Modelo matemático do processo APCI-C3MR

3.1 Introdução

No presente capítulo é apresentado o modelo matemático do processo APCI C3MR. São estudados cada um dos componentes que pertencem aos dois circuitos principais que compõem o referido processo.

3.2

Objetivos do capítulo

Para o presente capítulo tem-se como objetivo desenvolver o modelo matemático das unidades da planta. Dele resultam os seguintes objetivos específicos:

- 1. Levantar características físicas e nominais dos equipamentos.
- 2. Adaptar o modelo para compará-lo com os dados do projeto.
- Determinar o desempenho dos equipamentos e da planta mediante sua simulação.

3.3 Modelo matemático e Hipóteses simplificadoras

O modelo matemático aqui apresentado é baseado nas equações termodinâmicas fundamentais, as quais são aplicadas a cada equipamento, tanto o

balanço de massa quanto o de energia, considerando as propriedades dos fluidos refrigerantes, do GN e dos fluidos de arrefecimento.

É importante mencionar que, para simplificar os cálculos de troca de calor, já que é desconhecida a geometria dos trocadores, tomou-se a como sua característica a efetividade. Tal abordagem simplifica a entrada de dados para o modelo, visto que a efetividade situa-se entre zero e um.

Visando uma melhor compreensão em trabalhos futuros, optou-se, no presente trabalho, por apresentar, explicitamente, todas as equações que compõem o modelo matemático.

Para o modelo analisado foram impostas as seguintes hipóteses:

- a) O sistema é considerado como operando em regime permanente;
- b) As quedas de pressão não são consideradas, tanto nos equipamentos como nas tubulações;
- c) Os equipamentos são adiabáticos, isto é, não existe perda ou ganho do calor da vizinhança;
- d) As propriedades termodinâmicas do GN e da MR foram calculadas por meio de equações de ajustes de pontos obtidos do programa REFPROP (Lemmon et al, 2002).

A simulação foi realizada para composições fixas, tanto de GN como da MR. Para o presente caso, a composição do GN tem como principal componente o metano, com 90% (em fração molar), seguido pelo etano com 10%.

Para o caso da MR, a composição apresenta as seguintes porcentagens: 10% N₂, 40% CH₄, 40% C₂H₆, 10% C₃H₈ (em fração molar).

As figuras 32 e 33 mostram os diagramas P-h do GN e da MR obtidos com o REFPROP (Lemmon et al, 2002).

Para os casos da MR e do GN, os valores das propriedades (T, h, s, x) foram levados do REFPROP para o EXCEL, onde foram geradas as curvas e equações que são inseridas no programa EES. As equações levadas para o EES formam parte do sistema de equações a ser resolvidos.

Figura 32 Diagrama P-h do GN obtido com REFPROP (Lemmon et al, 2002)

Figura 33 Diagrama P-h da MR (10%N2, 40%CH4, 40%C2H6, 10%C3H8) obtido com REFPROP (Lemmon et al, 2002)

Ciclo de Pré-resfriamento

O sistema de pré-resfriamento foi simplificado em relação à planta de GNL Melchorita, para viabilizar a análise do processo. Foram mantidos os principais equipamentos, a saber: o compressor, os condensadores a ar, evaporadores e separadores. Mostram-se, na figura 34, os principais equipamentos e os fluxos energéticos mais relevantes.

3.4.1 Condensador

Os condensadores e pós-resfriadores são resfriados a ar. Na primeira etapa o condensador 1 baixa a temperatura do refrigerante até uma temperatura de 41°C. Para a segunda etapa, o pós resfriador baixa a temperatura até aproximadamente 29°C (segundo dados da Planta Melchorita, 2003).

É importante mencionar que, entre o condensador e o resfriador, há um acumulador de C_3H_8 , para garantir a vazão mássica de refrigerante em transientes. Seu efeito na operação da planta em regime permanente não foi considerado.

PUC-Rio - Certificação Digital Nº 0621129/CA

Para a análise do condensador foram adotadas as seguintes hipóteses:

- a) O vapor, à entrada do condensador 1, está superaquecido à pressão de condensação.
- b) O fluxo do ar é suficientemente grande para que a temperatura de entrada do propano se reduza a um valor prescrito de 41°C.

Figura 35 Volume de controle do condensador 1.

O balanço de massa no condensador 1 é dado por:

$$m_{11} = m_{12} \tag{3.1}$$

Os balanços de energia no lado do refrigerante (C_3H_8) e do GN fornecem, respectivamente:

$$Q_{COND1} = m_{11} \left(h_{11} - h_{12} \right) \tag{3.2}$$

$$Q_{COND1} = m_{ar} c_{p,ar} \left(T_{ar;out} - T_{ar;in} \right)$$
(3.3)

As propriedades termodinâmicas dos pontos 11 e 12 determinam-se por:

$$h_{11} = h(P = P_{COND1}; T = T_{11})$$
(3.4)

Entende-se, pela equação (1.4), que a entalpia especifica do ponto 11, será determinada pela função $h(P = P_{COND1}; T = T_{11})$, tendo como parâmetros de entrada a pressão, P_{COND1} , e uma temperatura, T_{11} . As funções para a determinação

das propriedades termodinâmicas serão fornecidas, no presente trabalho, pela plataforma EES (EES, 2004).

A temperatura de saída do refrigerante do condensador, T_{12} , é prescrita e permite a determinação do estado termodinâmico neste ponto.

$$T_{12} = 41^{\circ} C \tag{3.5}$$

$$h_{12} = h \left(P = P_{COND1}; T = T_{12} \right)$$
(3.6)

Devido ao fato de as temperaturas de entrada e saída do condensador serem conhecidas, não foi necessário utilizar a equação de efetividade.

São dados de entrada, a vazão mássica do ar, a temperatura de entrada do ar $T_{ar;in}$ e a temperatura T_{12} .

3.4.2 Pós-resfriador

Na entrada do pós-resfriador o refrigerante encontra-se subresfriado, e tem sua temperatura reduzida ainda mais.

Foram adotadas as seguintes hipóteses:

- a) O líquido na entrada do condensador 2 está à pressão de condensação.
- b) O fluxo do ar é suficientemente grande para que a temperatura do propano se reduza a um valor prescrito.

Figura 36 Volume de controle do pós resfriador

Balanço de massa no pós-resfriador 1:

$$m_{15} = m_{14} \tag{3.7}$$

Os balanços de energia no lado do refrigerante (C_3H_8) e do GN fornecem, respectivamente:

$$\hat{Q}_{subc1} = m_{14} \left(h_{14} - h_{15} \right) \tag{3.8}$$

$$Q_{subc1} = m_{ar} c_{p,ar} \left(T_{ar2;out} - T_{ar;in} \right)$$
 (3.9)

$$h_{15} = h \left(P = P_{COND}; T = T_{15} \right)$$
(3.10)

A efetividade para o pós resfriador é dada por:

$$\varepsilon_{h_{subc1}} = \frac{T_{14} - T_{15}}{T_{14} - T_{ar;in}} \tag{3.11}$$

Dados de entrada: vazão mássica do ar, m_{ar} ; pressões de trabalho do condensador 1 e do pós-resfriador 1, P_{COND1} , P_{subc1} ; temperatura de saída da MR do pós-resfriador 1, T_{12} ; efetividade da troca de calor para o pós-resfriador 1, $\varepsilon_{h_{subc1}}$.

3.4.3 Evaporadores

A figura 34 mostra, no circuito do sistema de pré-resfriamento, a distribuição dos evaporadores, em dois grupos. Para a análise levar-se-á em consideração que as equações da mistura do GN e a MR serão fornecidas pelo REFPROP (Lemmon et al, 2002).

3.4.3.1 Evaporadores GN – C₃H₈

Para a análise do evaporador foram adotadas as seguintes hipóteses:

- a) O vapor na saída dos evaporadores está saturado à pressão de evaporação;
- b) É adiabático, isto é, não existe perda ou ganho de calor da vizinhança;

Figura 37 Volume de controle do evaporador de $GN - C_3H_8$

Balanço de massa no segundo evaporador:

 $m_{23} = m_{24} + m_{25}$

Os balanços de energia no lado do refrigerante (C_3H_8) e do GN fornecem, respectivamente:

$$Q_{GN2} = m_{24} h_{24} + m_{25} h_{25} - m_{23} h_{23}$$
(3.13)

$$Q_{GN2} = m_{GN} \left(h_{inGN2} - h_{outGN2} \right)$$
(3.14)

A análise do evaporador mediante a efetividade é dada por (Parise, 2005):

$$\varepsilon_{h_{EVA,GN}} = \frac{Q_{GN2}}{Q_{MAX,GN2}} = \frac{Q_{GN2}}{m_{GN} \left(h_{inGN2} - h_{\min GN2}\right)}$$
(3.15)

(3.12)

onde $h_{\min GN2}$ é calculada em função da temperatura mais próxima à temperatura do refrigerante na entrada do evaporador.

Para o cálculo das propriedades termodinâmicas do GN supôs-se uma pressão de entrada nos evaporadores de 6,3 MPa. A tabela 8 mostra os resultados das entalpias especificas calculada com o pacote REFPROP. Estes valores foram colocados em uma planilha EXCEL, para se obter a curva entalpia versus temperatura, em uma faixa de -64°C até 80 °C, para a pressão especificada. A curva é mostrada na figura 38, com a respectiva equação de ajuste, a qual foi inserida no ambiente EES para a simulação do ciclo.

Temp.	Entalpia	Temp.	Entalpia
(°C)	(kJ/kg)	(°C)	(kJ/kg)
-64	449,4	10	773,55
-62	476,77	12	779,06
-60	499,03	14	784,55
-58	517,2	16	790,01
-56	532,59	18	795,45
-54	546,06	20	800,86
-52	558,14	22	806,26
-50	569,17	24	811,63
-48	579,41	26	816,99
-46	589	28	822,34
-44	598,07	30	827,66
-42	606,7	32	832,98
-40	614,97	33	835,63
-38	622,93	34	838,28
-36	630,63	36	843,57
-34	638,08	38	848,85
-32	645,33	40	854,12
-30	652,4	42	859,39
-28	659,31	44	864,64
-26	666,08	46	869,89
-24	672,71	48	875,13
-22	679,22	50	880,37
-20	685,63	52	885,6
-18	691,94	54	890,83
-16	698,16	56	896,05
-14	704,3	58	901,27
-12	710,37	60	906,49
-10	716,37	62	911,71
-8	722,3	64	916,93
-6	728,18	66	922,15
-4	734	68	927,36
-2	739,77	70	932,58
0	745,5	72	937,8
2	751,18	74	943,02
4	756,83	76	948,24
6	762,44	78	953,46
8	768,01	80	958,68

Tabela 8 Valores da entalpia específica em função da temperatura para o GN a uma pressão de 6,3 MPa e composição 90% CH_4 e 10% C_2H_6 .

Figura 38 Variação da entalpia em função da temperatura para o GN a uma pressão de 6,3 MPa.

As propriedades do GN nos pontos 23, 24 e 25, são dadas por:

$$h_{inGN2} = -6 \times 10^{-10} \times T_{inGN2}^{6} + 6 \times 10^{-08} \times T_{inGN2}^{5} + 8 \times 10^{-08} \times T_{inGN2}^{4} - 1 \times 10^{-04} \times T_{inGN2}^{3} - 0,0049 \times T_{inGN2}^{2} + 2,9561 \times T_{inGN2} + 745,24$$
(3.16)

$$h_{outGN2} = -6 \times 10^{-10} \times T_{outGN2}^{6} + 6 \times 10^{-08} \times T_{outGN2}^{5} + 8 \times 10^{-08} \times T_{outGN2}^{4} - 1 \times 10^{-04} \times T_{outGN2}^{3} - 0,0049 \times T_{outGN2}^{2} + 2,9561 \times T_{outGN2} + 745,24$$
(3.17)

$$h_{\min GN2} = -6 \times 10^{-10} \times T_{23}^{-6} + 6 \times 10^{-08} \times T_{23}^{-5} + 8 \times 10^{-08} \times T_{23}^{-4} - 1 \times 10^{-04} \times T_{23}^{-3} - 0,0049 \times T_{23}^{-2} + 2,9561 \times T_{23} + 745,24$$
(3.18)

Segundo as considerações entre a saída de um equipamento e a entrada do equipamento imediatamente a jusante, tanto para o refrigerante como para o GN, tem-se:

 $h_{inGN2} = h_{outGN3} \tag{3.19}$

 $m_{22} = m_{23} \tag{3.20}$

$$T_{23} = T_{EVA \ GN2} \tag{3.21}$$

$$T_{24} = T_{EVA,GN2}$$
(3.22)

$$T_{25} = T_{EVA,GN2}$$
(3.23)

$$h_{23} = h_{22} \tag{3.24}$$

Para o cálculo das entalpias especificas, tem-se:

$$h_{22} = h \left(P = P_{EVA3}; x = 0 \right) \tag{3.25}$$

$$h_{24} = h \left(P = P_{EVA2}; x = 1 \right)$$
(3.26)

$$h_{25} = h \left(P = P_{EVA2}; x = 0 \right) \tag{3.27}$$

As análises dos outros evaporadores se desenvolvem analogamente. Para o primeiro evaporador GN-C₃H₈, se apresentam as seguintes equações:

Balanço de massa: $m_{26} = m_{27}$ (3.28)

Os balanços de energia no lado do refrigerante (C_3H_8) e do GN fornecem, respectivamente:

$$Q_{GN1} = m_{27} \left(h_{27} - h_{26} \right) \tag{3.29}$$

$$Q_{GN1} = m_{GN} \left(h_{inGN1} - h_{outGN1} \right)$$
(3.30)

A efetividade para o evaporador é dada por:

$$\varepsilon_{h_{EVA,GN}} = \frac{Q_{GN1}}{Q_{MAX,GN1}} = \frac{Q_{GN1}}{m_{GN} \left(h_{inGN1} - h_{\min GN1}\right)}$$
(3.31)

As propriedades nos pontos de entrada e saída do GN no primeiro evaporador, são:

$$h_{inGN1} = -6 \times 10^{-10} \times T_{inGN1}^{6} + 6 \times 10^{-08} \times T_{inGN1}^{5} + 8 \times 10^{-08} \times T_{inGN1}^{4} - 1 \times 10^{-04} \times T_{inGN1}^{3} - 0,0049 \times T_{inGN1}^{2} + 2,9561 \times T_{inGN1} + 745,24$$
(3.32)

$$h_{outGN1} = -6 \times 10^{-10} \times T_{outGN1}^{6} + 6 \times 10^{-08} \times T_{outGN1}^{5} + 8 \times 10^{-08} \times T_{outGN1}^{4} - 1 \times 10^{-04} \times T_{outGN1}^{3} - 0,0049 \times T_{outGN1}^{2} + 2,9561 \times T_{outGN1} + 745,24$$
(3.33)

$$h_{\min GN1} = -6 \times 10^{-10} \times T_{26}^{-6} + 6 \times 10^{-08} \times T_{26}^{-5} + 8 \times 10^{-08} \times T_{26}^{-4} - 1 \times 10^{-04} \times T_{26}^{-3} - 0,0049 \times T_{26}^{-2} + 2,9561 \times T_{26} + 745,24$$
(3.34)

Segundo as considerações de entrada e saída do refrigerante, tem-se:

$$h_{inGN1} = h_{outGN2} \tag{3.35}$$

$$T_{26} = T_{EVA,GN1}$$
(3.36)

$$T_{27} = T_{EVA,GN1}$$
(3.37)

$$h_{26} = h_{25} \tag{3.38}$$

$$h_{27} = h \left(P = P_{EVA1}; x = 1 \right) \tag{3.39}$$

Para o terceiro evaporador do GN apresentam-se analogamente as seguintes equações:

Balanço de massa:
$$m_{20} = m_{21} + m_{22}$$
 (3.40)

Os balanços de energia no lado do refrigerante (C_3H_8) e do GN fornecem respectivamente:

$$Q_{GN3} = m_{21} h_{21} + m_{22} h_{22} - m_{20} h_{20}$$
(3.41)

$$Q_{GN2} = m_{GN} \left(h_{inGN3} - h_{outGN3} \right) \tag{3.42}$$

A efetividade para o terceiro evaporador é dada por:

$$\varepsilon_{h_{EVA,GN}} = \frac{Q_{GN3}}{Q_{MAX,GN3}} = \frac{Q_{GN3}}{m_{GN} (h_{inGN3} - h_{\min GN3})}$$
(3.43)

As propriedades na entrada e saída do GN no terceiro evaporador, são dadas por:

$$h_{inGN3} = -6 \times 10^{-10} \times T_{inGN3}^{6} + 6 \times 10^{-08} \times T_{inGN3}^{5} + 8 \times 10^{-08} \times T_{inGN3}^{4} - 1 \times 10^{-04} T_{inGN3}^{3} - 0,0049 T_{inGN3}^{2} + 2,9561 T_{inGN3} + 745,24$$
(3.44)

$$h_{outGN3} = -6 \times 10^{-10} \times T_{outGN3}^{6} + 6 \times 10^{-08} \times T_{outGN3}^{5} + 8 \times 10^{-08} \times T_{outGN3}^{4} - 1 \times 10^{-04} \times T_{outGN3}^{3} - 0,0049 \times T_{outGN3}^{2} + 2,9561 \times T_{outGN3} + 745,24$$
(3.45)

$$h_{\min GN3} = -6 \times 10^{-10} \times T_{20}^{-6} + 6 \times 10^{-08} \times T_{20}^{-5} + 8 \times 10^{-08} \times T_{20}^{-4} - 1 \times 10^{-04} \times T_{20}^{-3} - 0,0049 \times T_{20}^{-2} + 2,9561 \times T_{20} + 745,24$$
(3.46)

$$h_{inGN3} = h_{outGN4} \tag{3.47}$$

As propriedades dos pontos 19, 21 e 22 são determinadas como segue:

$$T_{20} = T_{EVA,GN3} \tag{3.48}$$

$$T_{21} = T_{EVA,GN3} \tag{3.49}$$

$$T_{22} = T_{EVA,GN3}$$
(3.50)

$$h_{20} = h_{19} \tag{3.51}$$

$$h_{19} = h \left(P = P_{EVA4}; x = 0 \right) \tag{3.52}$$

$$h_{21} = h \left(P = P_{EVA3}; x = 1 \right) \tag{3.53}$$

$$h_{22} = h \left(P = P_{EVA3}; x = 0 \right) \tag{3.54}$$

Para o quarto evaporador do GN analogamente apresentam-se as seguintes equações:

Balanço de massa:

$$m_{17} = m_{18} + m_{19} \tag{3.55}$$

Os balanços de energia no lado do refrigerante (C_3H_8) e do GN fornecem, respectivamente:

$$Q_{GN4} = m_{18} h_{18} + m_{19} h_{19} - m_{17} h_{17}$$
(3.56)

$$Q_{GN4} = m_{GN} \left(h_{inGN4} - h_{outGN4} \right)$$
(3.57)

A efetividade para o quarto evaporador é dada por:

$$\varepsilon_{h_{EVA,GN}} = \frac{Q_{GN4}}{Q_{MAX,GN4}} = \frac{Q_{GN4}}{m_{GN} \left(h_{inGN4} - h_{\min GN4}\right)}$$
(3.58)

As propriedades do GN nos pontos 16, 17, 18 e 19 são dadas por:

$$h_{inGN4} = -6 \times 10^{-10} \times T_{inGN4}^{6} + 6 \times 10^{-08} \times T_{inGN4}^{5} + 8 \times 10^{-08} \times T_{inGN4}^{4} - 1 \times 10^{-04} \times T_{inGN4}^{3} - 0,0049 \times T_{inGN4}^{2} + 2,9561 \times T_{inGN4} + 745,24$$
(3.59)

$$h_{outGN4} = -6 \times 10^{-10} \times T_{outGN4}^{6} + 6 \times 10^{-08} \times T_{outGN4}^{5} + 8 \times 10^{-08} \times T_{outGN4}^{4} - (3.60)$$

1×10⁻⁰⁴ × T_{outGN4}^{3} - 0,0049 × T_{outGN4}^{2} + 2,9561 × T_{outGN4} + 745,24

$$h_{\min GN3} = -6 \times 10^{-10} \times T_{17}^{6} + 6 \times 10^{-08} \times T_{17}^{5} + 8 \times 10^{-08} \times T_{17}^{4} - 1 \times 10^{-04} \times T_{17}^{3} - 0,0049 \times T_{17}^{2} + 2,9561 \times T_{17} + 745,24$$
(3.61)

$$T_{17} = T_{EVA,GN4} (3.62)$$

$$T_{18} = T_{EVA,GN4}$$
(3.63)

$$T_{19} = T_{EVA,GN4} \tag{3.64}$$

Para o cálculo das entalpias especificas, tem-se:

$$h_{17} = h_{16}$$
 (3.65)

$$h_{16} = h \left(P = P_{COND2}; x = 0 \right) \tag{3.66}$$

$$h_{18} = h \left(P = P_{EVA4}; x = 1 \right) \tag{3.67}$$

$$h_{19} = h \left(P = P_{EVA4}; x = 0 \right) \tag{3.68}$$

São dados de entrada: vazão mássica do GN, m_{GN} ; pressões de trabalho dos evaporadores, $P_{EVA1}, P_{EVA2}, P_{EVA3}, P_{EVA4}$; temperatura de entrada do GN, $T_{in,GN4}$; efetividade da troca de calor para os evaporadores, $\varepsilon_{h_{EVA,GN}}$.

3.4.3.2 Evaporadores da MR – C₃H₈

Para a análise do evaporador foram adotadas as seguintes hipóteses:

 a) O vapor na saída dos evaporadores está saturado à pressão de evaporação.

b) É adiabático.

Figura 39 Volume de controle do evaporador da MR

Balanço de massa:

$$m_{37} = m_{28} + m_{40} \tag{3.69}$$

Os balanços de energia no lado do refrigerante (C_3H_8) e da MR fornecem, respectivamente:

$$Q_{MR2} = m_{38} h_{38} + m_{40} h_{40} - m_{37} h_{37}$$
(3.70)

$$Q_{MR2} = m_{MR} \left(h_{inMR2} - h_{outMR2} \right) \tag{3.71}$$

A efetividade para o evaporador é dada por:

$$\varepsilon_{h_{EVA,MR}} = \frac{Q_{MR2}}{Q_{MAX,MR2}} = \frac{Q_{MR2}}{m_{MR} \left(h_{inMR2} - h_{\min MR2} \right)}$$
(3.72)

As temperaturas para a MR ficam determinadas pelas seguintes equações, as quais foram obtidas do programa REFPROP (Lemmon et al, 2002) (10% nitrogênio - 40% metano - 40% etano - 10% etano)

$$h_{inMR2} = -4 \times 10^{-10} \times T_{inMR2}^{6} + 9 \times 10^{-08} \times T_{inMR2}^{5} - 7 \times 10^{-06} \times T_{inMR2}^{4} + 0,0003 \times T_{inMR2}^{3} - 0,013 \times T_{inMR2}^{2} + 2,8595 \times T_{inMR2} + 569,37$$
(3.73)

$$h_{outMR2} = -4 \times 10^{-10} \times T_{outMR2}^{6} + 9 \times 10^{-08} \times T_{outMR2}^{5} - 7 \times 10^{-06} \times T_{outMR2}^{4} + (3.74)$$

0,0003 × T_{outMR2}^{3} - 0,013 × T_{outMR2}^{2} + 2,8595 × T_{outMR2} + 569,37

$$h_{\min MR2} = -4 \times 10^{-10} \times T_{37}^{6} + 9 \times 10^{-08} \times T_{37}^{5} - 7 \times 10^{-06} \times T_{37}^{4} + 0,0003 \times T_{37}^{3} - 0,013 \times T_{37}^{2} + 2,8595 \times T_{37} + 569,37$$
(3.75)

$$h_{inMR2} = h_{outMR3} \tag{3.76}$$

As propriedades dos pontos 36, 38 e 40 se determinam como segue:

$$m_{36} = m_{37} \tag{3.77}$$

$$T_{37} = T_{EVA,MR2}$$
(3.78)

$$T_{38} = T_{EVA,MR2}$$
(3.79)

$$T_{40} = T_{EVA,MR2} (3.80)$$

$$h_{37} = h_{36} \tag{3.81}$$

Para o cálculo das entalpias especificas, tem-se:

$$h_{36} = h \left(P = P_{EVA3}; x = 0 \right)$$
(3.82)

$$h_{38} = h \left(P = P_{EVA2}; x = 1 \right) \tag{3.83}$$

$$h_{40} = h \left(P = P_{EVA2}; x = 0 \right) \tag{3.84}$$

A análise dos outros evaporadores se desenvolve analogamente. Para o primeiro evaporador da MR se apresentam as seguintes equações:

Balanço de massa:

$$m_{41} = m_{42} \tag{3.85}$$

Os balanços de energia no lado do refrigerante (C_3H_8) e da MR fornecem, respectivamente:

$$\hat{Q}_{MR1} = m_{41} \left(h_{42} - h_{41} \right) \tag{3.86}$$

$$Q_{MR1} = m_{MR} \left(h_{inMR1} - h_{outMR1} \right)$$
(3.87)

A efetividade para o evaporador é dada por:

$$\varepsilon_{h_{EVA,MR}} = \frac{Q_{MR1}}{Q_{MAX,MR1}} = \frac{Q_{MR1}}{m_{MR} \left(h_{inMR1} - h_{\min MR1} \right)}$$
(3.88)

As propriedades nos pontos de entrada e saída da MR no primeiro evaporador são dadas por:

$$h_{inMR1} = -4 \times 10^{-10} \times T_{inMR1}^{6} + 9 \times 10^{-08} \times T_{inMR1}^{5} - 7 \times 10^{-06} \times T_{inMR1}^{4} + 0,0003 \times T_{inMR1}^{3} - 0,013 \times T_{inMR1}^{2} + 2,8595 \times T_{inMR1} + 569,37$$
(3.89)

$$h_{outMR1} = -6 \times 10^{-10} \times T_{outMR1}^{6} - 4 \times 10^{-07} \times T_{outMR1}^{5} - 0,0001 \times T_{outMR1}^{4} - 0,0137 \times T_{outMR1}^{3} - 0,9085 \times T_{outMR1}^{2} - 22,685 \times T_{outMR1} + 244,31$$
(3.90)

$$h_{\min MR1} = -6 \times 10^{-10} \times T_{41}^{6} - 4 \times 10^{-07} \times T_{41}^{5} - 0,0001 \times T_{41}^{4} - 0,0137 \times T_{41}^{3} - 0,9085 \times T_{41}^{2} - 22,685 \times T_{41} + 244,31$$
(3.91)

$$h_{inMR1} = h_{outMR2} \tag{3.92}$$

As propriedades dos pontos 41 e 42 se determinam por:

$$T_{41} = T_{EVA,MR1}$$
(3.93)

$$T_{42} = T_{EVA,MR1}$$
(3.94)

$$h_{41} = h_{40} \tag{3.95}$$

$$h_{42} = h \left(P = P_{EVA1}; x = 1 \right) \tag{3.96}$$

Analogamente, para o terceiro evaporador da MR:

$$m_{33} = m_{34} + m_{36} \tag{3.97}$$

$$Q_{MR3} = m_{34} h_{34} + m_{36} h_{36} - m_{33} h_{33}$$
(3.98)

$$Q_{MR3} = m_{MR} \left(h_{inMR3} - h_{outMR3} \right) \tag{3.99}$$

$$\varepsilon_{h_{EVA,MR}} = \frac{Q_{MR3}}{Q_{MAX,MR3}} = \frac{Q_{MR3}}{m_{MR} \left(h_{inMR3} - h_{\min MR3} \right)}$$
(3.100)

$$h_{inMR3} = -4 \times 10^{-10} \times T_{inMR3}^{6} + 9 \times 10^{-08} \times T_{inMR3}^{5} - 7 \times 10^{-06} \times T_{inMR3}^{4} + 0,0003 \times T_{inMR3}^{3} - 0,013 \times T_{inMR3}^{2} + 2,8595 \times T_{inMR3} + 569,37$$
(3.101)

$$h_{outMR3} = -4 \times 10^{-10} \times T_{outMR3}^{6} + 9 \times 10^{-08} \times T_{outMR3}^{5} - 7 \times 10^{-06} \times T_{outMR3}^{4} + (3.102)$$

0,0003 × T_{outMR3}^{3} - 0,013 × T_{outMR3}^{2} + 2,8595 × T_{outMR3} + 569,37

$$h_{\min MR3} = -4 \times 10^{-10} \times T_{36}^{-6} + 9 \times 10^{-08} \times T_{36}^{-5} - 7 \times 10^{-06} \times T_{36}^{-4} + 0,0003 \times T_{36}^{-3} - 0,013 \times T_{36}^{-2} + 2,8595 \times T_{36}^{-4} + 569,37$$
(3.103)

$$h_{inMR3} = h_{outMR4} \tag{3.104}$$

$$T_{33} = T_{EVA,MR3}$$
(3.105)

$$T_{34} = T_{EVA,MR3}$$
(3.106)

$$T_{36} = T_{EVA,MR3} (3.107)$$

$$h_{33} = h_{32} \tag{3.108}$$

$$h_{32} = h \left(P = P_{EVA4}; x = 0 \right) \tag{3.109}$$

$$h_{34} = h \left(P = P_{EVA3}; x = 1 \right) \tag{3.110}$$

$$h_{36} = h \left(P = P_{EVA3}; x = 0 \right) \tag{3.111}$$

E, para o quarto evaporador da MR, analogamente:

$$m_{29} = m_{30} + m_{32} \tag{3.112}$$

$$Q_{MR4} = m_{30} h_{30} + m_{32} h_{32} - m_{29} h_{29}$$
(3.113)

$$\dot{Q}_{MR4} = m_{MR} \left(h_{inMR4} - h_{outMR4} \right)$$
(3.114)

$$\varepsilon_{h_{EVA,MR}} = \frac{Q_{MR4}}{Q_{MAX,MR4}} = \frac{Q_{MR4}}{m_{MR} \left(h_{inMR4} - h_{\min MR4} \right)}$$
(3.115)

$$h_{inMR4} = -4 \times 10^{-10} \times T_{inMR4}^{6} + 9 \times 10^{-08} \times T_{inMR4}^{5} - 7 \times 10^{-06} \times T_{inMR4}^{4} +$$

$$0,0003 \times T_{inMR4}^{3} - 0,013 \times T_{inMR4}^{2} + 2,8595 \times T_{inMR4} + 569,37$$

$$h_{outMR4} = -4 \times 10^{-10} \times T_{outMR4}^{6} + 9 \times 10^{-08} \times T_{outMR4}^{5} - 7 \times 10^{-06} \times T_{outMR4}^{4} +$$

$$0,0003 \times T_{outMR4}^{3} - 0,013 \times T_{outMR4}^{2} + 2,8595 \times T_{outMR4} + 569,37$$

$$(3.116)$$

$$h_{\min MR4} = -4 \times 10^{-10} \times T_{29}^{-6} + 9 \times 10^{-08} \times T_{29}^{-5} - 7 \times 10^{-06} \times T_{29}^{-4} + 0,0003 \times T_{29}^{-3} - 0,013 \times T_{29}^{-2} + 2,8595 \times T_{29} + 569,37$$
(3.118)

$$T_{29} = T_{EVA,MR4} (3.119)$$

$$T_{30} = T_{EVA,MR4} \tag{3.120}$$

$$T_{32} = T_{EVA,MR4} \tag{3.121}$$

$$h_{29} = h_{28} \tag{3.122}$$

$$h_{28} = h \left(P = P_{COND2}; T = T_{28} \right)$$
(3.123)

$$h_{30} = h \left(P = P_{EVA4}; x = 1 \right) \tag{3.124}$$

$$h_{32} = h \left(P = P_{EVA4}; x = 0 \right) \tag{3.125}$$

Dados de entrada: vazão mássica da MR, m_{MR} ; pressões de trabalho dos evaporadores, $P_{EVA1}, P_{EVA2}, P_{EVA3}, P_{EVA4}$; temperatura de entrada do MR, T_{inMR} ; efetividade da troca de calor para os evaporadores, $\varepsilon_{h_{EVA,MR}}$.

3.4.4 Compressor

Na figura 41, mostram-se os níveis de pressão dos diversos evaporadores que operam no circuito de propano, para resfriar o GN e a MR.

Figura 40 Diagrama P-h do circuito de propano

Para o compressor são adotadas as seguintes hipóteses:

- a) O compressor apresenta uma eficiência isentrópica de $\eta_{isse}=0,8$.
- b) É adiabático.

Figura 41 Volume de controle do compressor

Para o caso particular será analisado o segundo estágio do compressor, tendo à entrada o ponto 4, resultado da mistura de 3 com 2' e 5' como o ponto ideal de compressão isentrópica.

Balanço de massa:

$$m_4 = m_2 + m_3 \tag{3.126}$$

Balanço de energia

$$m_4 h_4 = m_2 h_2 - m_3 h_3 \tag{3.127}$$

Para encontrar os pontos 2', 5', 8' e 11' parte-se da definição de eficiência isentrópica do compressor, que é dada por:

$$\eta_{isse} = \frac{(h_5 - h_4)}{(h_{5,1} - h_4)} \tag{3.128}$$

As propriedades dos pontos 3, 4 e 5 se determinam como segue:

$$T_2 = T_{EVA2}$$
 (3.129)

$$T_3 = T_{EVA2}$$
 (3.130)

$$T_4 = T_{EVA2} \tag{3.131}$$

$$h_3 = h \left(P = P_{EVA2}; x = 1 \right) \tag{3.132}$$

$$s_4 = s\left(P = P_{EVA2}; h = h_4\right) \tag{3.133}$$

$$s_5 = s_4$$
 (3.134)

$$h_5 = h \left(P = P_{EVA3}; s = s_5 \right) \tag{3.135}$$

Para a análise das propriedades termodinâmicas dos outros pontos do processo, têm-se as seguintes equações para as vazões mássicas e entalpias especificas do refrigerante:

$$m_2 = m_1$$
 (3.136)

$$m_4 = m_5$$
 (3.137)

$$m_7 = m_8$$
 (3.138)

$$m_7 = m_5 + m_6 \tag{3.139}$$

$$h_{31} = h_9$$
(3.140) $h_{35} = h_6$ (3.141) $h_{39} = h_3$ (3.142) $h_{43} = h_1$ (3.143)

Para as propriedades termodinâmicas dos pontos 1 e 2, tem-se:

$$s_1 = s \left(T = T_{EVA1}; x = 1 \right) \tag{3.144}$$

$$s_2 = s_1$$
 (3.145)

$$h_1 = h \left(P = P_{EVA1}; s = s_1 \right) \tag{3.146}$$

$$h_2 = h \left(P = P_{EVA2}; s = s_2 \right) \tag{3.147}$$

$$\eta_{isse} = \frac{(h_2 - h_1)}{(h_{2,1} - h_1)} \tag{3.148}$$

Analogamente, para o primeiro, terceiro e quarto estágio.

$$m_7 = m_5 + m_6 \tag{3.149}$$

$$m_7 h_7 = m_5 h_5 - m_6 h_6 \tag{3.150}$$

$$h_6 = h \left(P = P_{EVA3}; x = 1 \right) \tag{3.151}$$

$$s_7 = s(P = P_{EVA3}; h = h_7)$$
 (3.152)

$$s_8 = s_7$$
 (3.153)

$$h_8 = h \left(P = P_{EVA4}; s = s_8 \right) \tag{3.154}$$

$$\eta_{isse} = \frac{(h_8 - h_7)}{(h_{8,1} - h_7)} \tag{3.155}$$

$$m_{10} = m_8 + m_9 \tag{3.156}$$

$$m_{10} h_{10} = m_8 h_8 - m_9 h_9 \tag{3.157}$$

$$h_9 = h \left(P = P_{EVA4}; x = 1 \right) \tag{3.158}$$

$$s_{10} = s \left(P = P_{EVA4}; h = h_{10} \right)$$
(3.159)

$$s_{11} = s_{10} \tag{3.160}$$

$$h_{11} = h \left(P = P_{COND}; s = s_{11} \right)$$
(3.161)

$$T_{11} = h \left(P = P_{COND}; h = h_{11} \right)$$
(3.162)

$$\eta_{isse} = \frac{\left(h_{11} - h_{10}\right)}{\left(h_{11,1} - h_{10}\right)} \tag{3.163}$$

São dados de entrada: pressões de trabalho dos evaporadores, $P_{EVA1}, P_{EVA2}, P_{EVA3}, P_{EVA4}$; eficiência isentrópica do compressor, η_{isse} .

3.4.5 Taxa de transferência de calor dos evaporadores

A taxa de transferência de calor total dos evaporadores é resultado da soma dos dois grupos, por um lado dos evaporadores que resfriam o GN e, por outro, dos evaporadores que resfriam a MR.

3.4.5.1 Evaporadores GN – C₃H₈

 $Q_{GN1} = m_{GN} \left(h_{inGN1} - h_{outGN1} \right)$ (3.164)

$$Q_{GN2} = m_{GN} \left(h_{inGN2} - h_{outGN2} \right)$$
(3.165)

$$Q_{GN3} = m_{GN} \left(h_{inGN3} - h_{outGN3} \right)$$
(3.166)

$$Q_{GN4} = m_{GN} \left(h_{inGN4} - h_{outGN4} \right)$$
(3.167)

3.4.5.2

Evaporadores MR – C₃H₈

 $\dot{Q}_{MR1} = m_{MR} \left(h_{inMR1} - h_{outMR1} \right)$ (3.168)

$$Q_{MR2} = m_{MR} \left(h_{inMR2} - h_{outMR2} \right)$$
(3.169)

$$Q_{MR3} = m_{MR} \left(h_{inMR3} - h_{outMR3} \right)$$
(3.170)

$$\dot{Q}_{MR4} = \dot{m}_{MR} \left(h_{inMR4} - h_{outMR4} \right)$$
(3.171)

O calor total gerado pelos oito evaporadores é:

$$\dot{Q}_{TOTAL} = \sum \dot{Q}_{GN} + \sum \dot{Q}_{MR} \tag{3.172}$$

3.4.1.5 Potência do compressor

Para a potência do compressor total basta somar as potências parciais de cada estágio do processo do compressor.

$$W_{1_{2,1}} = m_1 (h_{2,1} - h_1)$$
 (3.173)

$$\dot{W}_{4_{5,1}} = \dot{m}_4 \left(h_{5,1} - h_4 \right) \tag{3.174}$$

$$W_{7_{-8,1}} = m_7 \left(h_{8,1} - h_7 \right) \tag{3.175}$$

$$W_{10_{-11,1}} = m_{10} \left(h_{11,1} - h_{10} \right) \tag{3.176}$$

$$W_{TOTAL} = \sum W_{parciais}$$
(3.177)

3.4.7 Válvulas de expansão

Para as diferentes válvulas de estrangulamento valem as seguintes considerações.

- a) Não há trabalho.
- A expansão é adiabática, resultando em um processo a entalpia constante.

A figura 43 mostra o volume de controle básico de uma válvula de expansão do circuito propano:

Figura 42 Exemplo de volume de controle da válvula de estrangulamento

Os balanços de massa nos dispositivos de expansão fornecem, respectivamente: $m_{22} = m_{23}$ (3.178)

$$m_{25} = m_{26}$$
 (3.179)

$$m_{19} = m_{20} \tag{3.180}$$

$$m_{16} = m_{17}$$
 (3.181)

$$m_{36} = m_{37}$$
 (3.183)

$$m_{28} = m_{29} \tag{3.184}$$

E os Balanço de energia:

 $m_{40} = m_{41}$

$h_{22} = h_{23}$	(3.185)

$$h_{25} = h_{26} \tag{3.186}$$

$$h_{19} = h_{20} \tag{3.187}$$

$$h_{16} = h_{17} \tag{3.188}$$

$$h_{40} = h_{41} \tag{3.189}$$

$$h_{36} = h_{37} \tag{3.190}$$

$$h_{28} = h_{29} \tag{3.191}$$

3.4.8

Separadores

No caso dos separadores no circuito do propano, valem as seguintes hipóteses:

a) Não há trabalho;

(3.182)

b) É adiabático e isobárico;

c) O vapor que entra e sai como vapor saturado, como se mostra no diagrama P-h (figura 43);

d) O líquido na saída dos separadores do circuito de propano é diminuto, e será considerado desprezível na presente análise, para a operação em regime permanente.

Figura 43 Volume de controle do separador

Assim, os balanços de massa ficam:

 $m_{43} = m_1 \tag{3.192}$

 $m_{39} = m_3$ (3.193)

$$m_{35} = m_6$$
 (3.194)

$$m_{31} = m_9$$
 (3.195)

E os balanços de energia:

 $h_{43} = h_1 \tag{3.196}$

$$h_{39} = h_3 \tag{3.197}$$

$$h_{35} = h_6 \tag{3.198}$$

$$h_{31} = h_9 \tag{3.199}$$

Ciclo da mistura de refrigerante

O sistema da MR foi igualmente simplificado, em relação à planta Melchorita. Foram conservados, entretanto, os principais equipamentos: os compressores, os pós-resfriadores, o MCHE, e os separadores. Mostram-se, na figura 44, os principais processos que resultam em transferência de calor e consumo de trabalho.

3.5.1 Compressores

No primeiro compressor é garantida a entrada do vapor superaquecido, oriundo do primeiro separador do circuito. A pressão de entrada é de 0,47 MPa, segundo os dados do projeto, e a pressão de descarga, 2 MPa.

Para o compressor de baixa pressão serão adotadas as seguintes considerações:

- a) O compressor apresenta uma eficiência isentrópica de $\eta_{isse}=0.85$.
- b) É adiabático.

Figura 44 Volume de controle do compressor de baixa pressão.

O primeiro compressor do ciclo da MR (44-45) é analisado em particular, supondo o ponto 44 na condição de vapor superaquecido. A entalpia no ponto 45,1 é calculada mediante a eficiência isentrópica do compressor.

O balanço de massa é dado por:

$$m_{44} = m_{45} \tag{3.200}$$

E o balanço de energia:

$$m_{44} h_{44} = m_{45} h_{45} \tag{3.201}$$

As equações para as propriedades nos pontos 44 e 45 foram obtidas da forma explicada anteriormente, ou seja, mediante geração de tabela com o REFPROP e ajuste de curva pelo EXCEL.

As tabelas 9 e 10 mostram os valores obtidos para a MR na pressão de trabalho de 0,47 MPa, que é a pressão na qual a MR sai do MCHE, na última etapa de resfriamento. Os valores foram avaliados em uma faixa de -70 até 80 °C.

A figura 46 e 47 mostram as curvas obtidas.

Т	S	Т	S	Т	S
(°C)	(kJ/kg-K)	(°C)	(kJ/kg-K)	(°C)	(kJ/kg-K)
-70	4,0864	-20	4,4777	32	4,8235
-68	4,1039	-18	4,4919	34	4,836
-66	4,1211	-16	4,506	36	4,8485
-64	4,1381	-14	4,52	38	4,861
-62,644	4,1496	-12	4,5339	40	4,8734
-62	4,155	-10	4,5478	42	4,8857
-60	4,1717	-8	4,5616	44	4,898
-58	4,1883	-6	4,5753	46	4,9103
-56	4,2047	-4	4,5889	48	4,9225
-54	4,2209	-2	4,6025	50	4,9347
-52	4,237	0	4,6159	52	4,9469
-50	4,2529	2	4,6294	54	4,959
-48	4,2687	4	4,6427	56	4,971
-46	4,2844	6	4,656	58	4,9831

-44	4,2999	8	4,6692	60	4,9951
-42	4,3154	10	4,6824	62	5,007
-40	4,3307	12	4,6955	64	5,019
-38	4,3458	14	4,7085	66	5,0309
-36	4,3609	16	4,7215	68	5,0427
-34	4,3759	18	4,7345	70	5,0546
-32	4,3907	20	4,7473	72	5,0664
-30	4,4055	22	4,7602	74	5,0781
-28	4,4201	24	4,7729	76	5,0899
-26	4,4346	26	4,7856	78	5,1016
-24	4,4491	28	4,7983	80	5,1133
-22	4,4635	30	4,8109		

Tabela 9 Valores da entropia em função da temperatura para a MR a uma pressão de 0,47 MPa.

т (°С)	h (kJ/kg)	T (°C)	h (kJ/kg)	Т (°С)	h (kJ/kg)
-70	529,53	-20	618,46	32	714,8
-68	533,09	-18	622,07	34	718,64
-66	536,64	-16	625,68	36	722,49
-64	540,19	-14	629,3	38	726,34
-62,644	542,59	-12	632,92	40	730,21
-62	543,73	-10	636,55	42	734,09
-60	547,28	-8	640,19	44	737,98
-58	550,82	-6	643,84	46	741,89
-56	554,36	-4	647,49	48	745,8
-54	557,9	-2	651,15	50	749,73
-52	561,44	0	654,82	52	753,67
-50	564,99	2	658,5	54	757,62
-48	568,53	4	662,19	56	761,58
-46	572,07	6	665,88	58	765,55
-44	575,62	8	669,59	60	769,54
-42	579,17	10	673,3	62	773,54
-40	582,72	12	677,03	64	777,55
-38	586,28	14	680,76	66	781,57
-36	589,83	16	684,5	68	785,61
-34	593,4	18	688,25	70	789,66
-32	596,96	20	692,02	72	793,72
	1			L	

-30	600,53	22	695,79	74	797,79
-28	604,11	24	699,57	76	801,88
-26	607,69	26	703,36	78	805,98
-24	611,27	28	707,17	80	810,09
-22	614,87	30	710,98		

Tabela 10 Valores da entalpia da MR em função da temperatura para a MR a uma pressão de 0,47 Mpa

Figura 46 Variação da entropia da MR em função da temperatura a uma pressão de 0,47 MPa, entre -70 até 80 $^{\circ}$ C

Figura 47 variação da entalpia da MR em função da temperatura a uma pressão de 0,47 MPa, entre -70 até 80 $^{\rm o}C$

Na pressão de 0,47 MPa as propriedades dos pontos 44 e 67 são:

$$s_{67} = -9 \times 10^{-6} \times T_{67}^2 + 0,0069 \times T_{45} + 4,6158$$
(3.202)

$$h_{67} = 1,8604 \times T_{67} + 656,8 \tag{3.203}$$

$$h_{67} = h_{44} \tag{3.204}$$

Tem-se que:

$$s_{44} = s_{45} \tag{3.205}$$

Foi determinada, no ponto 45, a entropia e entalpia para uma pressão de 2 MPa, que é a pressão de saída do primeiro compressor da MR. Conforme as tabelas 11 e 12 e figuras 48 e 49.

T	S	T	S	T	S
(°C)	(kJ/kg-K)	(°C)	(kJ/kg-K)	(°C)	(kJ/kg-K)
0	4,0231	28	4,2219	56	4,4052
2	4,038	30	4,2355	58	4,4178
4	4,0528	32	4,2489	60	4,4304
6	4,0674	34	4,2623	62	4,4429
8	4,082	36	4,2756	64	4,4554
10	4,0964	38	4,2888	66	4,4679
12	4,1107	40	4,302	68	4,4803
14	4,1249	42	4,3151	70	4,4926
16	4,1391	44	4,3282	72	4,5049
18	4,1531	46	4,3411	74	4,5172
20	4,167	48	4,3541	76	4,5294
22	4,1809	50	4,3669	78	4,5416
24	4,1947	52	4,3797	80	4,5537
26	4,2083	54	4,3925		

Tabela 11 Valores da entropia da MR em função da temperatura, a uma pressão de 2 MPa.

Т	h	Т	h
(°C)	(kJ/kg)	(°C)	(kJ/kg)
0	630,87	42	716,62
2	634,95	44	720,74
4	639,02	46	724,87
6	643,1	48	729,01
8	647,17	50	733,15
10	651,24	52	737,3
12	655,31	54	741,46
14	659,38	56	745,63
16	663,45	58	749,8
18	667,52	60	753,98
20	671,6	62	758,17
22	675,67	64	762,37
24	679,75	66	766,58
26	683,83	68	770,79
28	687,91	70	775,02
30	692	72	779,25
32	696,09	74	783,5
34	700,19	76	787,75
36	704,29	78	792,02
38	708,39	80	796,29
40	712,5		

Tabela 12 Valores da entalpia da MR em função da temperatura a uma pressão de 2 MPa

Figura 48 Variação da entropia da MR em função da temperatura, a uma pressão de 2 MPa, entre 0 e 80 $^{\circ}\text{C}.$

Figura 49 Variação da entalpia da MR em função da temperatura a uma pressão de 2 MPa, entre 0 e 80 $^{\circ}$ C.

Então, para o ponto 45, na pressão de 2 MPa, tem-se:

$$s_{45} = -8 \times 10^{-6} \times T_{45}^2 + 0,0073 \times T_{45}^2 + 4,0242$$

$$h_{45} = 2,0637 \times T_{45} + 630,34$$
(3.207)
(3.207)

A compressão isentrópica fornece o ponto 45,1.

$$\eta_{isse,2} = \frac{\left(h_{45} - h_{44}\right)}{\left(h_{451} - h_{44}\right)} \tag{3.208}$$

A temperatura no ponto 45,1 é calculada por:

$$h_{45,1} = 2,0637 \times T_{45,1} + 630,34 \tag{3.209}$$

De maneira análoga, são aqui apresentados os modelos dos compressores de média (2,91 MPa) e alta pressão (5,2 MPa):

$$m_{46} = m_{47} \tag{3.210}$$

$$m_{46} h_{46} = m_{47} h_{47} \tag{3.211}$$

Т	S	Т	S	Т	S
(°C)	(kJ/kg-K)	(°C)	(kJ/kg-K)	(°C)	(kJ/kg-K)
0	3,8439	28	4,0553	56	4,2459
2	3,8599	30	4,0695	58	4,2589
4	3,8758	32	4,0836	60	4,2719
6	3,8916	34	4,0975	62	4,2849
8	3,9071	36	4,1114	64	4,2977
10	3,9225	38	4,1252	66	4,3105
12	3,9378	40	4,139	68	4,3233
14	3,9529	42	4,1526	70	4,336
16	3,9679	44	4,1661	72	4,3486
18	3,9828	46	4,1796	74	4,3612
20	3,9975	48	4,193	76	4,3737
22	4,0121	50	4,2063	78	4,3862
24	4,0266	52	4,2196	80	4,3986
26	4,041	54	4,2328		

Tabela 13 Valores da entropia em função da temperatura para a MR a uma pressão de 2,91 MPa.

Т	h	Т	h	Т	h
(°C)	(kJ/kg)	(°C)	(kJ/kg)	(°C)	(kJ/kg)
0	615,16	28	675,81	56	735,84
2	619,57	30	680,09	58	740,14
4	623,96	32	684,37	60	744,46
6	628,33	34	688,66	62	748,78
8	632,69	36	692,94	64	753,1
10	637,04	38	697,22	66	757,43
12	641,38	40	701,5	68	761,77
14	645,7	42	705,78	70	766,11
16	650,02	44	710,07	72	770,46
18	654,33	46	714,35	74	774,82
20	658,64	48	718,64	76	779,18
22	662,94	50	722,94	78	783,55
24	667,23	52	727,23	80	787,93
26	671,52	54	731,53		

Tabela 14 Valores da entalpia da MR em função da temperatura a uma pressão de 2,91 MPa.

Figura 50 Variação da entropia da MR em função da temperatura a uma pressão de 2,91 MPa, entre 0 e 80 $^{\circ}\text{C}$

Figura 51 Variação da entalpia da MR em função da temperatura a uma pressão de 2,91 MPa, entre 0 e 80 $^{\circ}$ C.

Para uma temperatura de $T_{46} = 29^{\circ}C$ e uma pressão de 2 MPa sua entalpia é obtida mediante a seguinte equação:

$$h_{46} = 2,0637 \times T_{46} + 630,34 \tag{3.212}$$

 $s_{46} = -8 \times 10^{-6} \times T_{46}^2 + 0,0073 \times T_{46}^2 + 4,0242$ (3.213)

$$s_{46} = s_{47} \tag{3.214}$$

$$s_{47} = -1 \times 10^{-5} \times T_{47}^2 + 0,0078 \times T_{47} + 3,8455$$
(3.215)

$$h_{47} = 4 \times 10^{-5} \times T_{47}^2 + 2,1492 \times T_{47} + 615,48$$
(3.216)

$$\eta_{isse,2} = \frac{\left(h_{47} - h_{46}\right)}{\left(h_{47,1} - h_{46}\right)} \tag{3.217}$$

$$h_{47,1} = 4 \times 10^{-5} \times T_{47,1}^2 + 2,1492 \times T_{47,1} + 615,48$$
(3.218)

$$m_{49} = m_{50} \tag{3.219}$$

$$m_{49} h_{49} = m_{50} h_{50} \tag{3.220}$$

	1		1	_	r
Т	S	Т	S	Т	S
(°C)	(kJ/kg-K)	(°C)	(kJ/kg-K)	(°C)	(kJ/kg-K)
0	3,5046	32	3,7942	62	4,0178
2	3,5254	34	3,8101	64	4,0317
4	3,5458	36	3,8259	66	4,0456
6	3,5656	38	3,8415	68	4,0593
8	3,5851	40	3,8569	70	4,073
10	3,6041	42	3,8722	72	4,0866
12	3,6228	44	3,8873	74	4,1001
14	3,6411	46	3,9023	76	4,1136
16	3,6592	48	3,9171	78	4,1269
18	3,6769	50	3,9319	80	4,1402
20	3,6944	52	3,9465	82	4,1534
22	3,7116	54	3,9609	84	4,1665
24	3,7285	56	3,9753	86	4,1796
26	3,7453	58	3,9896	88	4,1926
28	3,7618	60	4,0037	90	4,2055
30	3,7781				

Tabela 15 Valores da entropia da MR em função da temperatura a uma pressão de 2,91 MPa.

Т	h	Т	h	Т	h
(°C)	(kJ/kg)	(°C)	(kJ/kg)	(°C)	(kJ/kg)
0	569,37	32	652,9	62	724,39
2	575,07	34	657,77	64	729,08
4	580,69	36	662,63	66	733,77
6	586,21	38	667,46	68	738,45
8	591,66	40	672,27	70	743,13
10	597,03	42	677,07	72	747,81
12	602,34	44	681,85	74	752,48
14	607,59	46	686,62	76	757,16
16	612,79	48	691,37	78	761,83
18	617,93	50	696,12	80	766,51
20	623,04	52	700,85	82	771,19
22	628,1	54	705,57	84	775,87
24	633,12	56	710,29	86	780,55
26	638,11	58	714,99	88	785,23
28	643,07	60	719,69	90	789,91
30	647,99				

Tabela 16 Valores da entalpia da MR em função da temperatura a uma pressão de 2,91 MPa.

Figura 52 Variação da entropia da MR em função da temperatura a uma pressão de 2,91 MPa, entre 0 e 80 $^{\circ}\text{C}.$

119

Figura 53 Variação da entalpia da MR em função da temperatura a uma pressão de 2,91 MPa, entre 0 e 80 $^{\circ}\mathrm{C}$

$$h_{48} = 4 \times 10^{-5} \times T_{48}^2 + 2,1492 \times T_{48} + 615,48$$
(3.221)

$$h_{48} = h_{49} \tag{3.222}$$

$$s_{48} = -1 \times 10^{-5} \times T_{48}^2 + 0,0078 \times T_{48} + 3,8455$$
(3.223)

$$s_{48} = s_{50} \tag{3.224}$$

$$s_{50} = -2 \times 10^{-5} \times T_{50}^2 + 0,0094 \times T_{50} + 3,5111$$
(3.225)

$$h_{50} = -0,0022 \times T_{50}^2 + 2,621 \times T_{50} + 570,85$$
(3.226)

$$\eta_{isse,2} = \frac{\left(h_{50} - h_{48}\right)}{\left(h_{50,1} - h_{48}\right)} \tag{3.227}$$

$$h_{50,1} = -0,0022 \times T_{50,1}^2 + 2,621 \times T_{50,1} + 570,85$$
(3.228)

Para a potência de compressão, tem-se:

$$W_{44_{45,1}} = m_{MR} \left(h_{45,1} - h_{44} \right)$$
(3.229)

$$W_{46_47,1} = m_{MR} \left(h_{47,1} - h_{46} \right) \tag{3.230}$$

$$W_{48_{50,1}} = m_{MR} \left(h_{50,1} - h_{48} \right) \tag{3.231}$$

E a potência total é:

$$\dot{W}_{C,MR} = \sum \dot{W}_{parciais} \tag{3.232}$$

3.5.2 Pós-resfriadores

Do ciclo da MR constam 3 pós-resfriadores na saída de cada compressor. Servem para baixar a temperatura da MR, tendo como fluido de resfriamento ao ar. Supõe-se garantir um fluxo de ar com uma quantidade grande o suficiente que permita baixar a temperatura da MR até aproximadamente 29 °C, (Anônimo, 2003).

Para a análise do pós-resfriador 1 foram, então adotadas as seguintes hipóteses:

- c) O vapor à entrada dos pós-resfriadores está superaquecido e à pressão de condensação.
- d) O fluxo do ar é suficientemente grande para que a temperatura da MR baixe se reduza até um valor prescrito.

Figura 54 Volume de controle do pós-resfriador.

O balanço de massa no pós-resfriador MCHE1 fornece:

 $m_{45,1} = m_{46}$

(3.233)

$$Q_{PosResf,MR1} = m_{45,1} \left(h_{45,1} - h_{46} \right)$$
(3.234)

$$Q_{PosResf,MR1} = m_{ar} c_{p,arMCHE} \left(T_{ar;out3} - T_{ar;in} \right)$$
(3.235)

Analogamente, nos pós-resfriadores 2 e 3, tem-se:

$$m_{47,1} = m_{48}$$
 (3.236)

$$Q_{PosResf,MR2} = m_{47,1} \left(h_{47,1} - h_{48} \right)$$
(3.237)

$$Q_{PosResf,MR2} = m_{ar} c_{p,arMCHE} \left(T_{ar;out4} - T_{ar;in} \right)$$
(3.238)

$$Q_{PosResf,MR1} = m_{ar} c_{p,arMCHE} \left(T_{ar;out3} - T_{ar;in} \right)$$
(3.239)

$$Q_{PosResf,MR2} = m_{47,1} \left(h_{47,1} - h_{48} \right)$$
(3.240)

$$Q_{PosResf,MR2} = m_{ar} c_{p,arMCHE} \left(T_{ar;out4} - T_{ar;in} \right)$$
(3.241)

$$m_{50,1} = m_{51} \tag{3.242}$$

$$Q_{PosResf,MR3} = m_{50,1} \left(h_{50,1} - h_{51} \right)$$
(3.243)

$$Q_{PosResf,MR3} = m_{ar} c_{p,arMCHE} \left(T_{ar;out5} - T_{ar;in} \right)$$
(3.244)

3.5.3 Separador principal MCHE1

O primeiro separador do circuito da MR garante a vazão de líquido para a primeira etapa do MCHE, que tem por objetivo baixar a temperatura do GN até -100 °C. Garante, também, a vazão de vapor para a segunda etapa, que baixa a temperatura do GN até -162 °C.

O separador recebe a MR à pressão de 5,2 MPa, que é a pressão de saída do terceiro compressor. É com esta pressão que passa através dos evaporadores do circuito de propano.

3.5.3.1

Propriedades da MR no separador segundo REFPROP

3.5.3.1.1

Título da mistura de refrigerante

Para determinar o título da MR na saída do último evaporador do circuito de propano é utilizada a equação da reta da figura 55, onde é mostrado o comportamento do título segundo a temperatura. Observa-se a faixa para a qual o programa REFPROP calcula o título (0 < x < 0,625 para -70,62 < T < -30 e T_{x=1} = -8,93 °C). Devido à volatilidade da MR, existe uma faixa onde o título não é determinado.

т (°С)	x	T (°C)	x
-70,623	0	-48	0,36034
-70	0,010119	-46	0,38934
-68	0,042976	-44	0,41813
-66	0,076212	-42	0,44685
-64	0,10957	-40	0,47563
-62	0,1428	-38	0,50462
-60	0,17568	-36	0,53394
-58	0,20802	-34	0,56371
-56	0,23973	-32	0,59404
-54	0,27077	-30	0,62502
-52	0,30117	-8,9367	1
-50	0,33099		

Tabela 17 Valores do título da MR em função da temperatura a uma pressão de 5,2 MPa.

Figura 55 Variação do título de vapor da MR em função da temperatura de saída do evaporador 1.

A equação de ajuste da curva, figura 55, é:

 $x_{MR} = 0,0153 \times T_{s,MR1} + 1,0883 \tag{3.245}$

3.5.3.1.2

Entalpia da mistura de refrigerante na saída do separador

Para determinar a entalpia é necessário estabelecer o seguinte:

- a) As fases líquido e vapor, na saída do separador, estão saturadas.
- b) Não há queda de pressão.

A tabela 18 e a equação da figura 56 servem para determinar a entalpia do vapor da MR, e a tabela 19 e a equação da figura 67 servem para determinar a entalpia do líquido saturado.

Т	h	Т	h	Т	h
(°C)	(kJ/kg)	(°C)	(kJ/kg)	(°C)	(kJ/kg)
-182	-149,18	-130	-12,066	-78	140,03
-180	-144,01	-128	-6,6016	-76	146,58
-178	-138,85	-126	-1,1174	-74	153,22
-176	-133,68	-124	4,3875	-72	159,98
-174	-128,51	-122	9,914	-70,623	164,7
-172	-123,33	-120	15,463	-70	168,1
-170	-118,14	-118	21,035	-68	179,22
-168	-112,95	-116	26,632	-66	190,59
-166	-107,75	-114	32,255	-64	202,17
-164	-102,54	-112	37,905	-62	213,9
-162	-97,322	-110	43,583	-60	225,72
-160	-92,093	-108	49,291	-58	237,58
-158	-86,852	-106	55,031	-56	249,45
-156	-81,6	-104	60,804	-54	261,3
-154	-76,336	-102	66,611	-52	273,13
-152	-71,06	-100	72,456	-50	284,93
-150	-65,771	-98	78,34	-48	296,7
-148	-60,468	-96	84,266	-46	308,47
-146	-55,152	-94	90,236	-44	320,24
-144	-49,822	-92	96,253	-42	332,04
-142	-44,477	-90	102,32	-40	343,88
-140	-39,117	-88	108,44	-38	355,79
-138	-33,74	-86	114,62	-36	367,78
-136	-28,348	-84	120,87	-34	379,87
-134	-22,939	-82	127,18	-32	392,07
-132	-17,511	-80	133,56	-30	404,4

Tabela 18 Valores da entalpia da MR em função da temperatura a uma pressão de 5,2 MPa, entre -182°C e -30 °C .

Para o cálculo da entalpia do líquido saturado, em primeiro lugar é calculada a temperatura na qual o título é 0 (zero-ponto de bolha). Então:

$$x_0 = 0$$
 (3.246)

$$x_0 = 0,0153 \times T_f + 1,0883 \tag{3.247}$$

$$h_f = 5 \times 10^{-7} \times T_f^4 + 0,0004 \times T_f^3 + 0,094 \times T_f^2 + 12,647 \times T_f + 718,94$$
(3.248)

Figura 56 Variação da entalpia da MR em função da temperatura a uma pressão de 5,2 MPa, entre -182 e -30 $^{\rm o}{\rm C}$

Т	h	Т	h	Т	h
(°C)	(kJ/kg)	(°C)	(kJ/kg)	(°C)	(kJ/kg)
-28	465,71	8	591,66	46	686,62
-26	476,38	10	597,03	48	691,37
-24	486,02	12	602,34	50	696,12
-22	494,89	14	607,59	52	700,85
-20	503,17	16	612,79	54	705,57
-18	510,98	18	617,93	56	710,29
-16	518,4	20	623,04	58	714,99
-14	525,5	22	628,1	60	719,69
-12	532,33	24	633,12	62	724,39
-10	538,92	26	638,11	64	729,08
-8,9367	542,35	28	643,07	66	733,77
-8	545,32	30	647,99	68	738,45
-6	551,55	32	652,9	70	743,13
-4	557,62	34	657,77	72	747,81
-2	563,55	36	662,63	74	752,48

0	569,37	38	667,46	76	757,16
2	575,07	40	672,27	78	761,83
4	580,69	42	677,07	80	766,51
6	586,21	44	681,85		

Tabela 19 Valores da entalpia da MR em função da temperatura a uma pressão de 5,2 MPa, entre -28 $^{\circ}C$ e 80 $^{\circ}C.$

Figura 57 Variação da entalpia da MR em função da temperatura a uma pressão de 5,2 MPa, entre -28 e 80 $^{\circ}\mathrm{C}$

Para obter a entalpia no estado de vapor saturado é preciso observar a tabela 17, onde o valor da temperatura para um título de 1 é -8,9367 °C. Então, segundo a equação de ajuste da curva nessa faixa de temperatura, a entalpia é determinada por:

$$h_g = -4 \times 10^{-10} \times T_g^6 + 9 \times 10^{-8} \times T_g^5 - 7 \times 10^{-6} \times T_g^4 + 0,0003 \times T_g^3 - 0,013 \times T_g^2 + 2,8595 \times T_g + 569,37$$
(3.249)

3.5.3.1.3 Fração de líquido e vapor no separador

Têm-se as seguintes hipóteses:

- a) As fases se encontram em equilíbrio;
- b) O equipamento é adiabático;
- c) Não há quedas de pressão.

Figura 58 Volume de controle do condensador da MR.

Pela definição de título, tem-se:

$$x_{MR} = \frac{m_{vap}}{m_{vap} + m_{liq}}$$
(3.250)

3.5.4

 $m_{MR} = m_{vap} + m_{liq}$

Trocador de calor criogênico principal

A redução da temperatura do GN, desde -35 até aproximadamente -162 °C, ocorre no MCHE. Para uma melhor análise do MCHE este será dividido em três zonas:

(3.251)

- A Primeira Zona: troca de calor onde o refrigerante é produto do vapor saturado da MR.
- A segunda Zona: balanço de massa e energia do refrigerante da primeira etapa e o refrigerante produto do líquido saturado da MR.
- A Terceira Zona: troca de calor onde o refrigerante é produto dos balanços da segunda etapa.

3.5.4.1

Primeira etapa do MCHE

Para a primeira etapa se estabeleceram as seguintes hipóteses:

- d) Trocador adiabático
- e) Não há quedas de pressão.
- f) As temperaturas de saída do GN (65) e da MR (62), na primeira etapa do MCHE, são prescritas.
- g) As temperaturas de entrada do GN (64) e da MR (60), são prescritas.

Figura 59 Volume de controle da primeira etapa do MCHE.

Balanço de massa no condensador MCHE1:

 $m_{57} = m_{vap}$ (3.252)

 $m_{60} = m_{vap}$ (3.253)

$$m_{61} = m_{vap}$$
 (3.254)

$$m_{62} = m_{vap}$$
 (3.255)

Os balanços de energia da MR e o ar fornecem respectivamente:

$$Q_{MCHE1} = m_{62} \left(h_{68} - h_{62} \right) \tag{3.256}$$

$$Q_{MCHE1} = m_{62} \left(h_{68} - h_{62} \right) \tag{3.257}$$

$$Q_{MCHE1} = m_{60} \left(h_{60} - h_{61} \right) + m_{GN} \left(h_{64} - h_{65} \right)$$
(3.258)

As entalpias dos pontos 60, 61, 62, 64, 65, 66 e 68 são determinadas a partir das equações de ajuste das curvas das figuras 60, 61, 62 e 63.

As tabelas 20, 21, 22 e 23 apresentam as propriedades termodinâmicas cujos valores foram levantados do REFPROP.

T (°C)	h (k l/kg)	T (°C)	h (k l/kg)	T (°C)	h (k l/kg)
()	(KJ/KG)	()	(KJ/KG)	()	(KJ/KG)
-182	-149,18	-144	-49,822	-106	55,031
-180	-144,01	-142	-44,477	-104	60,804
-178	-138,85	-140	-39,117	-102	66,611
-176	-133,68	-138	-33,74	-100	72,456
-174	-128,51	-136	-28,348	-98	78,34
-172	-123,33	-134	-22,939	-96	84,266
-170	-118,14	-132	-17,511	-94	90,236
-168	-112,95	-130	-12,066	-92	96,253
-166	-107,75	-128	-6,6016	-90	102,32
-164	-102,54	-126	-1,1174	-88	108,44
-162	-97,322	-124	4,3875	-86	114,62
-160	-92,093	-122	9,914	-84	120,87
-158	-86,852	-120	15,463	-82	127,18
-156	-81,6	-118	21,035	-80	133,56
-154	-76,336	-116	26,632	-78	140,03
-152	-71,06	-114	32,255	-76	146,58
-150	-65,771	-112	37,905	-74	153,22
-148	-60,468	-110	43,583	-72	159,98
-146	-55,152	-108	49,291	-70,623	164,7

Tabela 20 Valores da entalpia da MR em função da temperatura a uma pressão de 5,2 MPa.

Figura 60 Variação da entalpia da MR em função da temperatura a uma pressão de 5,2 MPa, entre -180 e -72 $^{\rm o}{\rm C}$

Т	h	Т	h
(°C)	(kJ/kg)	(°C)	(kJ/kg)
-180	-150,6	-152	-70,948
-178	-145,41	-150	-61,889
-176	-140,22	-148	-52,379
-174	-135,03	-146	-42,179
-172	-129,82	-144	-30,983
-170	-124,61	-142	-18,407
-168	-119,39	-140	-4,012
-166	-114,16	-138	12,552
-164	-108,91	-136	31,213
-162	-103,66	-134	51,117
-160	-98,393	-132	70,842
-158	-93,112	-130	89,209
-156	-87,818	-128	105,76
-155,62	-86,811	-126	120,56
-154	-79,751	-124	133,92

Tabela 21 Valores da entalpia da MR em função da temperatura a uma pressão de 0,47 MPa.

Figura 61 Variação da entalpia da MR em função da temperatura a uma pressão de 0,47 MPa, entre -182 e -124 $^{\rm o}{\rm C}$

Т	h	Т	h	Т	h
(°C)	(kJ/kg)	(°C)	(kJ/kg)	(°C)	(kJ/kg)
-180	-71,752	-148	33,21	-118	137,61
-178	-65,303	-146	39,937	-116	144,94
-176	-58,845	-144	46,689	-114	152,33
-174	-52,374	-142	53,468	-112	159,8
-172	-45,891	-140	60,276	-110	167,34
-170	-39,394	-138	67,113	-108	174,96
-168	-32,883	-136	73,982	-106	182,68
-166	-26,356	-134	80,885	-104	190,5
-164	-19,813	-132	87,824	-102	198,43
-162	-13,253	-130	94,801	-100	206,48
-160	-6,6756	-128	101,82	-98	214,67
-158	-0,07939	-126	108,88	-96	223,02
-156	6,5362	-124	115,98	-94	231,53
-154	13,172	-122	123,14	-92	240,24
-152	19,829	-120	130,35	-90	249,18
-150	26,508				

Tabela 22 Valores da entalpia da MR em função da temperatura a uma pressão de 0,47 MPa.

Figura 62 Variação da entalpia do GN em função da temperatura a uma pressão de 0,47 MPa, entre -180 e -90 $^{\rm o}{\rm C}$

Т	h	Т	h	Т	h
(°C)	(kJ/kg)	(°C)	(kJ/kg)	(°C)	(kJ/kg)
-180	-81,643	-172	-55,516	-164	-29,092
-178	-75,134	-170	-48,941	-162	-22,431
-176	-68,611	-168	-42,346	-160,8	-18,427
-174	-62,072	-166	-35,73		

Tabela 23 Valores da entalpia do GN em função da temperatura à pressão atmosférica.

Figura 63 Variação da entalpia do GN em função da temperatura à pressão atmosférica, entre -180 e -160,8 $^{\circ}\mathrm{C}$

$$\begin{aligned} h_{60} &= 0,0031 \times T_{60}^2 + 3,5648 \times T_{60} + 399,04 & (3.259) \\ h_{61} &= 0,0031 \times T_{61}^2 + 3,5648 \times T_{61} + 399,04 & (3.260) \\ h_{62} &= 0,0867 \times T_{62}^2 + 31,299 \times T_{62} + 2686,1 & (3.261) \\ h_{64} &= 0,0054 \times T_{64}^2 + 4,9738 \times T_{64} + 650,37 & (3.262) \\ h_{65} &= 0,0054 \times T_{65}^2 + 4,9738 \times T_{65} + 650,37 & (3.263) \\ h_{66} &= 0,0024 \times T_{66}^2 + 4,1176 \times T_{66} + 581,04 & (3.264) \\ h_{68} &= 0,0867 \times T_{68}^2 + 31,299 \times T_{68} + 2686,1 & (3.265) \\ h_{61} &= h_{62} & (3.266) \\ h_{65} &= h_{66} & (3.267) \end{aligned}$$

São dados de entrada: vazão mássica do ar, m_{GN} ; pressões de trabalho no MCHE; temperaturas $T_{60}, T_{62}, T_{64}, T_{65}$.

3.5.4.2 Segunda etapa do MCHE

Figura 64 Volume de controle da segunda etapa do MCHE.

O balanço de massa na segunda etapa do MCHE é dado por:

$$m_{58} = m_{liq} \tag{3.268}$$

 $m_{59} = m_{58} \tag{3.269}$

$$m_{68} = m_{vap}$$
 (3.270)
 $m_{69} = m_{59} + m_{68}$ (3.271)

As entalpias dos pontos 59 e 69 são determinadas a partir da equação da curva mostrada na figura 65, gerada pelo REFPROP (tabela 24).

A pressão de trabalho nessa etapa é de 0,47 MPa e sua temperatura é determinada mediante o balanço de energia entre a MR da primeira etapa e a MR que sai no estado termodinâmico 59.

Т	h	Т	h
(°C)	(kJ/kg)	(°C)	(kJ/kg)
-124	133,92	-96	286,37
-122	146,15	-94	299,41
-120	157,55	-92	313,13
-118	168,34	-90	327,56
-116	178,73	-88	342,71
-114	188,87	-86	358,52
-112	198,89	-84	374,9
-110	208,9	-82	391,66
-108	219,01	-80	408,59
-106	229,3	-78	425,42
-104	239,86	-76	441,91
-102	250,78	-74	457,92
-100	262,12	-72	473,41
-98	273,96		

Tabela 24 Valores da entalpia da MR em função da temperatura a uma pressão de 0,47 MPa.

Figura 65 Variação da entalpia da MR em função da temperatura a uma pressão de 0,47 MPa, entre -124 e -72 $^{\rm o}{\rm C}$

$$h_{59} = 0,0469 \times T_{59}^2 + 15,603 \times T_{59} + 1355$$
(3.272)

 $h_{69} = 0,0469 \times T_{69}^2 + 15,603 \times T_{69} + 1355$ (3.273)

Balanço de energia da MR na segunda etapa do MCHE fornece respectivamente:

$$m_{69} h_{69} = m_{59} h_{59} + m_{68} h_{68} \tag{3.274}$$

É dado de entrada: a temperatura T_{59} .

3.5.4.3 Terceira etapa do MCHE

Na terceira etapa se estabeleceram as seguintes hipóteses:

- h) Trocador adiabático
- i) No há queda de pressão.
- j) As temperaturas de saída do GN (64), e da MR (58) na segunda etapa do MCHE são prescritas.

- k) As temperaturas de entrada da MR no estado vapor e líquido (56 e 57) são determinadas pelos títulos da MR (entre 0 e 1).
- A temperatura de entrada do GN (63) é determinada pela troca de calor do primeiro evaporador do circuito de propano.

Figura 66 Volume de controle da terceira etapa do MCHE.

Balanço de massa no condensador MCHE3:

$$m_{56} = m_{liq} \tag{3.275}$$

$$m_{57} = m_{vap}$$
 (3.276)

$$m_{67} = m_{vap} + m_{liq} \tag{3.277}$$

O balanço de energia entre a MR e o GN fornece respectivamente:

$$Q_{MCHE2} = m_{69} \left(h_{67} - h_{69} \right) \tag{3.278}$$

$$Q_{MCHE2} = m_{GN} \left(h_{63} - h_{64} \right) + m_{liq} \left(h_{56} - h_{58} \right) + m_{vap} \left(h_{57} - h_{60} \right)$$
(3.279)

As entalpias dos pontos 56 e 57 são determinadas pelas entalpias da MR no estado líquido e vapor, respectivamente.

$$h_{57} = h_{\sigma}$$
 (3.280)

$$h_{56} = h_f$$
 (3.281)

A entalpia no ponto 67 é determinada pela equação da curva mostrada na figura 67, gerada a partir dos valores da tabela 25 com as propriedades da MR calculadas para uma pressão de 0,47 MPa, que é a pressão de saída do MCHE da MR.

Т	h	Т	h	Т	h
(°C)	(kJ/kg)	(°C)	(kJ/kg)	(°C)	(kJ/kg)
-70	529,53	-24	611,27	24	699,57
-68	533,09	-22	614,87	26	703,36
-66	536,64	-20	618,46	28	707,17
-64	540,19	-18	622,07	30	710,98
-62,644	542,59	-16	625,68	32	714,8
-62	543,73	-14	629,3	34	718,64
-60	547,28	-12	632,92	36	722,49
-58	550,82	-10	636,55	38	726,34
-56	554,36	-8	640,19	40	730,21
-54	557,9	-6	643,84	42	734,09
-52	561,44	-4	647,49	44	737,98
-50	564,99	-2	651,15	46	741,89
-48	568,53	0	654,82	48	745,8
-46	572,07	2	658,5	50	749,73
-44	575,62	4	662,19	52	753,67
-42	579,17	6	665,88	54	757,62
-40	582,72	8	669,59	56	761,58
-38	586,28	10	673,3	58	765,55
-36	589,83	12	677,03	60	769,54
-34	593,4	14	680,76	62	773,54
-32	596,96	16	684,5	64	777,55
-30	600,53	18	688,25	66	781,57
-28	604,11	20	692,02	68	785,61
-26	607,69	22	695,79	70	789,66

Tabela 25 Valores da entalpia da MR em função da temperatura à pressão de 0,47 MPa.

Figura 67 Variação da entalpia da MR em função da temperatura a uma pressão de 0,47 MPa, entre -70 e 80 $^{\circ}\mathrm{C}$

$$h_{67} = 1,8604 \times T_{67} + 656,8 \tag{3.282}$$

Para a entalpia 58 é utilizada a equação já mostrada anteriormente. Então:

$$h_{58} = 0,0031 \times T_{58}^2 + 3,5648 \times T_{58} + 399,04$$
(3.283)

Calculando as entalpias nos pontos 63 e 58, tem-se:

$$h_{63} = h_{sGN1} \tag{3.284}$$

 $h_{58} = h_{59} \tag{3.285}$

3.6

Consumo por tonelada de GNL

A produção de GNL, segundo o estudo da Kryopak (tabela 7), varia segundo o processo. Nesta análise procurou-se um resultado semelhante aos dados já observados.

A produção do GNL para este processo é de 4,7 MTPA. (Pita, 2006)

$$P_{GNL} = 4,7MTPA \tag{3.286}$$

$$P_{GNL,dia} = \frac{P_{GNL} \times 10^6}{365} [Ton - dia]$$
(3.287)

O consumo de energia é o produto do trabalho dos compressores por tonelada de GNL produzido. Neste sentido, tem-se que a potência total consumida pelos compressores, tanto no circuito de propano como do MCHE, é determinado por:

$$W_{TC,C3} = m_1 (h_{2,1} - h_1) + m_4 (h_{5,1} - h_4) +$$

$$m_7 (h_{8,1} - h_7) + m_{10} (h_{11,1} - h_{10})$$

$$W_{TC,MR} = m_{MR} (h_{45,1} - h_{44}) + m_{MR} (h_{47,1} - h_{46}) +$$

$$m_{MR} (h_{50,1} - h_{48})$$
(3.289)

O consumo de energia, portanto, é dado por:

$$W_{TC,C3MR} = W_{TC,C3} + W_{TC,MR}$$
(3.290)

E o consumo especifico:

$$E_{C} = \frac{W_{TC,C3MR}}{P_{GNL,dia}}$$
(3.291)

Análise do Fator de Transformação

O fator de transformação é um indicador da razão da energia consumida no processo, que transforma GN em GNL. Tomando-se o GN em condições padrão, (20 °C e 1 atm de pressão), tem-se:

$$\rho_{GN} = 0,74073(kg/m^3) \tag{3.292}$$

$$PCI_{GN} = 1070(BTU/ft^{3})$$
(3.293)

$$P_{GN} = \left(\frac{1}{0,9478}\right) \times PCI \times (35,31) \times \frac{m_{GN}}{\rho_{GN}}$$
(3.294)

Então:

$$f_{TGNL} = \frac{\dot{P}_{GN}}{\dot{W}_{Sist}}$$
(3.295)