforwardly implemented and 

solved by existing efficient algorithms, the former has stated the coherence background and 

shown its main implications, which have been widely explored. 

Generally, the CVaR risk measure has been defined for a loss distribution, since it has 

been used to control financial losses. Therefore, in this framework it is commonly defined as 
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the conditioned expectation of the loss distribution’s value, worse (greater) than a given α 

quantile. Alternatively, in a net revenue or financial profit context, for which agents or 

decisions makers generally express their preferences, the CVaR can be conveniently 

redefined as the conditioned expectation of the revenue left-side worst distribution 

scenarios, below a given (1-α) quantile – typically 1% to 10% (or α from 0.99 to 0.90). Once 

defined in a revenue context, the CVaR measure will be explored as a preference functional, 

with which a probability-dependent utility function will be associated as well as interpreted.  

In [16], section 2, the Conditional Value-at-Risk was written as particular case of a 

Choquet Expected Utility (CEU) functional and in [12] as a particular case of the Recourse 

Certainty Equivalent (RCE), proposed by Ben-Tal et al. (1991) in [11]. While the latter 

representation is based on the stochastic programming with recourse problem idea, 

providing the optimal present and future consumption of the value of the random revenue 

according to an utility function, the former computes expected utilities based on capacities 

(non-additive probability measures), which can be modeled as a distortion on the 

probabilities that “(…) acts to accentuate the implicit likelihood of the least-favorable outcomes and 

depress the likelihood of the most favorable ones” (G.W. Basset Jr., R. Koenker, G. Kordas, 2004 – 

[16]). Thus, the CVaR measure shares the virtues of such functionals and, as will be shown 

in this work, the proposed alternative representation (based on a probability-dependent 

utility function) will let us to explore some additional interesting interpretations, which will 

rise as a consequence of such point of view. The main properties analyzed in this work are: 

risk aversion, convexity in probabilities and the equivalence between the Expected Utility 

(EU) form and its induced Certainty Equivalent (CE). 

Finally, the CVaR preference functional will be extended through its convex 

combination with the unconditional expected value, which will provide a more general – 

named Extended CVaR Preference (ECP) – functional capable to model a larger range of 

risk-averse behaviors. Thus, the associated probability-dependent utility of this functional 

will be characterized in the same way as done before. An illustrative example of the 

consequences of convexity in the probabilities will be given by means of the so-called Allais 

Paradox. 

The main contribution of this work is to provide a probability-dependent utility 

representation for a measure widely used in many types of engineering and finance 

applications. This representation will also provide intuitive interpretations for CVaR 
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maximizers’ behavior and an alternative viewpoint for the Choquet Expected Utility form 

([16]). In this sense, by analyzing the implicit probability-dependent utility we will be able to 

conclude that firms or agents that use this measure in, e.g., portfolio selection problems, will 

behave in a relativistic way with their estimated probabilities2.  

The ECP functional has been adopted by a large range of researchers and investment 

firms in order to explore the market’s opportunities and develop strategic decision policies in 

risky environment, as mentioned before. Thus, it is beyond the scope of this work to judge 

the plausibility and applicability of such functional; instead, the focus of this work will aim at 

the related properties and insights for those agents who have already chosen to be Extended 

CVaR maximizers. 

The rest of this work is structured as follows: Section 2 characterizes the CVaR risk 

measure as a preference functional in the revenue context, Section 3 characterizes its implicit 

probability-dependent utility function and provide some properties for such preference 

functional, Section 4 extends the CVaR preference functional to the ECP functional and also 

the established properties and remarks made in Section 3. Finally, Section 5 provides some 

empirical implications on the use of the ECP by means of two examples and then, Section 6 

concludes this work. 

 

2. CVAR MEASURE IN THE REVENUE CONTEXT 
As mentioned before, the CVaR needs to be conveniently redefined for the revenue 

context in order to let us to use it as preference functional. In this sense, a probability space 

(Ω,ℑ,P) is assumed and the stochastic revenues will be defined as ℑ-measurable functions 

R:Ω→Q, which map elements from the set of all possible states of nature (Ω) to the 

compact set of all possible revenue outcomes Q⊂ℜ. Thus, the induced cumulative 

probability function FR(.) of a given random revenue R can be defined as: 

FR(r) = P{ω∈Ω | R(ω) ≤ r} ∀ r ∈ Q     (1) 

In this work we will concentrate on random variables that have cumulative probability 

functions in Ψ, which denotes the set of all probability functions with compact support (Q). 

                                                 
2 It is considered that all distributions are known and so, the absence of ambiguity [14] is supposed. For a 
recent implication of ambiguity on CEU functionals reference [24] is proposed. 



~ 4 ~ 
 

In addition, the generalized inverse of the right-continuous function (1) provides the 

quantile function as well as help us in the Value-at-Risk (VaR) and CVaR definitions. For 

this purpose, let VaRα denote the quantile function defined as: 

VaRα(R) = FR
-1(1-α) = inf{r∈Q |FR(r) ≥ 1-α}     (2) 

And the left-tail conditional expectation, for revenue values up to the (1-α) quantile (or 

VaRα(R) as stated in (2)), will be written as: 

CVaRα(R) = E[R| R ≤ VaRα(R)]       (3) 

Where, E(.|.) is the mathematical expectation operator conditioned to a given set. Thus, for 

a set A⊆Q, it is defined as:  

E(R|R∈A) = ∫
∈ ∈ωΩ∈ω}{

)(

Ar

R

A})R( | P{
rdFr  

Then, unconditioned expectations are assumed to be taken over the whole support set 

(A=Q). 

Figure 1 illustrates the CVaRα and VaRα configuration for a given smooth cumulative 

probability function FR. 

 
Figure 1 – CVaRα and VaRα configuration for a smooth revenue cumulative probability function. 

If R is a discrete random variable, with a finite number of scenarios S and known 

probabilities {P(Rs)>0}s=1,…,S, R can be represented as a set of its ordered scenarios: 

R={Rs,P(Rs)}s=1,…,S, in which Rs is the sth-smaller revenue scenario. Then, expression (2) will 

provide the superior (1-α) quantile, which in the discrete representation is defined as: 

VaRα(R)+ = Rs*(α,R)         (4) 

 where s*(α,R)∈{1,...,S} is the unique scenario index for which  

VaRα(R) 

FR(r) 

CVaRα(R)

1-α 

1 

Revenue support (r) 
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Σ{s≤s*(α,R)-1}P(Rs) < 1-α ≤ Σ {s≤s*(α,R)}P(Rs).       (5) 

In accordance with (4) and (5), the Conditional Value-at-Risk, in the presence of a 

probability atom, can be defined as the following weighted average (6), which will take into 

account the proportion of the superior (1-α) quantile and the rest of the inferior tail 

scenarios, if they exist (see [27] for a entire description of the CVaR and VaR for a general 

random variable): 

CVaRα(R)=(1-α)-1⋅{ Σ{s≤s*(α,R)-1}P(Rs)⋅Rs + Rs*(α,R)⋅[1 - α - Σ{s≤s*(α,R)-1}P(Rs)] }  (6) 

Note that s*(α,R) depends on the 1-α percentile (the reliability level α) and also on the 

revenue distribution, represented by the set {P(Rs)}s=1,…,S of the random variable R. 

 

Remark 1 If s*(α,R) = 1, then  

{s≤s*(α,R)-1} = ∅  and Σ{s≤s*(α,R)-1}P(Rs) = 0, 

which will imply in expression (6) to be reduced to R1. In the case of a CVaR maximizer it is 

equivalent to the so-called MaxMin approach, in which the decision maker maximizes the 

worst revenue scenario. 

 

Remark 2 The VaRα definition in (2) should provide definition (4) stated for the discrete 

case in which FR(.) is a stepwise right-continuous function. 

 

In the stochastic optimization context3, where agents seek for the random variable 

R(x,ξ)4 that maximizes their preferences by tuning a controlling vector x∈X (usually called 

as decision variables, where X⊂ℜn), expression (3) may increase the complexity of any 

simple application, even for a Carathéodory function5 R:X×Ξ→Q.  

Generally, in practical applications, the random revenue R is characterized as a function 

not only of the set of the agent’s decisions (X), but also of a more primitive 

multidimensional random variable (ξ ∈ Ξ), which models the exogenous risk factors. For 
                                                 
3 [17] is referred as a standard handbook. 
4 x generally is a decision maker controlling variable defined over a compact subset X in the ℜn that 
parameterizes the selection of random variables with distribution functions in Ψ. In many classical applications 
in which the set of feasible decision variables can be defined as a set of linear inequalities, X assumes a 
polyhedral shape. 
5 R(x,ξ):X×Ξ→Q Carathéodory means that for all ξ∈Ξ, R(.,ξ) is continuous and for all x∈X, R(x,.) is measurable 
on the adopted sigma-field of Ξ. 
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not so high dimensions of Ξ, the assessment of expression (3) will require hard and time-

consuming multidimensional integration methods to assess the expectation conditioned to 

the subset of Ξ that provides R(x,ξ) ≤ r. In this sense, Rockafellar et al., in [26] and [27], 

have shown that expression (3) could be assessed through (8), which is the maximum of the 

unconditional expectation-based functional H:Ψ×Q→Q, presented in (7), reaching its 

maximum point at z = z*(α,R) = VaRα(R).  

H(R,z) = z – E[ (R – z)|− ]/(1-α)        (7) 

CVaRα(R) = Max(z) H(R, z),       (8) 

where ( . )|− is the negative truncation function, which is equivalent to (.)|−≡ – min( . ,0).  

The optimality proof of (8) is provided for a general random variable in the original 

work [27], which is a well known result of convex analysis [25][29]. 

Since (8) does not depend on any constraints in the outcomes set, this approach 

exchanges the difficulty on computing the conditional expectation on (3) for a maximum 

calculation over a convex family of unconditional expectations defined on (7). In other 

words, it replaces difficult integrals for maximization problems. However, generally, the 

latter has the advantage of some well known convergence results that are provided for finite 

sampled scenarios, e.g., Max(z)S-1⋅ΣsH(Rs,z) ⎯⎯ →⎯ ∞→S Max(z)E[H(Rs,z)]. Thus, (8) has paved the 

way for the use of many different simulation schemes to easily estimate the CVaRα[R(x,ξ)] 

through a finite sample of the exogenous risk variables {ξs}s (the so-called Sampled Average 

Approximation (SAA) – see [1], chapter 4), by means of a convex maximization problem, 

which is suitable to be coupled in risk-constrained or risk-averse optimization problems. In 

[27] some examples are provided for portfolio problems and in [1][7] some aspects on the 

sampling convergence of such measure are discussed6. In addition to this benefit, the form 

provided by (8) will also allow us to find an implicit utility for such measure when it is used 

as a preference functional, which is the main idea of this work. 

 

                                                 
6 Reference [13] also provides nice convergence results for the so-called chance constrained problems. 
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3. THE CVAR UTILITY PREFERENCE FUNCTIONAL FORM 
In order to obtain an utility maximization functional form for the CVaR, in the revenue 

or profit context, expression (8) can be read without the maximization operator by 

substituting the optimality result z*(α,R) into it: 

CVaRα(R) = E{z*(α,R) – [R – z*(α,R)]|−/(1-α)}     (9) 

Expression (9) shows us the piecewise linear form of such utility that depends on the α 

parameter and on the probability distribution function of R, due to its explicit dependence 

on the revenue quantile function z*(α,R) = VaRα(R) = FR
-1(1-α). The next expression 

presents the analytical form of the CVaRα’s implicit probability (or quantile) dependent 

utility function found in (9). 

Uα[r, FR(.)] = FR
-1(1-α) – [r – FR

-1(1-α)]|−/(1-α)     (10) 

It is clear that such utility is not a classical von Neumann-Morgenstern utility function 

[30], since it depends on the revenue-induced probabilities, by means of the inverse 

cumulative distribution function (or quantile function) FR
-1:[0,1]→Q assessed on the 1-α 

value. Then, we can state that:  

 

Theorem 1 (The CVaR preference functional probability-dependent utility function 

representation) 

For any α∈[0,1), Uα:Q×Ψ→ℜ  

I. Uα:Q×Ψ→ℜ is a two-segment piecewise concave on Q (then risk-averse) probability (quantile) 

dependent utility function. 

II. Uα:Q×Ψ→ℜ has a compact range in ℜ. 

III. Uα[r, FR(.)] ≤ r  for all r∈Q, with a unique fixed point on r = FR
-1(1-α). 

 

Proof. First of all, let expression (10) be rewritten to evidence its probability dependence: 

Uα[r, FR(.)] = Gα[FR(.)] + min{0, r – Gα[FR(.)]}/(1-α), 

where, Gα:Ψ→Q is defined as Gα[FR(.)] = FR
-1(1-α), according to (2), for any 

distribution FR(.)∈Ψ. 

I. It is sufficient to verify that for all FR(.)∈Ψ, Uα[ . , FR(.)] is the sum of an affine 

function (the constant function Gα[FR(.)]) and the minimum of two other affine 
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functions, which is clearly a continuous piecewise concave function, with an unique 

break point (slope change) on the quantile Gα[FR(.)] (see Figure 2 for a graphical 

illustration of Uα[ . , FR(.)]).  

II. Range compactness can be shown through the following rationale: since range(Gα)=Q 

(by definition of quantile function) and r∈Q, then,  

Uα[r, FR(.)] = Uα{r, Gα[FR(.)]}:Q×Q→ℜ  

Because ℜ×ℜ, in which Q×Q is embedded, and ℜ2 are isomorphic, it is possible to 

redefine Uα as:  

Uα{r, Gα[FR(.)]} = Uα(v) = f1(v) + f2(v)  

Where,  

v = [r, Gα[FR(.)]]T ∈ V  

V is a compact subset of ℜ2, being the isomorphic image of Q×Q in this space;  

f1(v) = aT⋅v  and  f2(v) = min(0, bT⋅v)/(1-α); 

with,  aT = [0, 1] and bT = [1, -1]. 

By verifying that f1 and f2 are both concave, then continuous, it follows that Uα is a 

continuous map between a compact set (Q×Q) and the real line (ℜ). Then, range(Uα) is 

compact7. 

III. For all r < FR
-1(1-α),  

Uα[r, FR(.)] = (r – Gα[FR(.)]⋅α)/(1-α) < r  if and only if r < Gα[FR(.)] = FR
-1(1-α), 

which is the previous hypothesis.  

For all r > FR
-1(1-α),  

Uα[r, FR(.)] = Gα[FR(.)] = FR
-1(1-α) < r 

which is again the previous hypothesis. 

For r = FR
-1(1-α) 

Uα[FR
-1(1-α), FR(.)] = FR

-1(1-α). � 

 

For the case of a smooth (continuous) cumulative probability function FR(.), the 

following Figure 2 illustrates the utility probability dependence. 

                                                 
7 For further details see [20], Theorem 3.64 (a) 
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Figure 2 –The CVaRα local piecewise linear utility function, for a fixed revenue distribution FR. 

The next figure shows the utility locus due to a probability movement. This effect is 

illustrated for a generic move of the revenue distribution, e.g., from FR to FR*. In this sense, 

the corresponding locus of such probability-dependent utility function is totally characterized 

by the revenue 1-α quantile movement. 

 
Figure 3 – Locus of the local utility functions of the CVaRα preference functional. 

The effect of such movement is that Uα slides its fixed point (on r) over the identity 

function I(r) = r, leaving FR
-1(1-α) to reach the new quantile FR*

-1(1-α). Then, Uα is a local 

piecewise linear concave utility function with a probability dependence that provides a 

quantile shift effect when moving from one distribution to another. This fact can be 

understood as a relativistic accommodation of the agent’s perspective of future possible 

outcomes. Then we can state the following remark: 

 

 

r 

Uα[r, FR(.)] 

FR-1(1-α) = VaRα(R) 

FR-1(1-α) 

(1-α)-1 

α 

1-α 

∂FR(.)/∂r 

– FR-1(1-α)⋅α/(1-α) 

r 

Uα(.,.) 

FR-1(1-α)

FR-1(1-α) 

FR*-1(1-α)

FR*-1(1-α) 

from FR 

to FR* 
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Remark 3 An interesting interpretation for such probability dependence may rise in the 

investment under uncertainty point of view, in which a CVaR maximizer investor will only 

“regret” if a given project (with FR distribution) provides an improbable downsize realization 

R(ω0), with FR[R(ω0)] ≤ 1-α, based on his previous8 estimated probability function FR(.). In 

this sense, FR
-1(1-α) – or VaRα(R) – turns to be the critical, and generally pessimistic, point 

for which this agent exhibits a change in his marginal utility. In terms of utility shape, a 

CVaR maximizer probability-dependent utility function does not discriminate surplus 

scenarios above the critical value (zero marginal utility), but penalizes violations to this value, 

in deficit scenarios, with a (1-α)-1 marginal utility decrease. Thus, the risk-profile of such 

agent is characterized by: (i) the α risk-aversion parameter, which determines the utility loss 

per unit of quantile violation, and (ii) the critical value FR
-1(1-α), which places the utility in 

accordance with each faced distribution function. 

 

Once the CVaRα measure has been characterized as a preference functional with a 

probability-dependent utility representation (10), it is possible to explore its properties and 

implications.  

 

Properties 1 

The following properties hold for the CVaRα preference functional: 

(a) Translation invariance 

For any real valued random variable R with FR∈Ψ and t∈ℜ,  

CVaRα(R + t) = CVaRα(R) + t. 

(b) Positive homogeneity 

For any real valued random variable R with FR∈Ψ and t∈ℜ,  

CVaRα(t⋅R) = t⋅CVaRα(R). 

(c) Superadditivity 

For any pair of real valued random variables R1 and R2 with FR1 and FR2 ∈ Ψ,  

CVaRα(R1+ R2) ≥ CVaRα(R1) + CVaRα(R2). 

(d) Monotonicity 

                                                 
8 The word previous is referred to the occurrence of the outcome realization ωo 
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For any pair of real valued random variables R1 ≤ R2 with FR1 and FR2 ∈ Ψ, 

CVaRα(R1) ≤ CVaRα(R2). 

(e) Consistency 

For any deterministic random variable t, with S = 1 and t1 = t∈ℜ, CVaRα(t) = t.   

(f) Equivalence between Expected Utility and Certainty Equivalent 

If CEα(R)∈Q is the CVaRα induced Certainty Equivalent of a given random revenue R 

and EUα(R) ≡ E{ Uα[R, FR(.)] }, then,  

CEα(R) = EUα(R).         (11) 

(g) Convexity in the probabilities 

If Rφ, R1 and R2, with FRφ
, FR1 and FR2 ∈ Ψ are such that FRφ = φ⋅FR1 + (1-φ)⋅FR2, then, 

CVaRα(Rφ) ≤ φ⋅CVaRα(R1) + (1-φ)⋅CVaRα(R2)  ∀ φ∈[0,1]. 

(h) Risk Averse  

If CEα(R)∈Q is the CVaRα induced Certainty Equivalent of R, then,  

CEα(R) ≤ E(R) for all α∈(0,1).  

Alternatively, following the expected utility characterization of risk-aversion, for all 

FR∈Ψ, Uα[ . ,FR(.)] is concave (see [11] Remark 4.1). 

 

Proof.  (a) to (e) are the coherence properties verified for the CVaR risk measure in [10] and 

also verified in [11] for the RCE general form. 

Since (e) will play a key role in property (f), it will be conveniently repeated here. We use 

the VaRα definition in (2) for a stepwise probability function Ft(r)=δ{r≥t}(r), where δA(r)=1 if 

r∈A, with A⊆Q, and zero for all other cases. For this specific probability function,  

VaRα(t) = min{r | δ{r ≥t}(r) ≥ 1-α} = t  

which applied in definition (3) will lead to  

CVaRα(t) = Eξ{t | t ≤ t} = t,  

or alternatively, use Remark 1 with S = 1. 

(f) The Certainty Equivalent (CEα(R)∈Q) of a CVaR maximizer agent for a given random 

revenue R can be understood as the real value for which such agent becomes indifferent to 

the stochastic revenue outcome R. This statement implies in CVaRα[CEα(R)] = CVaRα(R). 
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But from consistence property (e), the left-hand side of this equality is exactly the CEα(R), 

once it is a deterministic real value. Then,  

CEα(R) = CVaRα(R)         (12) 

Finally, it is possible to verify (11) through (12), (9) and (10):  

CEα(R) = CVaRα(R) = E{Uα[R, FR(.)]} = EUα(R). 

(g) For each point z in Q, H( . , z):Ψ→Q is an affine function of dFR(.) (see expression (13)). 

H(R,z) = H(FR(.),z) = z – (1-α)-1⋅ ∫ (r – z)|−⋅dFR(r)     (13)  

The previous statement combined with the fact that Ψ is a convex set and z*(α,R) always 

exists (proof provided in [27]), allows us to conclude that: since the CVaR is a maximum 

over a set {H(FR(.),z)}z∈Q of affine functions in Ψ, it is convex.  

(h) Due to (12) and (3) we have that  

CEα(R) = CVaRα(R) = E[R | R ≤ VaRα(R)] = g(α) 

where,  

g(t) ≡ E{R | R ≤ FR
-1(1-t)]}   ∀ t ∈[0,1]    (14) 

g(t) is a non-increasing function of t, since FR
-1(1-t) is a cumulative distribution and thus, 

non-increasing in t∈[0,1]. Due to that: 

E(R) = lim(t→0+)g(t) ≥ g(α) = CEα(R)   ∀ α∈[0,1]. 

Alternatively, following the expected utility characterization of risk-aversion, for all FR∈Ψ, 

Uα[ . ,FR(.)] is concave (see [11] Remark 4.1), which has been verified in Theorem 1 (see also 

[23]). �  

 

Properties (a) to (e) are known in the recent literature as coherence properties and 

constitute a set of desirable preference properties that are backed up by financial 

interpretations. For a whole discussion of the relevance of these properties and its 

implications, references [7][8][9][10][11] are suggested. 

 

Remark 4 An important intermediary result obtained on proving property (f) is the 

following: the CVaRα preference index of a given random variable is its certainty equivalent. 

This may be of great interest in many different fields such as Investment and Management 

Science, Actuarial Science, etc.  
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Remark 5 In addition to Remark 4, the existence of a probability-dependent expected utility 

form for such functional, with the equivalence property stated in (f), provides a starting 

point to solve some practical disagreements, e.g., in the case of multi-period preferences 

based on per-period separable expected utility functionals and the related estimation of their 

impatience discount factors9. In this sense, as the EU index meets exactly the CE, by 

measuring the preference of a multi-period cash flow through the discounted expected 

utilities or through the related certainty equivalents, it will result the same numerical indexes 

and preferences. In this sense, the estimation of a timing discount factor turns to be an easier 

task, since in this case, we are dealing with a monetary and deterministic equivalent flow.  

 

4. EXTENDING THE PREFERENCE FUNCTIONAL 

As shown before, the CVaRα preference index has shown to be the Certainty Equivalent 

of the assessed random variable. In this context, the agent CE ignores the whole probability 

distribution above the (1-α) quantile. It seems reasonable that for two different random 

outcomes with the same CVaRα metric, but different expected values, a rational agent would 

prefer the one which provides the greatest unconditioned expectation. 

The convex combination of this functional with the unconditioned expectation, which 

now will be referred to as the Extended CVaR Preference (ECP), would let the decision 

maker to express its preference for both “worst cases” (for α greater than 0.5) and 

distribution average, as follows: 

Φα,λ(R) = λ⋅CVaRα(R) + (1 – λ)⋅E(R)     with λ∈[0,1]    (15) 

For such functional, the same approach used before on expressions (9) and (10) can be 

used, in order to provide its probability-dependent expected utility form: 

Φα,λ(R) = λ⋅E{z*(α,R) – [R – z*(α,R)]|−/(1-α)} + (1 – λ)⋅E(R)   (16) 

Expression (16) will let us to access Uα,λ:Q×Ψ→ℜ for any α∈[0,1) and λ∈[0,1] as follows: 

Uα,λ[r, FR(.)] = λ⋅{ FR
-1(1-α) – [r – FR

-1(1-α)]|−/(1-α) } + (1 – λ)⋅r  (17) 

Thus, by means of expression (17) we finally reach the probability-dependent expected utility 

form of the ECP functional: 

                                                 
9 See [21] for an entire discussion about this topic and for further references. 
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Φα,λ(R) = E{ Uα,λ[R, FR(.)] }       (18) 

 

Theorem 2 

For all λ∈(0,1] and α∈(0,1) that provide risk-aversive attitudes, Theorem 1 will hold for the ECP 

functional with probability-dependent utility function Uα,λ.  

 

Proof. Thus, let (17) be rewritten in order to evidence the probability dependence in Uα,λ, as 

done before: 

Uα,λ[r, FR(.)] = λ⋅Gα[FR(.)] + (1 – λ)⋅r + λ⋅min{0, r – Gα[FR(.)]}/(1-α)  

Where, Gα:Ψ→Q is defined as Gα[FR(.)] = FR
-1(1-α), according to (2), for any 

distribution FR(.)∈Ψ. 

I. It is sufficient to verify that for all FR(.)∈Ψ, Uα,λ[ . , FR(.)] is the sum of an affine 

function (λ⋅Gα[FR(.)] + (1 – λ)⋅r) and the minimum of two other affine functions, 

which is clearly a continuous piecewise concave function, with an unique break point 

(slope change) on the quantile Gα[FR(.)] (see Figure 4 for graphical illustration of    

Uα,λ[ . , FR(.)]).  

II. Range compactness can be shown through the same rationale stated before: since 

range(Gα)=Q (by definition of quantile function) and r∈Q, then,  

Uα,λ[r, FR(.)] = Uα,λ{r, Gα[FR(.)]}:Q×Q→ℜ 

Because ℜ×ℜ, in which Q×Q is embedded, and ℜ2 are isomorphic, it is possible to 

redefine Uα,λ as:  

Uα,λ{r, Gα[FR(.)]} = Uα,λ(v) = f1(v) + f2(v)  

Where,  

v = [r, Gα[FR(.)]] ∈ V  

V is a compact subset of ℜ2, being the isomorphic image of Q×Q in this space;   

f1(v) = aT⋅v  and  f2(v) = min(0, bT⋅v)/(1-α); 

with,  aT = [(1-λ), λ] and bT = [λ, -λ]. 
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By verifying that f1 and f2 are both concave and continuous, it follows that Uα,λ is a 

continuous map between a compact set (Q×Q) and the real line ℜ. Then, range(Uα,λ) is 

compact10.  

III. For all r < FR
-1(1-α), 

Uα,λ[r, FR(.)] = λ⋅Gα[FR(.)] + (1 – λ)⋅r + λ⋅{r – Gα[FR(.)]}/(1-α) 

= { r⋅[λ + (1-λ)⋅(1-α)] – Gα[FR(.)]⋅α⋅λ }/(1-α) 

= { r⋅[(1-α) + α⋅λ] – Gα[FR(.)]⋅α⋅λ }/(1-α) < r 

if and only if r < Gα[FR(.)] = FR
-1(1-α), which is the previous hypothesis.  

For all r > FR
-1(1-α), 

Uα,λ[r, FR(.)] = λ⋅Gα[FR(.)] + (1 – λ)⋅r < r 

if and only if r > Gα[FR(.)] = FR
-1(1-α), which is again the previous hypothesis. 

For r = FR
-1(1-α) 

Uα,λ[FR
-1(1-α), FR(.)] = FR

-1(1-α). � 

 

In order to provide a graphical visualization of (17), the key is to analyze this function 

for each segment, r ≤ FR
-1(1-α) and r > FR

-1(1-α), verifying that on r = FR
-1(1-α), Uα,λ[ . ,FR(.)] 

is continuous, as done in Theorem 1’s proof, extension (III). The next figure shows the 

shape of such utility. 

                                                 
10 Again, for further details see [20], Theorem 3.64 (a) 
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Figure 4 – The Φα,λ local piecewise linear utility function, for a fixed revenue distribution FR(.). 

Properties 1 can be straightforwardly verified for the extended functional since the 

mathematical expectation operator E(.) is linear, homogeneous and risk-neutral, providing 

(depending on the α and λ risk-averse parameters) preferences that can be risk-averse or 

neutral, but never risk-taker. 

 

Properties 2  

Properties 1 can be extended to the ECP functional (Φα,λ). 

 

Proof. 

Properties (a) to (e) can be demonstrated separately for both operators, CVaRα(.) and 

E(.), since the extended functional is a weighted average of them. Thus, as E(.) is known to 

attend these properties, so will Φα,λ. 

Property (f) follows the same approach used before: 

Φα,λ[CEα,λ(R)] = Φα,λ(R) 

λ⋅CVaRα[CEα,λ(R)] + (1–λ)⋅E[CEα,λ(R)] = Φα,λ(R). 

By property (e) – consistency, we have that CEα,λ(R) = Φα,λ(R). Thus, due to (18) we 

conclude that CEα,λ(R) = E{Uα,λ[R, FR(.)]}, providing the equivalence between the expected 

utility form and the associated certainty equivalent of such functional. 

For property (g), again the same approach used before can be followed. Since the 

unconditioned expectation (the last term of expression (15)) is linear in the probabilities, 

 

r 

Uα,λ[r, FR(.)] 

FR-1(1-α) = VaRα(R) 

FR-1(1-α) 

1+ λ⋅α⋅(1-α)-1 

α 

1-α 

∂FR(r)/∂r 

– FR-1(1-α)⋅α⋅λ/(1-α) 

(1-λ) 
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Φα,λ being a sum of a convex function (CVaRα) with an affine function (E(.)), will also be 

convex in the probabilities. 

The risk-averse property will depend on the λ and α parameters. If λ = 0, or α = 0, Φα,λ 

will be reduced to the unconditional expectation and then, a Φα,λ maximizer will behave as a 

risk-neutral agent. For λ∈(0,1] and α∈(0,1), the convex combination between the CVaRα 

and the unconditioned expectation will be smaller or equal to the latter, due to property (h). 

� 

 

Before exploring some implications in the use of this functional, a slight revision on 

remark 3 must be done in order to adjust the investment interpretation for the ECP’s 

implicit local utility. In this case, by choosing λ∈(0,1) and α∈(0,1), Φα,λ maximizers will do 

differentiate surplus outcomes (greater than the critical point VaRα(R)) with a marginal utility 

of  (1-λ). 

 

5. IMPLICATIONS OF USING Φα,λ AS A PREFERENCE 

The well known Allais Paradox (see [5][6][23]) has raised from the nonlinear 

characteristic (in the probability set) of the related choices presented in the Paradox instance. 

In order to provide an illustrative implication of the convexity property verified on the 

functional Φα,λ, it will be submitted to a given instance of the aforementioned paradox. After 

that, by means of a simple example of a mixture between two lotteries, the convexity in 

probabilities will be graphically represented. 
Consider a pair of two alternative lotteries (discrete random variables) with fixed support 

and different probabilities, as shown in the next figure, in which arrows indicates the 

existence of a probability atom. 
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Figure 5 – Two alternative lotteries (RA and RB) – part of the Allais Paradox. 

 
Figure 6 – Two alternative lotteries (RC and RD) – part of the Allais Paradox. 

The so-called “Allais Paradox” was first proposed as an empirical experiment in which 

individuals were asked to rank two pairs of lotteries: (A vs. B) and then (C vs. D). The 

majority of questioned individuals shown to prefer to bet in RB rather than in RA, and for the 

second options, the preferred ordering was RC rather than RD. Since such ordering is 

impossible to be recovered by any classical von Neumann-Morgenstern (vN-M) utility 

function U:ℜ→ℜ, the classical utility axioms were criticized by Maurice Allais in [5][6]. For 

further explanations and related implications of this paradox see [23]. 

(Attending the First Choice): (RB 〉EU RA):  

E[U(RB)] > E[U(RA)] ⇒ 100%⋅U(1) > 10%⋅U(5) + 89%⋅U(1) + 1%⋅U(0)  
⇒ 11%⋅U(1) > 10%⋅U(5) + 1%⋅U(0) 
 

(Attending the Second Choice): (RC 〉EU RD):  

E[U(RC)] > E[U(RD)] ⇒ 10%⋅U(5) + 90%⋅U(0) > 11%⋅U(1) + 89%⋅U(0) 
⇒ 11%⋅U(1) < 10%⋅U(5) + 1%⋅U(0) 
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These two choices point out a contradiction for any vN-M utility function. In this sense, 

it is possible to find out the region in which the risk-aversive parameters of Φα,λ should be in 

order to avoid this paradox. For instance, let α = 98% and λ = ½. The resultant CE’s for 

the first two lotteries can be calculated through expression (15), using the CVaR definition in 

(6), as follows: 

Φ98%,½(RA) = ½⋅(2% - 1%)⋅1/2% + ½⋅(1%⋅0 + 89%⋅1 + 10%⋅5)= 0.945 

Φ98%,½(RB) = ½⋅1 + ½⋅1 = 1. 

providing the demanded ordering for the first pair of lotteries, RB 〉Φ98%,½
 RA. The same can be 

done for the second pair, 

Φ98%,½(RC) = ½⋅0 + ½⋅(90%⋅0 + 10%⋅5)= 0.250 

Φ98%,½(RD) = ½⋅0 + ½⋅(89%⋅0 + 11%⋅2500)= 0.055 

which will attend to the second demanded ordering on the illustrated Paradox instance. 

Essentially, the independence axiom is being violated by such pair of choices, which 

ultimately let us to verify the effect of convex preferences in probabilities, captured by the 

Φ98%,½. It is important to emphasize that this will not be verified for all plausible risk-averse 

parameters (α,λ)∈(0,1)×[0,1], which is indeed desirable, making it possible to accommodate 

both classes of behavior. For this case, the set of pairs for which this paradox will be 

captured by Φα,λ can be obtained through the following two constraints on the parameters 

set: Φα,λ(RB) > Φα,λ(RA) and Φα,λ(RC) > Φα,λ(RD). Figure 7 shows on the Cartesian space 

(α,λ)∈(0,1)×[0,1] the pairs that attend to the above condition. 

 
Figure 7 – Risk Averse parameters (of the functional Φα,λ) that capture the Allais Paradox Preferences. 
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Figure 7 shows that the aforementioned instance of the Allais Paradox is preferentially 

captured by more risk aversive attitudes, since it concentrates the majority of the paradox 

area on the set (α>50%,  λ>50%), but also reveals that for λ=100% (in which the functional 

Φα,λ ignores the expected value term) the paradox strict preferences are not verified. This 

happens because the preference between RA and RB changes at the same point (α=10%) that 

it changes for RC and RD, as a consequence of the symmetry present on such instance. 

Despite of this singularity, for greater values of α, the CVaRα exhibits indifference between 

RC and RD, since these are the cases in which the worst value is assigned to the CVaRα. 

In fact, for discrete random variables, whenever P(R1) ≥ 1-α the case outlined in Remark 

1 will be observed and the CVaRα response will be constant and equal to R1. Then, as P(R1) 

crosses down the 1-α threshold, the remaining probability 1 - α - P(R1) will weigh R2 and 

provide a different response as P(R1) decreases. As a consequence, a convex response 

(preference) can be drawn by varying the probabilities assigned to a set of scenarios 

according to Properties 1(g). 

In order to provide a visualization of the CVaR convexity in the probability set, consider 

a convex probability mixture FRφ = φ⋅FR1 + (1-φ)⋅FR2, with φ∈[0,1], of the following lotteries 

(discrete random variables): 

R1 = {(10,   1%); (100, 99%)}  and   R2 = {(10, 99%); (100,   1%)} 

The mixture distribution will combine the individual probabilities, resulting in a third 

distribution: 

Rφ = {(10, φ⋅0.01 + (1-φ)⋅0.99); (100, φ⋅0.99 + (1-φ)⋅0.01)} 

Then, by selecting α=95% and λ=100%, Φ95%,1(Rφ) = CVaR95%(Rφ). The specified 

preference locus is illustrated in the next figure, parameterized on φ, on the two-dimensional 

probability space. According to (6), 

Φ95%,1(Rφ) = (5%)-1⋅{ Σ{s≤s*(α,R)-1}P(Rs)⋅Rs + Rs*(α,R)⋅[1 - α - Σ{s≤s*(α,R)-1}P(Rs)] } 

= 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅φ−+⋅φ⋅−
<⋅φ−+⋅φ

≥⋅φ−+⋅φ

05.0
)99.0)1(01.0(90:,05.099.0)1(01.0

10,05.099.0)1(01.0
 5then  if

:then     if
 

= 
⎭
⎬
⎫
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⎨
⎧
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Figure 8 – The CVaR95% in the probability space – for a mixture of two lotteries 

In the above figure, the bold line is the [φ, CVaR95%(Rφ)] pair, for all possible values of 

φ∈[0,1]. On the sum one probability line (at the Pφ
1xPφ

2 plane) there are three marked points 

in terms of φ values. On φ = 0 the mixture distribution meets exactly R2 and as φ grows it 

moves to R1, passing through point φ* = 94/98. For all φ∈[0, 94/98], the CVaR95%(Rφ) 

provides the same constant value, 10 $, since s*(α,R) = 1 (see Remark 1). But for φ∈[94/98, 

1] it rapidly increases at a marginal rate of 1764 $, reaching the CVaR95%(R1) = 82 $ on φ = 1 

due to a change in s*(α,R) from the first to the second scenario. Figure 8 has shown a simple 

illustration of the convexity of Φα,λ for a specific case in which λ=100%. By varying φ it was 

possible to track the CVaR outcome for a given lottery path in the probability space and 

visualize its piecewise form due to the discrete nature of such lotteries. 

 

6. CONCLUSIONS 
This work has explored the Conditional Value-at-Risk and its extension ECP as a 

preference functional, which has been the choice of many financial institutions and investors 

to take decisions under risk. In this sense, an alternative for the Choquet Expected Utility 

representation was provided through a probability-dependent utility function based on 

Rockafellar and Uryasev’s developments ([25]). Such utility has shown to be a two-segment 

and piecewise concave function with a fixed point on the assessed distribution (1-α) Value-

at-Risk (the left-tail 1-α quantile), which has also allowed the relativistic investment 

interpretation. 
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Finally, the CVaR preference, which is a particular case of the RCE (or OCE as in [12]) 

and CEU, has shown interesting properties such as the verified equivalence between the 

expected utility form and the associated certainty equivalent. This property can support 

different types of pricing applications and, as argued in remark 5, some possible 

simplifications in multi-period decision problems. An example for the convexity in 

probabilities implication on preferences was provided by means of the so-called Allais 

Paradox prospects and also graphically illustrated for a simple bi-dimensional parameterized 

lottery.  
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