5 Impactos Econômicos do Sistema Proposto

Neste capítulo são avaliados o impacto econômico e as vantagens resultantes da utilização da tecnologia RFID proposta, implementada na camada óptica física, atuando como um subsistema de apoio a sistemas de gerência de operadoras telefônicas ou quando utilizada de forma independente.

A distribuição dos custos segundo a cadeia de valores implementada para as três operadoras telefônicas no ano de 2007, avaliadas no Capítulo 4, constituem o ponto inicial desta avaliação.

5.1. Aspectos Gerais dos Sistemas de Gerenciamento

Com a implementação de redes NGN [78][79], surge também o problema de redes multidomínios [3][8][9]. Dentre as dificuldades de integração de todo o sistema, encontram-se as tarefas de operação, manutenção, bilhetagem, tarifação, aprovisionamento e ativações de conexões.

A Figura 57 ilustra todas as etapas executadas por ferramentas computacionais dedicadas ao gerenciamento destas redes. Podem ser destacados: o processamento de informação, políticas de negócio e políticas de processamento. Estas etapas são responsáveis pela ativação de conexões segundo o *Service Level Agreement* (SLA) e a QoS requisitadas pelo cliente, associadas a mecanismos de proteção e restauração de forma simples e rápida. Entretanto, a administração de conflitos em função dos recursos da rede e da avaliação incorreta de sua capacidade disponível, torna este objetivo extremamente difícil de ser atingido.

A utilização de um sistema RFID similar ao descrito no Capítulo 3 permite uma avaliação da capacidade disponível de uma forma praticamente instantânea e localizada em cada nó da rede, isto é, uma avaliação descentralizada e distribuída em tempo real.

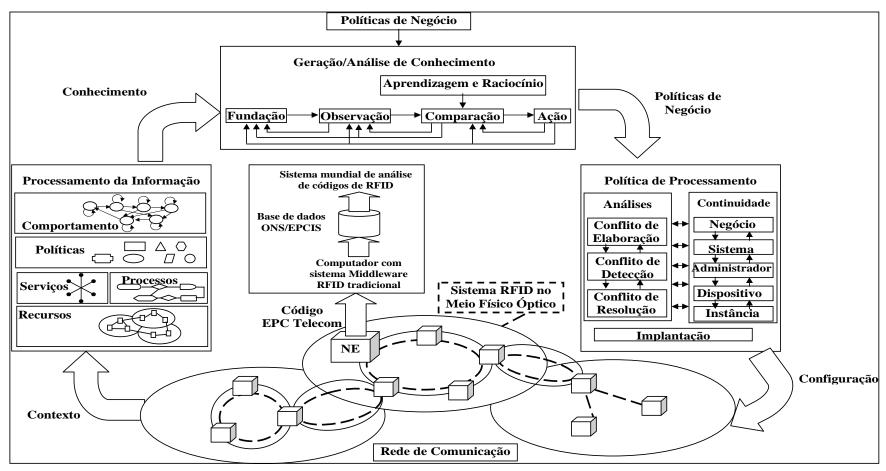


Figura 57 - Introdução do sistema RFID aplicado no meio óptico físico.

Por ser um sistema que atua na camada física, pode ser associado a várias ferramentas computacionais que são utilizadas para operação, administração e manutenção da rede. Desta forma, um impacto significativo no gerenciamento global da rede pode ser obtido, uma vez que a disponibilização instantânea de capacidade permite facilitar tanto o processamento da informação quanto a política de processamento do sistema.

5.2. Exemplo: Tecnologia RFID Proposta como um Subsistema na Camada Física Óptica das Redes das Operadoras Avaliadas

Ao utilizar o sistema RFID proposto nas redes das operadoras anteriormente introduzidas no Capítulo 4, alguns itens do diagrama de Porter – Figura 46, devem ser reavaliados. Considerando-se, então para este exemplo, uma redução de custos conservadora, podem ser destacados os seguintes itens ligados com a gerência RFID:

- Operação específica de infra-estrutura as despesas relacionadas com o suporte da rede e com a comutação das centrais principais são impactadas devido à construção de uma base de dados onde a capacidade disponível será fornecida em cada nó e atualizada em poucos milissegundos. Pode-se supor uma redução de custos de 15% neste item.
- Operação de sistemas de equipamentos uma redução no processamento da informação e também na política de processamento permite a manutenção de níveis altos de SLA e QoS, reduzindo os custos em 50%.
- Central principal de comutação a verificação da capacidade disponível em cada nó permite a realização da multiplexação digital nos nós locais. O estado do nó, bem como a própria conexão, alimentam as MIBs – bases de dados; das ferramentas computacionais de nível superior. Projeção de redução de custos de 50%.
- Central principal de transmissão As centrais de transmissão e as centrais
 de comutação são ativadas à medida que as rotas são estabelecidas de
 acordo com as solicitações dos assinantes da rede. Evidencia-se que: o
 conhecimento de capacidade disponível de uma parte significativa da rede,
 em cada um dos nós locais, permite o estabelecimento instantâneo de
 rotas, além de permitir uma atualização da capacidade dos roteadores,

comutadores e multiplexadores da rede. Nesta etapa, uma redução de 50% pode também ser considerada.

 Serviços e operações ao consumidor e Administração geral – serão também impactados pelas características do sistema RFID prevendo-se uma redução de 15% nos custos.

5.3. Análise de Sensibilidade

Análise de sensibilidade [80] é uma técnica que permite determinar, de forma controlada, o efeito e os possíveis impactos de uma variação de um determinado item sobre o resultado final total. Estas análises são realizadas através de modelos de simulação e, quando vários cenários propostos são implementados, é possível verificar tendências do sistema em questão. Um modelo muito utilizado nesta análise é o modelo de Monte Carlo [81], o qual consiste o uso de números aleatórios associados a funções de probabilidades para resolver problemas determinísticos ou estocásticos.

5.3.1. Redução dos custos de operações de gerência

Para realização deste estudo foram considerados os custos de operações das três operadoras telefônicas americanas, analisadas no capítulo anterior. Como esta tecnologia aplica-se a redes NGN (2007) e legadas (1996), para a análise do impacto econômico, foram considerados os custos relativos ao ano de 2007 [66][68][70][75][76][77].

Considerando a redução de custos descritas no exemplo do item 5.2, foi realizada a análise de sensibilidade. O gráfico seguinte espelha esta redução descrita:

Figura 58 – Análise de sensibilidade sobre os custos de Gerência em 2007, considerando a redução de custos proposta no exemplo do item 5.2.

O gráfico da Figura 59 representa a projeção de redução dos custos de gerência baseada nas análises de sensibilidade realizada anteriormente para as três operadoras avaliadas.

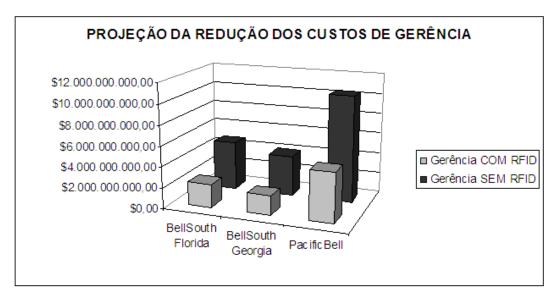


Figura 59 – Projeção da Redução dos Custos de Gerência considerando as três operadoras.

A impossibilidade de serem avaliados os novos negócios gerados a partir da utilização da tecnologia RFID e seu impacto sobre a lucratividade resultante, não permite que análises de sensibilidade com modelos mais complexos sejam realizados.

5.4. Gerenciamento Independente Usando a Tecnologia RFID Proposta

A Figura 60 faz uma analogia entre a arquitetura do sistema RFID proposto com a arquitetura da rede EPCGlobal tradicional, apresentada anteriormente na Figura 5 no item 2.1.1.

Na arquitetura tradicional, uma ferramenta computacional gerencia o fluxo de dados gerado pela leitura das etiquetas, isto é, inicia a organização e o processamento dos dados extraído das etiquetas (SAVANT). Em uma hierarquia imediatamente superior, a base de dados ONS (*Object Name Service*) associa a informação obtida ao código EPC do produto através de mecanismos similares aos do DNS (*Domain Naming System*) usados em uma rede Internet. A base de dados EPCIS (*EPC Information System*) armazena as informações de cada produto, formando a cadeia de suprimentos.

Na arquitetura proposta na Figura 60, um arranjo de subportadoras de RF adicionado a um pacote de dados (IP, ATM, SDH, etc.) poderia ser visualizado como uma etiqueta ativa de RF, isto é um "tag" de RF. O sistema de recepção atua como o leitor na tecnologia tradicional. O código EPC Telecom desenvolvido, uma vez que é inteiramente compatível com os sistemas tradicionais, poderia ser processado e interpretado pelo sistema SAVANT e mapeado e armazenado nas bases de dados ONS e EPCIS. Desta forma, a capacidade disponível e sua alteração em função do tráfego de dados seriam avaliadas de forma precisa.

Considerando-se que cada nó fosse supervisionado segundo a descrição anterior, o gerenciamento do anel óptico teria um custo dramaticamente inferior e simplificado em relação às soluções atuais de gerência de capacidade da rede de telecomunicações.

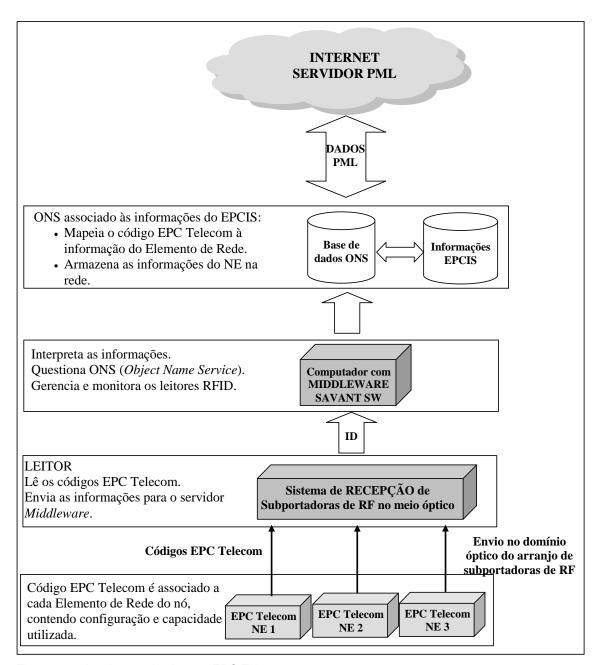


Figura 60 - Arquitetura do sistema EPC Telecom proposto.

5.5. Comentários e Conclusões do Capítulo

Ao longo do presente capítulo foi avaliado o impacto econômico da utilização da tecnologia RFID/EPC Telecom proposta como um subsistema físico das redes NGN.

A avaliação utilizou a seleção dos itens associados ao gerenciamento das redes de acordo com o Capítulo 4. Através de um exemplo, foram sugeridos

percentuais de redução para estes custos de gerência. Os percentuais propostos correspondem a uma avaliação conservadora resultante de vários contatos com operadoras brasileiras. Desta forma, uma redução de pelo menos 50% dos custos relacionados ao gerenciamento da rede foi verificada, segundo indica o gráfico da Figura 59.

Finalmente, foi considerada a utilização do sistema proposto operando de forma autônoma e independente dos sistemas de gerência já instalados nas redes legadas e NGN. A redução de custos neste caso seria ainda maior que o caso avaliado. Nesta aplicação, o CAPEX seria também significativamente inferior comparado às aplicações já existente, uma vez que os equipamentos e sistemas envolvidos nesta solução são mais simples e mais baratos.